

International Journal of Mathematics And its Applications

Weak Continuity via Topological Grills

Research Article

N. Karthikeyan^{1*} and N. Rajesh²

1 Department of Mathematics, Jeppiaar Engineering College, Chennai, Tamilnadu, India.

2 Department of Mathematics, Rajah Serfoji Government College, Thanjavur, Tamilnadu, India.

Abstract: The aim of this paper is to introduce and characterize a new class of functions called weakly \mathcal{G} -precontinuous functions in ideal topological spaces by using \mathcal{G} -preopen sets.

MSC: 54C10.

Keywords: Grill topological spaces, \mathcal{G} -preopen sets, weakly \mathcal{G} -precontinuous functions. © JS Publication.

1. Introduction

The idea of grills on a topological space was first introduced by Choquet [4]. The concept of grills has shown to be a powerful supporting and useful tool like nets and filters, for getting a deeper insight into further studying some topological notions such as proximity spaces, closure spaces and the theory of compactifications and extension problems of different kinds (see [2], [3], [13] for details). In [10], Roy and Mukherjee defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given topological space. Quite recently, Hatir and Jafari [5] have defined new classes of sets in a grill topological space and obtained a new decomposition of continuity in terms of grills. The aim of this paper is to introduce and characterize a new class of functions called weakly \mathcal{G} -precontinuous functions in grill topological spaces by using \mathcal{G} -preopen sets.

2. Preliminaries

Let A be a subset of a topological space (X, τ) . We denote the closure of A and the interior of A by Cl(A) and Int(A), respectively. A subset A of X is said to be regular open [11] if A = Int(Cl(A)). A point x of X is called a θ -cluster [12] point of A if Cl(U) $\cap A \neq \emptyset$ for every open set U of X containing x. The set of all θ -cluster points of A is called the θ -closure [12] of A and is denoted by Cl_{θ}(A). A subset A is said to be θ -closed [12] if Cl_{θ}(A) = A. The complement of θ -closed set is called θ -open. The definition of grill on a topological space, as given by Choquet [4], goes as follows: A non-null collection \mathcal{G} of subsets of a topological space (X, τ) is said to be a grill on X if

1. $\emptyset \notin \mathcal{G}$,

 $^{^{*}}$ E-mail: karthiratnam.natrajan@gmail.com

- 2. $A \in \mathcal{G}$ and $A \subset B$ implies that $B \in \mathcal{G}$,
- 3. $A, B \subset X$ and $A \cup B \in \mathcal{G}$ implies that $A \in \mathcal{G}$ or $B \in \mathcal{G}$.

Definition 2.1 ([10]). Let (X, τ) be a topological space and \mathcal{G} a grill on X. A mapping $\Phi : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined as follows: $\Phi(A) = \Phi_{\mathcal{G}}(A, \tau) = \{x \in X : A \cap U \in \mathcal{G} \text{ for every open set } U \text{ containing } x\}$ for each $A \in \mathcal{P}(X)$. The mapping Φ is called the operator associated with the grill \mathcal{G} and the topology τ .

Definition 2.2 ([10]). Let \mathcal{G} be a grill on a topological space (X, τ) . Then we define a map $\Psi : \mathcal{P}(X) \to \mathcal{P}(X)$ by $\Psi(A) = A \cup \Phi(A)$ for all $A \in \mathcal{P}(X)$. The map Ψ is a Kuratowski closure axiom. Corresponding to a grill \mathcal{G} on a topological space (X, τ) , there exists a unique topology $\tau_{\mathcal{G}}$ on X given by $\tau_{\mathcal{G}} = \{U \subseteq X : \Psi(X \setminus U) = X \setminus U\}$, where for any $A \subset X$, $\Psi(A) = A \cup \Phi(A) = \tau_{\mathcal{G}} \operatorname{Cl}(A)$. For any grill \mathcal{G} on a topological space $(X, \tau), \tau \subset \tau_{\mathcal{G}}$. If (X, τ) is a topological space with a grill \mathcal{G} on X, then we call it a grill topological space and denote it by (X, τ, \mathcal{G}) .

Definition 2.3 ([5]). A subset S of a grill topological space (X, τ, \mathcal{G}) is \mathcal{G} -preopen if $S \subset Int(\Psi(S))$. The complement of a \mathcal{G} -preopen set is called a \mathcal{G} -preclosed set.

Definition 2.4. The intersection of all \mathcal{G} -preclosed sets containing $S \subset X$ is called the \mathcal{G} -preclosure of S and is denoted by $p \operatorname{Cl}_{\mathcal{G}}(S)$. The family of all \mathcal{G} -preopen (resp. \mathcal{G} -preclosed) sets of (X, τ, \mathcal{G}) is denoted by $\mathcal{G}PO(X)$ (resp. $\mathcal{G}PC(X)$). The family of all \mathcal{G} -preopen (resp. \mathcal{G} -preclosed) sets of (X, τ, \mathcal{G}) containing a point $x \in X$ is denoted by $\mathcal{G}PO(X, x)$ (resp. $\mathcal{G}PC(X, x)$).

Definition 2.5. A subset B_x of a topological space (X, τ, \mathcal{G}) is said to be a \mathcal{G} -preneighbourhood of a point $x \in X$ if there exists a \mathcal{G} -preopen set U such that $x \in U \subset B_x$.

Definition 2.6 ([5]). A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is said to be:

- (i) \mathcal{G} -precontinuous at a point $x \in X$ if for each open subset V in Y containing f(x), there exists $U \in \mathcal{GPO}(X, x)$ such that $f(U) \subset V$;
- (ii) \mathcal{G} -precontinuous if it has this property at each point of X.

Definition 2.7 ([8]). A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is said to be:

- (i) almost \mathcal{G} -precontinuous at a point $x \in X$ if for each open subset V in Y containing f(x), there exists $U \in \mathcal{GPO}(X, x)$ such that $f(U) \subset \operatorname{Int}(\operatorname{Cl}(V))$;
- (ii) almost \mathcal{G} -precontinuous if it has this property at each point of X.

Definition 2.8 ([6]). A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is said to be faintly \mathcal{G} -precontinuous if for each $x \in X$ and for each θ -open set V of Y containing f(x), then there exist $U \in \mathcal{GPO}(X, x)$ such that $f(U) \subset V$.

Theorem 2.1 ([6]). A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is faintly \mathcal{G} -precontinuous if and only if the inverse image of every (resp. θ -open) θ -closed subset of (Y, σ) is (resp. \mathcal{G} -preopen) \mathcal{G} -preclosed in (X, τ, \mathcal{G}) .

Definition 2.9 ([7]). A grill topological space (X, τ, \mathcal{G}) is said to be:

- (i) \mathcal{G} -pre- T_1 if for each pair of distinct points x and y of X, there exists \mathcal{G} -preopen sets and U and V such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$.
- (ii) \mathcal{G} -pre- T_2 if for each pair of distinct points x and y of X, there exists \mathcal{G} -preopen sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

3. Weakly *G*-precontinuous Functions

Definition 3.1. A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is said to be weakly \mathcal{G} -precontinuous if for each $x \in X$ and each open set V of Y containing f(x) there exists $U \in \mathcal{G}PO(X, x)$ such that $f(U) \subset Cl(V)$.

Theorem 3.1. If a function $f: (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is almost \mathcal{G} -precontinuous, then it is weakly \mathcal{G} -precontinuous.

Proof. Let $x \in X$ and $V \subset Y$ be an open set with $f(x) \in V$. Then since $f(x) \in V \subset Cl(V)$, $f(x) \in Int(Cl(V))$, which is regular open. Since f is almost \mathcal{G} -precontinuous, there exists $U \in \mathcal{GPO}(X, x)$ such that $f(U) \subset Int(Cl(V)) \subset Cl(V)$. Therefore, f is weakly \mathcal{G} -precontinuous.

Remark 3.1. The converse of Theorem 3.1 is not true in general as can be seen from the following example.

Example 3.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{c\}, \{b, c\}, \{a, c\}, X\}, \sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mathcal{G} = \mathcal{P}(X) \setminus \{\emptyset, \{a\}\}$. Then the identity function $f : (X, \tau, \mathcal{G}) \to (X, \sigma)$ is weakly \mathcal{G} -precontinuous but not almost \mathcal{G} -precontinuous.

Corollary 3.1. Every G-precontinuous function is weakly G-precontinuous.

Theorem 3.2. If a function $f: (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is weakly \mathcal{G} -precontinuous, then it is faintly \mathcal{G} -precontinuous.

Proof. Follows from the definitions.

Remark 3.2. The converse of Theorem 3.2 is not true in general as can be seen from the following example.

Example 3.2. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}, \sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mathcal{G} = \mathcal{P}(X) \setminus \{\emptyset, \{a\}\}$. Then the identity function $f : (X, \tau, \mathcal{G}) \to (X, \sigma)$ is faintly \mathcal{G} -precontinuous but not weakly \mathcal{G} -precontinuous.

Theorem 3.3. For a function $f: (X, \tau, \mathcal{G}) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is weakly G-precontinuous;
- (*ii*) $p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(\operatorname{Int}(\operatorname{Cl}_{\theta}(A)))) \subset f^{-1}(\operatorname{Cl}_{\theta}(A))$ for every subset A of Y;
- (iii) $p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(\operatorname{Int}(\operatorname{Cl}(B)))) \subset f^{-1}(\operatorname{Cl}(B))$ for every open set B of Y;
- (iv) $p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(\operatorname{Int}(C))) \subset f^{-1}(C)$ for every regular closed set C of Y;
- (v) $p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(D)) \subset f^{-1}(\operatorname{Cl}(D))$ for every open set D of Y;
- (vi) $f^{-1}(E) \subset p \operatorname{Int}_{\mathcal{G}}(f^{-1}(\operatorname{Cl}(E)))$ for every open set E of Y.

Proof. (i)⇒(ii): Let *A* be a subset of *Y* and $x \in X \setminus f^{-1}(\operatorname{Cl}_{\theta}(A))$. Then $x \notin f^{-1}(\operatorname{Cl}_{\theta}(A))$, that is, $f(x) \notin \operatorname{Cl}_{\theta}(A)$. This means that the existence of an open set *W* of *Y* containing f(x) such that $A \cap \operatorname{Cl}(W) = \emptyset$. Hence $\operatorname{Cl}_{\theta}(A) \cap W = \emptyset$. So, $W \subset Y \setminus \operatorname{Cl}_{\theta}(A)$, that is, $\operatorname{Cl}(W) \subset \operatorname{Cl}(Y \setminus \operatorname{Cl}_{\theta}(A))$. Since *f* is weakly *G*-precontinuous, there exists $U \in \mathcal{GPO}(X, x)$ such that $f(U) \subset \operatorname{Cl}(W) \subset \operatorname{Cl}(Y \setminus \operatorname{Cl}_{\theta}(A))$. So $f(U) \cap (Y \setminus \operatorname{Cl}(Y \setminus \operatorname{Cl}_{\theta}(A))) = \emptyset$. Then $f(U) \cap \operatorname{Int}(\operatorname{Cl}_{\theta}(A)) = \emptyset$ and hence $U \cap f^{-1}(\operatorname{Int}(\operatorname{Cl}_{\theta}(A))) = \emptyset$. This shows that $x \notin p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(\operatorname{Int}(\operatorname{Cl}_{\theta}(A))))$. Therefore, $p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(\operatorname{Int}(\operatorname{Cl}_{\theta}(A)))) \subset f^{-1}(\operatorname{Cl}_{\theta}(A))$. (ii)⇒ (iii): This implication is follows from the fact that, $\operatorname{Cl}_{\theta}(A) = \operatorname{Cl}(A)$ for every open set *B* of *Y*. (iii)⇒(iv): Let *C* be a regular closed subset of *Y*. Then $p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(\operatorname{Int}(C))) = p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(C))))) \subset f^{-1}(\operatorname{Cl}(\operatorname{Int}(C)))$

$$= f^{-1}(C).$$

 $(iv) \Rightarrow (v)$: Let D be an open subset of Y. Then Cl(D) is regular closed in Y. So, $p Cl_{\mathcal{G}}(f^{-1}(D)) = p Cl_{\mathcal{G}}(f^{-1}(Int(D))) \subset p Cl_{\mathcal{G}}(f^{-1}(Int(Cl(D)))) \subset f^{-1}(Cl(D))$, by (iv).

 $(\mathbf{v})\Rightarrow(\mathbf{v})$: Let $x \in f^{-1}(E)$. Then $f(x) \in E$ and since $E \cap (Y \setminus \operatorname{Cl}(E)) = \emptyset$, $f(x) \notin \operatorname{Cl}(Y \setminus \operatorname{Cl}(E))$ where $x \notin f^{-1}(\operatorname{Cl}(Y \setminus \operatorname{Cl}(E)))$. Openness of $(Y \setminus \operatorname{Cl}(E))$ gives from (\mathbf{v}) that $x \notin p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(Y \setminus \operatorname{Cl}(E)))$. This implies the existence of $U \in BO(X, x)$ such that $U \cap f^{-1}(Y \setminus \operatorname{Cl}(E)) = \emptyset$; that is, $f(U) \cap (Y \setminus \operatorname{Cl}(E)) = \emptyset$. Which assures that $f(U) \subset \operatorname{Cl}(E)$ and hence $U \subset f^{-1}(\operatorname{Cl}(E))$. Thus $x \in U \subset f^{-1}(\operatorname{Cl}(E))$ and this indicates that x is a \mathcal{G} -preinterior point of $f^{-1}(\operatorname{Cl}(E))$. Consequently, $f^{-1}(E) \subset p \operatorname{Int}_{\mathcal{G}}(f^{-1}(\operatorname{Cl}(E)))$.

 $(vi) \Rightarrow (i)$: Let $x \in X$ and V be an open subset of Y containing f(x) by $(vi), x \in f^{-1}(V) \subseteq p \operatorname{Int}_{\mathcal{G}}(f^{-1}(\operatorname{Cl}(V)))$. Let $U = p \operatorname{Int}_{\mathcal{G}}(f^{-1}(\operatorname{Cl}(V)))$. Then $U \in \mathcal{GPO}(X, x)$. Now, $f(U) = f(p \operatorname{Int}_{\mathcal{G}}(f^{-1}(\operatorname{Cl}(V)))) \subseteq f(f^{-1}(\operatorname{Cl}(V))) \subset \operatorname{Cl}(U)$. This shows that f is weakly \mathcal{G} -precontinuous.

Theorem 3.4. The following statements are equivalent for a function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$:

- (i) f is weakly \mathcal{G} -precontinuous;
- (ii) $f(p \operatorname{Cl}_{\mathcal{G}}(A)) \subset \operatorname{Cl}_{\theta}(f(A))$ for each subset A of X;
- (iii) $p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}_{\theta}(B))$ for each subset B of Y;
- (iv) $p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(\operatorname{Int}(\operatorname{Cl}_{\theta}(B)))) \subset f^{-1}(\operatorname{Cl}_{\theta}(B))$ for every subset B of Y.

Proof. (i) \Rightarrow (ii): Let A be any subset of X and $x \in p \operatorname{Cl}_{\mathcal{G}}(A)$. Then $f(x) \in f(p \operatorname{Cl}_{\mathcal{G}}(A))$ Suppose that V be an open set of Y containing f(x). Then there exists $U \in \mathcal{GPO}(X, x)$ such that $f(U) \subset \operatorname{Cl}(V)$. Since $x \in p \operatorname{Cl}_{\mathcal{G}}(A)$, $U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U) \cap f(A) \subset \operatorname{Cl}(V) \cap f(A)$. Therefore, we have $f(x) \in \operatorname{Cl}_{\theta}(f(A))$ and hence $f(p \operatorname{Cl}_{\mathcal{G}}(A)) \subset \operatorname{Cl}_{\theta}(f(A))$.

(ii) \Rightarrow (iii): Let B be any subset of Y. We have $f(p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(B))) \subset \operatorname{Cl}_{\theta}(B)$ and hence $p \operatorname{Cl}_{\mathcal{G}}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}_{\theta}(B))$.

(iii) \Rightarrow (iv): Let *B* be any subset of *Y*. Since $\operatorname{Cl}_{\theta}(B)$ is closed in *Y* we have $p\operatorname{Cl}_{\mathcal{G}}(f^{-1}(\operatorname{Int}(\operatorname{Cl}_{\theta}(B)))) \subset f^{-1}(\operatorname{Cl}_{\theta}(B)) = f^{-1}(\operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}_{\theta}(B)))) f^{-1}(\operatorname{Cl}_{\theta}(B)).$

 $(iv) \Rightarrow (i)$: Let V be any open subset of Y. Then $V \subset Int(Cl(V)) = Int(Cl_{\theta}(V))$. Then $p Cl_{\mathcal{G}}(f^{-1}(V)) \subset f^{-1}(Cl(V))$. It follows from Theorem 3.3 that is weakly \mathcal{G} -precontinuous.

Theorem 3.5. Let $f: (X, \tau, \mathcal{G}) \to (Y, \sigma)$ be a function and Y be regular. Then the following statements are equivalent:

- (i) f is \mathcal{G} -precontinuous;
- (ii) f is weakly \mathcal{G} -precontinuous;
- (iii) f is faintly \mathcal{G} -precontinuous.

Definition 3.2. A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is said to be weakly continuous [9] if for each $x \in X$ and an open set V in Y containing f(x), there exists an open set U of X containing x such that $f(U) \subset Cl(V)$.

Theorem 3.6. If $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is \mathcal{G} -precontinuous and $g : (Y, \sigma) \to (Z, \eta)$ is weakly continuous, then the composition $g \circ f : (X, \tau, \mathcal{G}) \to (Z, \eta)$ is weakly \mathcal{G} -precontinuous.

Proof. Let $x \in X$ and W be an open subset of Z containing g(f(x)). Since g is weakly continuous, then there exists an open set V of Y containing f(x) such that $g(V) \subset Cl(W)$. Again since f is \mathcal{G} -precontinuous, there exists $U \in \mathcal{GPO}(X, x)$ such that $f(U) \subset V$. Then $g \circ f(U) \subset g(V) \subset Cl(W)$. This shows that $g \circ f : (X, \tau, \mathcal{G}) \to (Z, \eta)$ is weakly \mathcal{G} -precontinuous. \Box

Theorem 3.7. If $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is weakly \mathcal{G} -precontinuous and $g : (Y, \sigma) \to (Z, \eta)$ is continuous, then the composition $g \circ f : (X, \tau, \mathcal{G}) \to (Z, \eta)$ is weakly \mathcal{G} -precontinuous.

Proof. Let $x \in X$ and W be an open subset of Z containing g(f(x)) then $g^{-1}(W)$ is an open set Y containing f(x) and there exists $U \in \mathcal{GPO}(X, x)$ such that $f(U) \subset \operatorname{Cl}(g^{-1}(W))$. Since g is continuous, we obtain $(g \circ f)(U) \subset g(\operatorname{Cl}(g^{-1}(W)))$ $\subset \operatorname{Cl}(W)$. Thus, $g \circ f$ is weakly \mathcal{G} -precontinuous.

Recall that for a function $f: (X, \tau) \to (Y, \sigma)$, the subset $\{(x, f(x)) : x \in X\}$ of $X \times Y$ is called the graph of f and is denoted by G(f).

Theorem 3.8. A function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is weakly \mathcal{G} -precontinuous if and only if the graph function $g : (X, \tau) \to (X \times Y, \tau \times \sigma)$ define by g(x) = (x, f(x)) if weakly \mathcal{G} -precontinuous at every $x \in X$.

Proof. Suppose f is weakly \mathcal{G} -precontinuous. Let $x \in X$ and W be an open subset of the product space $X \times Y$ containing g(x). Then there exist $U_1 \in \tau$ and $V \in \sigma$ such that $(x, f(x)) \in U_1 \times V \subset W$. Since f is weakly \mathcal{G} -precontinuous, there exist $U_2 \in \mathcal{G}PO(X, x)$ such that $f(U) \subset \operatorname{Cl}(V)$. Let $U = U_1 \cap U_2$. Clearly $U \in \mathcal{G}PO(X, x)$ and hence $f(U) \subset f(U_2) \subset \operatorname{Cl}(V)$. Now we observe that $g(U) \subset U \times \operatorname{Cl}(V) \subset U_1 \times \operatorname{Cl}(V) \subset \operatorname{Cl}(U_1 \times V) \subset \operatorname{Cl}(W)$. This shows that g is weakly \mathcal{G} -precontinuous. Conversely, Suppose g is weakly \mathcal{G} -precontinuous. Let $x \in X$ and $f(x) \in V \in \sigma$. Then $g(x) \in X \times V \in \tau \times \sigma$ and there exists $U \in \mathcal{G}PO(X, x)$ such that $g(U) \subset \operatorname{Cl}(X \times V) = X \times \operatorname{Cl}(V)$. Hence we obtain $f(U) \subset \operatorname{Cl}(V)$, which shows that f is quasi \mathcal{G} -precontinuous at x.

Recall that a topological space X is said to be rim-compact if for each point of X has a base of neighbourhoods with compact frontiers.

Theorem 3.9. If Y is a rim-compact space and $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is weakly \mathcal{G} -precontinuous function with the closed graph, then f is \mathcal{G} -precontinuous.

Proof. Let $x \in A$ and V be an open subset of Y containing f(x). Since Y is a rim-compact, there exists an open set W such that $f(x) \in W \subset V$ and the frontier Fr(W) is compact. It is obvious that $f(x) \notin Fr(W)$. Thus, for each $y \in Fr(W)$, we have $(x, y) \notin G(f)$. Since G(f) is closed, there exist open sets $U_y(x) \subset X$ and $V(y) \subset Y$ containing x and y, respectively, such that $f(U_y(x)) \cap V(y) = \emptyset$. The family $\{V(y); y \in Fr(W)\}$ is a cover of Fr(W) by open sets of Y. Since Fr(W) is compact, there exists a finite number of points y_1, y_2, \ldots, y_n in Fr(W) such that $Fr(W) \subset \{V(y_i) : i = 1, 2, \ldots, n\}$. Since f is weakly \mathcal{G} -precontinuous, there exists $U_0 \in \mathcal{GPO}(X, x)$ such that $f(U_0) \subset Cl(W)$. Put $U = U_0 \cap (\cap\{U_{y_i}(x) : i = 1, 2, \ldots, n\})$, then by Remark 1 of [1] we have $U \in \mathcal{GPO}(X, x)$ and $f(U) \cap (Y \setminus W) = \emptyset$. This shows that $f(U) \subset V$ and hence f is weakly \mathcal{G} -precontinuous.

Definition 3.3. The graph G(f) of a function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is said to be weakly \mathcal{G} -preclosed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in \mathcal{G}PO(X, x)$ and an open set V of Y containing y such that $(U \times \operatorname{Cl}(V)) \cap G(f) = \emptyset$.

Lemma 3.1. The graph G(f) of $f : (X, \tau) \to (Y, \sigma)$ is weakly \mathcal{G} -preclosed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in \mathcal{G}PO(X, x)$ and an open set V of Y containing y such that $f(U) \cap \operatorname{Cl}(V) = \emptyset$.

Proof. It follows immediately from the Definition 3.3.

Theorem 3.10. If $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is weakly \mathcal{G} -precontinuous and Y is a Urysohn space, then the graph G(f) of f is weakly \mathcal{G} -preclosed in $X \times Y$.

Proof. Let $(x, y) \notin G(f)$, then $y \neq f(x)$. Since Y is Urysohn, there exist open sets V_1 and V_2 of Y containing f(x) and y, respectively, such that $\operatorname{Cl}(V_1) \cap \operatorname{Cl}(V_2) = \emptyset$. Since f is weakly \mathcal{G} -precontinuous, there exists $U \in \mathcal{GPO}(X, x)$ such that $f(U) \subset \operatorname{Cl}(V_1)$ and consequently $f(U) \cap \operatorname{Cl}(V_2) = \emptyset$. This shows that f is weakly \mathcal{G} -preclosed in $X \times Y$.

Definition 3.4. A grill topological space (X, τ, \mathcal{G}) is said to be \mathcal{G} -preconnected if it is not the union of two nonempty disjoint \mathcal{G} -preopen sets.

Theorem 3.11. If (X, τ, \mathcal{G}) is a \mathcal{G} -preconnected space and $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is a weakly \mathcal{G} -precontinuous function with the weakly \mathcal{G} -preclosed, then f is constant.

Proof. Sppose that f is not constant. There exist disjoint points $x, y \in X$ such that f(x) = f(y). Since $(x, f(f)) \notin G(f)$, by Lemma 3.1 of there exists open sets U and V containing x and f(x), respetively, such that $f(U) \cap \operatorname{Cl}(V) = \emptyset$. Since f is weakly \mathcal{G} -precontinuous, there exists $G \in \mathcal{GPO}(X, y)$ such that $f(G) \subset V$. Since U and V are disjoint \mathcal{G} -preopen sets of (X, τ, \mathcal{G}) . It follows that (X, τ, \mathcal{G}) is not \mathcal{G} -preconnected. Therefore, f is constant.

Theorem 3.12. Let $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ be a weakly \mathcal{G} -precontinuous injective function. If (Y, σ) is Urysohn, then (X, τ, \mathcal{G}) is \mathcal{G} -pre T_2 .

Proof. Since f is injective, for any pair of distinct points $x_1, x_2 \in X$, $f(x_1) \neq f(x_2)$. Since (Y, σ) is Urysohn, there exist $V_1, V_2 \in \sigma$ such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $\operatorname{Cl}(V_1) \cap \operatorname{Cl}(V_2) = \emptyset$. This gives $f^{-1}(\operatorname{Cl}(V_1)) \cap f^{-1}(\operatorname{Cl}(V_2))) = \emptyset$. Since f is weakly \mathcal{G} -precontinuous $x_i \in f^{-1}(V_i) \subset p \operatorname{Int}_{\mathcal{G}}(f^{-1}(\operatorname{Cl}(V_i)))$, i = 1, 2. By Theorem 3.3 and this indicates that (X, τ, \mathcal{G}) is \mathcal{G} -pre T_2 .

Definition 3.5. If $A \subset X$, then a function $f : (X, \tau, \mathcal{G}) \to A$ is termed as weakly \mathcal{G} -precontinuous retraction if f is weakly \mathcal{G} -precontinuous and $f_{|A|}$ is the identity function.

Theorem 3.13. Let $A \subset X$ and $f : (X, \tau, \mathcal{G}) \to A$ be a weakly \mathcal{G} -precontinuous retraction. If (X, τ, \mathcal{G}) is T_2 , then A is a \mathcal{G} -preclosed subset of X.

Proof. Suppose that A is not a \mathcal{G} -preclosed subset of (X, τ, \mathcal{G}) . Then $\mathcal{GP}\operatorname{Cl}(A)\setminus A \neq \emptyset$. Let $x \in p\operatorname{Cl}_{\mathcal{G}}(A)\setminus A$. Since f is weakly \mathcal{G} -precontinuous retraction, $f(x) \neq x$. Since (X, τ, \mathcal{G}) is T_2 , then there exist disjoint open sets U and V of X such that $x \in U$, $f(x) \in V$ and this implies that $U \cap \operatorname{Cl}(V) = \emptyset$. Let $W \in \mathcal{GPO}(X, x)$. Then $U \cap W \in \mathcal{GPO}(X)$ and $x \in U \cap W$. Since $x \in p\operatorname{Cl}_{\mathcal{G}}(A)$, $(U \cap W) \cap A \neq \emptyset$. Let $y \in U \cap W \cap A$. Then, $y \in A$ and so $f(y) = y \in U \cap W \cap A \subset U$. Hence $f(y) \notin \operatorname{Cl}(V)$. This indicates that f is weakly \mathcal{G} -precontinuous and hence A is \mathcal{G} -preclosed in (X, τ, \mathcal{G}) .

Theorem 3.14 ([9]). Let (X, τ, \mathcal{G}) and (Y, σ) be topological spaces. Then the following are equivalent:

- (i) $f: (X, \tau) \to (Y, \sigma)$ is weakly continuous.
- (ii) For every open set V in Y, there exists an open set G in Y such that $G \subset V$ and $f^{-1}(G) \subset Int(f^{-1}(Cl(V)))$.

Theorem 3.15. Let $f, g: (X, \tau, \mathcal{G}) \to (Y, \sigma)$ be functions and (Y, σ) be a Urysohn space. If f is weakly continuous and g is weakly \mathcal{G} -precontinuous, then the set $\{x \in X : f(x) = g(x)\}$ is \mathcal{G} -preclosed.

Proof. Let $A = \{x \in X : f(x) = g(x)\}$. If $x \in X \setminus A$, then $f(x) \neq g(x)$. Since (Y, σ) is Urysohn, then there exist open sets V_1 and V_2 of Y containing f(x) and g(x), respectively such that $\operatorname{Cl}(V_1) \cap \operatorname{Cl}(V_2) = \emptyset$. The weak continuity of f gives $x \in f^{-1}(V_1) \subset \operatorname{Int}(f^{-1}(\operatorname{Cl}(V_1)))$ by Theorem 3.14. Also the weakly \mathcal{G} -precontinuity of g gives $x \in g^{-1}(V_2) \subset p \operatorname{Int}_{\mathcal{G}}(g^{-1}(\operatorname{Cl}(V_2)))$ by Theorem 3.3. Let $U = \operatorname{Int}(f^{-1}(\operatorname{Cl}(V_i))) \cap p \operatorname{Int}_{\mathcal{G}}(g^{-1}(\operatorname{Cl}(V_2)))$. It is clear that $U \in \mathcal{GPO}(X, x)$. Again disjointness of $\operatorname{Cl}(V_i)$ for i = 1, 2, implies that $U \cap A = \emptyset$ and hence $x \in U \subset X \setminus A$. This indicates that $X \setminus A$ is a union of \mathcal{G} -preopen sets. Therefore, $X \setminus A \in BO(X)$ and consequently, A is \mathcal{G} -preclosed in (X, τ, \mathcal{G}) .

Lemma 3.2. Let A be a subset of a space (X, τ, \mathcal{G}) . Then

- (i) $A \subset B \Rightarrow p \operatorname{Int}_{\mathcal{G}}(A) \subset p \operatorname{Int}_{\mathcal{G}}(B);$
- (*ii*) $A \subset B \Rightarrow p \operatorname{Cl}_{\mathcal{G}}(A) \subset p \operatorname{Cl}_{\mathcal{G}}(B);$
- (*iii*) $p \operatorname{Int}_{\mathcal{G}}(X \setminus A) = X \setminus p \operatorname{Cl}_{\mathcal{G}}(A);$
- (iv) $p \operatorname{Cl}_{\mathcal{G}}(X \setminus A) = X \setminus p \operatorname{Int}_{\mathcal{G}}(A);$

Theorem 3.16. If $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$ is weakly \mathcal{G} -precontinuous and A is θ -closed in $X \times Y$, then $p_X(A \cap G(f))$ is \mathcal{G} -preclosed in X, where p_X represents the projection of $X \times Y$ onto X.

Proof. Let A be a θ -closed subset of $X \times Y$ and $x \in p \operatorname{Cl}_{\mathcal{G}}(p_X(A \cap G(f)))$. Let $U \in \tau$ containing x and $V \in \sigma$ containing f(x). Since f is weakly \mathcal{G} -precontinuous, by Theorem 3.3, $x \in f^{-1}(V) \subseteq p \operatorname{Int}_{\mathcal{G}}(f^{-1}(\operatorname{Cl}(V)))$. Then $U \cap p \operatorname{Int}_{\mathcal{G}}(f^{-1}(\operatorname{Cl}(V)))$ $\cap p_X(A \cap G(f))$ contains some point z of X. This implies that $(z, f(z)) \in A$ and $f(z) \in \operatorname{Cl}(V)$. Thus we have $\emptyset \neq (U \times \operatorname{Cl}(V))$ $\cap A = \operatorname{Cl}(U \times V) \cap A$ and hence $(x, f(x)) \in \operatorname{Cl}_{\theta}(A)$. Since A is θ -closed, $(x, f(x)) \in A \cap G(f)$ and $x \in p_X(A \cap G(f))$ by Lemma 3.2, $p_X(A \cap G(f))$ is \mathcal{G} -preclosed in (X, τ, \mathcal{G}) .

References

- [1] A.Al-Omari and T.Noiri, Decomposition of continuity via grills, Jordan J. Math and Stat., 4(1)(2011), 33-46.
- [2] K.C.Chattopadhyay, O.Njastad and W.J.Thron, Merotopic spaces and extensions of closure spaces, Can. J. Math., 35(4)(1983), 613-629.
- [3] K.C.Chattopadhyay and W.J.Thron, Extensions of closure spaces, Can. J. Math., 29(6)(1977), 1277-1286.
- [4] G.Choqet, Sur les notions de filter et grill, Comptes Rendus Acad. Sci. Paris, 224(1947), 171-173.
- [5] E.Hatir and S.Jafari, On some new calsses of sets and a new decomposition of continuity via grills, J. Adv. Math. Studies, 3(1)(2010), 33-40.
- [6] N.Karthikeyan and N.Rajesh, Faint continuity via topological grills (submitted).
- [7] N.Karthikeyan and N.Rajesh, Some New separation axioms via *G*-preopen sets (submitted).
- [8] N.Karthikeyan and N.Rajesh, Almost continuity via topological grills (submitted).
- [9] N.Levine, A decomposition of continuity in topological topological spaces, Amer. Math. Monthly, 68(1961), 44-46.
- [10] B.Roy and M.N.Mukherjee, On a typical topology induced by a grill, Soochow J. Math., 33(4)(2007), 771-786.
- [11] R.Staum, The algebra of bounded continuous fuctions into a nonarchimedean field, Pacific J. Math., 50(1974), 169-185.
- [12] N.V.Velicko, H-closed topological spaces, Trans. Amer. Math. Soc., 78(2)(1968), 103-118.
- [13] W.J.Thron, Proximity structure and grills, Math. Ann., 206(1973), 35-62.