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Abstract: In this paper, a new family of univariate and multivariate generalized slash student distribution is presented as the scale

mixture of the student and the beta distributions. We called it generalized slash student distribution. It is shown that

the new family of distributions can have heavier tails than the slash student distribution and slash normal distribution.
Furthermore, moments and the invariant property under linear transformations are addressed. A simulation study is

performed to investigate asymptotically the bias properties of the estimators.
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1. Introduction

Heavy-tailed distributions have been the subject of much study in the statistical literature. Heavy-tailed distributions are

the distributions which have more observations in the tails and to be thinner in the midrange than a normal distribution.

First heavy-tailed alternative distributions to the normal distribution are the student and the slash distributions, which have

been very popular in robust statistical analysis (Rogers and Tukey [14]; Kafadar [5]; Morgenthaler [13]; Lange et al.[11];

Kafadar [6]; Jamshidian [9]; Kashid and Kulkarni [7]). Both of these distributions can be derived by mixing a normally

distributed random variable with a nonnegative scale random variable. They both belong to the scale mixture of normal

distribution family. It is known that the standard normal distribution has the following density function

f(z) =
1√
2π

exp(−z
2

2
), −∞ < z <∞. (1)

and the student distribution with r degree of freedom has the following density function

g(t) =
Γ( r+1

2
)

√
rπΓ( r

2
)

(
1 +

t2

r

)−( r+1
2 )

,−∞ < t <∞. (2)

and the beta distribution has the following density function

h(y) =
1

Beta(α, β)
yα−1(1− y)β−1, 0 < y < 1. (3)
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where α and β > 0 are shape parameters. The slash random variable is defined as the ratio of two independent random

variables: Let the standard normal random variable Z be independent of the uniform random variable U on (0, 1), then the

random variable S = Z/U1/q is said to have slash normal distribution with the following density:

Ψ(s; q) = q

∫ 1

0

tqf(st)dt, −∞ < s <∞. (4)

where q > 0 is the shape parameter and f(.) denotes the standard normal distribution density function defined in (1). For

q = 1 the distribution is called the standard slash normal distribution and it has the following density:

Ψ(s; 1) =


1√

2πs2

(
1− exp(− s

2

2
)
)
, if s 6= 0.

1

2
√

2π
, otherwise.

. (5)

The standard slash normal density has heavier tails than those of the normal. Let the random variable T has a student

distribution with degree of freedom r and be independent of the uniform random variable U on (0, 1), then the random

variable M = T/U1/q is said to have slash student distribution with the following density:

Φ(m; q) = q

∫ 1

0

vqg(mv)dv, −∞ < m <∞. (6)

where q > 0 is the shape parameter and g(.) denotes the student distribution density function defined in (2). For q = 1 the

distribution is called the standard slash student distribution. The standard slash student density has heavier tails than those

of the standard slash normal and those of the student distribution. EL-Bassiouny. A. H and Abdo. N. F generalized the

known family of the slash distribution. Since the beta distribution with the two parameters α and β on the interval (0, 1)

reduces to the uniform distribution when α = β = 1 , then they replaced the uniform random variable in the denominator

of the slash random variable by the beta random variable with the parameters α and β and introduce what they called the

generalized slash distribution, symbolically written GSL(µ, σ, α, β, q) with probability density function pdf given by

j(y) =
q

σ
√

2πBeta(α, β)

∫ 1

0

vqα (1− vq)β−1 e
− (y−µ)2v2

2σ2 dv,−∞ < t <∞. (7)

In literature, many authers studied multivariate and skew multivariate extensions of the slash distribution such as Wang and

Genton [17], Arslan [1], Arslan and Genc [2]. The main objective of this paper is to generalize the slash student distribution,

our main idea is to replace the uniform random variable in the denominator of the slash student random variable by the

beta random variable with the parameters α and β.

This paper is organized as follows: In section 2, we introduce the univariate generalized slash student distribution and

some special cases are discussed. The moments of the univariate generalized slash student distribution are obtained in

section 3. The unimodility is discussed in section 4. In section 5, the likelihood estimation is presented. In section 6 , the

multivariate generalized slash student distribution is introduced and some special cases are discussed. The first two moments

of the mutlivariate generalized slash student distribution are presented in section 7. Sum properties of the generalized slash

student distribution are discussed in section 8. The applications are introduced in section 9. The conclusion is presented in

section 10.

2. Univariate Generalized Slash Student Distribution

In this section we define the univariate generalized slash student distribution according to the following theorem.
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Theorem 2.1. Let T has the student distribution with r degree of freedom, symbolically we write T ∼ t(t; r) and Y ∼

Beta(α, β) over the interval (0, 1). Assume that T and Y are independent random variables. Define a new random variable

X = µ+ σY −1/qT , where q, σ > 0 and −∞ < µ <∞. The random variable X has the univariate generalized slash student

distribution, symbolically we writte GSLT (µ, σ, α, β, q, r). The pdf of X is given by

f(x) =
qΓ( r+1

2
)

σ
√
rπΓ( r

2
)Beta(α, β)

∫ 1

0

vqα (1− vq)β−1

(
1 +

(x− µ)2 v2

rσ2

)−( r+1
2 )

dv. (8)

where α, β > 0,−∞ < x <∞.

Proof. Since T and Y are independent, then the joint probability density function of (T, Y ) will be

g(t, y) =
Γ( r+1

2
)yα−1(1− y)β−1

√
rπΓ( r

2
)Beta(α, β)

(
1 +

t2

r

)−(
r+1
2

)
,−∞ <t <∞,0 < y < 1.

From the transformation t =
(
x−µ
σ

)
y1/q, the jpdf of (X,Y ) is given by

h(x, y) =
Γ( r+1

2
)yα−1(1− y)β−1y1/q

σ
√
rπΓ( r

2
)Beta(α, β)

(
1 +

(x− µ)2 y2/q

rσ2

)
−
(
r+1
2

)
,−∞ <x <∞.

where y1/q

σ
is the value of the jacobian, then the marginal pdf of X is given by

f(x) =
Γ( r+1

2
)

σ
√
rπΓ( r

2
)Beta(α, β)

∫ 1

0

yα+1/q−1(1− y)β−1dy,−∞ < x <∞. (9)

Using the transformation v = y1/q in (9), then the pdf of X will be found as claimed. If we putting µ = 0 and σ = 1 in (8),

then we get the standard form of a univariate generalized slash student distribution GSLT (0, 1, α, β, q, r).

Special cases:

1. If we putting α = β = 1 in (8), then the pdf in (8) tends to the pdf of the univariate slash student distribution given

in (6).

2. If q →∞, then the pdf given in (8) tends to the pdf of the student distribution given in (2).

3. If r →∞, then the pdf given in (8) tends to the pdf of the generalized slash distribution given in (7). From Fig (1),

one can easily see that, when r increases the curve of GSLT distribution approache to the curve of GSL distribution.

Figure 1.
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4. If we putting α = β = 1 and r → ∞ in (8), then the pdf in (8) tends to the pdf of the univariate slash normal

distribution given in (4).

Remark 2.1.

1. The GSLT distribution is much more flexible with its shape parameters than the ordinary slash distributions. Heavy

tails and less peak of the distribution are associated with smaller q. The width and the amplitude of GSLT have been

controlled by α and β, i.e. the amplitude increases and width decreases as α increases but the amplitude decreases and

the width increases as β increases , see Fig (2) and Fig (3).

Figure 2. Plot of the pdf of GSLT (4, 5, α, 1, 2, 20) for different values of α.

Figure 3. Plot of the pdf of GSLT (4, 5, 1, β, 2, 20) for different values of β.

2. From Fig (4), one can easily see that, the generalized slash student distribution is heavier in tails than the slash student

and the student distributions.

Figure 4.
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In the following section, the moments of GSLT (µ, σ, α, β, q, r) distribution is calculated.

3. Moments

The moments of the random variable X = µ+ σY −1/qT is given in the following proposition.

Proposition 3.1. The kth moment of the random variable X ∼ GSLT (µ, σ, α, β, q, r) is given by

E(Xk) =

k∑
c=0

(
k

c

)
σcµk−cE(Y −c/q)E(T c), k = 1, 2, ...... (10)

where E(Y −c/q) and E(T c) are the cth moment of a beta random variable Y ∼ Beta(α, β) and a student random variable

T ∼ t(t; r), they are given by

E(Y −c/q) =
Γ(α− c

q
)Γ(α+ β)

Γ(α)Γ(α+ β − c
q
)
, α >

c

q
, c = 1, 2, ...... (11)

E(T c) =

 0 if c is odd , 0 < c < r.

Γ( c+1
2

)Γ( r−c
2

)rc/2
√
πΓ( r

2
)

if c is even ,0 < c < r.
. (12)

where q, α, β > 0.

Proof. From the definition of the random variable X, one can easily get

E(Xk) = E

((
µ+ σY −1/qT

)k)
.

= E

(
k∑
c=0

(
k

c

)(
σY −1/qT

)c
µk−c

)
=

k∑
c=0

(
k

c

)
µk−cσcE

(
Y −c/qT c

)
.

Since T and Y are independent, then (10) is follow immediately. The cth moment of a beta random variables given by

E(Y −c/q) =
1

Beta(α, β)

∫ 1

0

Y α−c/q−1(1− y)β−1dy.

=
Beta(α− c

q
, β)

Beta(α, β)
=

Γ(α− c
q
)Γ(α+ β)

Γ(α)Γ(α+ β − c
q
)
, α >

c

q
, c = 1, 2, ....

3.1. The First Four Moments of GSLT (µ, σ, α, β, q, r)

The first four moments about the origin of the random variable X are given by

µ
′
1= E(X) = µ, (13)

µ
′
2= E(X2) = µ2+

r σ2Γ
(
α− 2

q

)
Γ (α+ β)

(r − 2)Γ
(
α+ β − 2

q

)
Γ (α)

, α >
2

q
, (14)

µ
′
3 = E(X3) = µ3 +

3µσ2r Γ
(
α− 2

q

)
Γ (α+ β)

(r − 2)Γ
(
α+ β − 2

q

)
Γ (α)

,α>
2

q
, (15)

and

µ
′
4 = E(X4) = µ4 +

6µ2σ2rΓ
(
α− 2

q

)
Γ (α+ β)

(r − 2)Γ
(
α+ β − 2

q

)
Γ (α)

+
3σ4r2Γ

(
α− 4

q

)
Γ (α+ β)

(r − 2)(r − 4)Γ
(
α+ β − 4

q

)
Γ (α)

, (16)
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where α > 4
q
.

Then the first four moments about the mean of the random variable X are given by

µ1 = µ
′
1 = µ, (17)

V ar(X) = µ2= µ
′

2−(µ
′

1)2.

=
r σ2Γ

(
α− 2

q

)
Γ (α+ β)

(r − 2)Γ
(
α+ β − 2

q

)
Γ (α)

, α >
2

q
, (18)

µ3 = µ
′
3−3µ

′

2µ
′
1+2

(
µ
′
1

)3

.

= 0, (19)

and

µ4 = µ
′
4−4µ

′

3µ
′
1+6µ

′

2(µ
′

1)2−3(µ
′

1)4.

=
3r2σ4Γ

(
α− 4

q

)
Γ (α+ β)

(r − 2)(r − 4)Γ
(
α+ β − 4

q

)
Γ (α)

, α >
4

q
. (20)

Thus the skewness γ1 and kurtosis γ2 are given by

γ1 =
µ3

(µ2)
3
2

= 0. (21)

and

γ2 =
µ4

(µ2)2
.

=
3(r − 2)Γ

(
α− 4

q

)(
Γ
(
α+ β − 2

q

))2

Γ (α)

(r − 4) Γ
(
α+ β − 4

q

)(
Γ(α− 2

q
)
)2

Γ (α+ β)
, α >

4

q
. (22)

4. Unimodility

The pdf given in (8) has a unimode. One can show this by verify this inequality

µ < x1 ≤ x2 ⇒ f(x1) ≥ f(x2),

and this is as, since

x1 ≤ x2 ⇒ x1 − µ ≤ x2 − µ.

⇒ (x1 − µ)v

σ
≤ (x2 − µ)v

σ
.

⇒ (x1 − µ)2 v2

rσ2
≤ (x2 − µ)2 v2

rσ2
.

⇒ 1 +
(x1 − µ)2 v2

rσ2
≤ 1 +

(x2 − µ)2 v2

rσ2
.

⇒
(

1 +
(x1 − µ)2 v2

rσ2

)−( r+1
2 )
≥
(

1 +
(x2 − µ)2 v2

rσ2

)−( r+1
2 )

.

⇒ vqα (1− vq)β−1

(
1 +

(x1 − µ)2 v2

rσ2

)−(
r+1
2

)
≥

vqα (1− vq)β−1

(
1 +

(x2 − µ)2 v2

rσ2

)−(
r+1
2

)
.
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⇒
qΓ( r+1

2
)

σ
√
rπΓ( r

2
)Beta(α, β)

∫ 1

0

vqα (1− vq)β−1

(
1 +

(x1 − µ)2 v2

rσ2

)−(
r+1
2

)
dv ≥

qΓ( r+1
2

)

σ
√
rπΓ( r

2
)Beta(α, β)

∫ 1

0
vqα (1− vq)β−1

(
1 +

(x2 − µ)2 v2

rσ2

)−(
r+1
2

)
dv.

⇒ f(x1) ≥ f(x2).

since f(x) ≥ 0. Thus from the inequality and the symmetry of the distribution, the pdf in (8) is a unimode.

5. Likelihood Estimation

Proposition 5.1. Let x1, ..., xn be a data set modeled by GSLT (µ, σ, α, β, q, r) distribution in the location scale form, then

the estimation of µ and σ2 are given by

∧
µ =

∑n
i=1 ωi(s)xi∑n
i=1 ωi(s)

. (23)

and
∧
σ2 =

1

n

n∑
i=1

ωi(s)
(
xi −

∧
µ
)2

, (24)

where

ωi(s) =

∫ 1

0
vqα+2(1− vq)β−1 r+1

r

(
1 + s2v2

r

)−( r+3
2 )

dv∫ 1

0
vqα(1− vq)β−1

(
1 + s2v2

r

)−( r+1
2 )

dv

, s =
∣∣∣xi − ∧µ∣∣∣ /∧σ. (25)

Proof. The log-likelihood function is given by

L(µ, σ, α, β, q, r) = log Πn
i=1f(xi;µ, σ, α, β, q, r).

= n log

[
qΓ( r+1

2
)

√
rπΓ( r

2
)Beta(α, β)

]
− n log σ

+

n∑
i=1

log

∫ 1

0

vqα(1− vq)β−1

(
1 +

(xi − µ)2 v2

rσ2

)−( r+1
2 )

dv.

Taking partial derivatives of the log-likelihood function with respect to µ and σ, assuming the shape parameters are fixed,

and equating the derivatives to 0, we get

∂L(µ, σ, α, β, q, r)

∂µ
= 0,

n∑
i=1

∫ 1

0
vqα+2(1− vq)β−1 (xi−µ)

σ2
r+1
r

(
1 + (xi−µ)2v2

rσ2

)−( r+3
2 )

dv∫ 1

0
vqα(1− vq)β−1

(
1 + (xi−µ)2v2

rσ2

)−( r+1
2 )

dv

= 0,

n∑
i=1

(xi−µ)

σ2

∫ 1

0
vqα+2(1− vq)β−1 r+1

r

(
1 + (xi−µ)2v2

rσ2

)−( r+3
2 )

dv∫ 1

0
vqα(1− vq)β−1

(
1 + (xi−µ)2v2

rσ2

)−( r+1
2 )

dv

= 0.

Using (25), we get

1

σ2

n∑
i=1

(xi − µ)ωi(s) = 0,

n∑
i=1

xiωi(s) = µ

n∑
i=1

ωi(s),
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Thus (23) is obtained.

∂L(µ, σ, α, β, q, r)

∂σ
= 0,

−n
σ

+

n∑
i=1

(xi−µ)2

σ3

∫ 1

0
vqα+2(1− vq)β−1 r+1

r

(
1 + (xi−µ)2v2

rσ2

)−( r+3
2 )

dv∫ 1

0
vqα(1− vq)β−1

(
1 + (xi−µ)2v2

rσ2

)−( r+1
2 )

dv

= 0.

Using (25), we obtain

n

σ
=

1

σ3

n∑
i=1

(xi − µ)2 ωi(s),

Thus (24) is obtained.

In the following section, we introduce the multivariate generalized slash student distribution.

6. Multivariate Generalized Slash Student Distribution

Tan, F., Peng, [16] introduced the multivariate slash student distribution defined as the resulting distribution of the ratio

of multivariate student distribution to an independent standard uniform variable. Here we replace the standard uniform

distribution with beta distribution over the intervial (0,1) and introduce what we called a multivariate generalized slash

student distribution. The invariant property of this distribution under linear transformations is done. Furthermore, the

moments and marginal distributions are discussed.

A continuous k-dimensional random vector T has a student distribution with degrees of freedom r, mean vector µ, and

correlation matrix Σ, written T ∼ tk(t;µ,Σ, r) , if it has the density

tk(t;µ,Σ, r) =
Γ( r+k

2
)

(rπ)
k
2 Γ( r

2
) |Σ|1/2

[
1 +

(t− µ)ᵀΣ−1(t− µ)

r

]− r+k
2

, t ∈ Rk. (26)

There are many variants of the definitions of student distribution and we use the above one. For more details, see, e.g., Kotz

and Nadarajah [8].

Theorem 6.1. Let T ∼ tk(t; 0, Ik, r) and Y ∼ Beta(α, β) are independent. A k-dimensional continuous random vector

X = (X1, X2, . . . , Xk) is said to have a multivariate generalized slash student distribution with location vector µ ∈ Rk,

positive definite scale matrix Σ and tail parameter q > 0, if it can be written in the form X = µ+Σ1/2TY −1/q , symbolically

we written X ∼ GSLTk(µ,Σ, α, β, q, r). The pdf of the random vector X is

ψk(x;µ,Σ, α, β, q, r) =
q

Beta(α, β)

∫ 1

0

vqα+k−1 (1− vq)β−1 tk(xv;µv,Σ, r)dv, (27)

where x ∈ Rk.

Proof. Since T and Y are independent, then jpdf of (T, Y ) will be

g(t, y) =
1

Beta(α, β)
yα−1(1− y)β−1tk(t; 0, Ik, r), t ∈ Rk.

From the transformation t = y1/q
(
x−µ
Σ1/2

)
, the jpdf of (X,Y ) is given by

h(x, y) =
1

|Σ|1/2 Beta(α, β)
yα+k/q−1(1− y)β−1tk(

x− µ
Σ1/2

y1/q; 0, Ik, r), x ∈ Rk,
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where yk/q

|Σ|1/2 is the value of the jacobian. Then the marginal pdf of X is given by

ψk(x) =
1

|Σ|1/2 Beta(α, β)

∫ 1

0
yα+k/q−1(1− y)β−1tk(

x−µ
Σ1/2

y1/q ; 0, Ik, r)dy (28)

Using the transformation v = y1/q in (28), and

1

|Σ|1/2
tk(

x− µ
Σ1/2

v; 0, Ik, r) = tk(xv;µv,Σ,r),

Then the pdf of X will be found as claimed.

If we putting µ = 0 and Σ = Ik in (27), then we get the standard form of a multivariate generalized slash student distribution

GSLTk(0, Ik, α, β, q, r).

Special cases:

1. If we putting k = 1 in (27), then the pdf in (27) tends to the pdf of the univariate generalized slash student distribution

GSLT (µ, σ, α, β, q, r) given in (4).

2. If we putting k = 2 in (27), then we obtain the bivariate generalized slash student distribution GSLT2(µ,Σ, α, β, q, r)

and it is pdf will be

f2(x;µ,Σ, α, β, q, r) =
q

Beta(α, β)

∫ 1

0

vqα+1 (1− vq)β−1 t2(xv;µ,Σ, r)dv, x ∈ R2. (29)

3. If we putting α = β = 1 in (27), then the pdf in (27) tends to the pdf of the multivariate slash student distribution

SLTk(µ,Σ, q, r),(see,Tan, F., Peng, (2005)).

4. If q →∞, then the pdf in (27) tends to the pdf of the multivariate student distribution tk(µ,Σ, r) given in (26).

5. If r →∞, then the pdf in (27) tends to the pdf of the multivariate generalized slash distribution GSLk(µ,Σ, q) ,(see,

EL-Bassiouny. A. H and Abdo. N. F).

6. If q → ∞ and r → ∞, then the pdf in (27) tends to the pdf of the multivariate normal distribution with location

vector µ and positive definite scale matrix Σ.

7. If we putting α = β = 1 and r → ∞ in (27), then the pdf in (27) tends to the pdf of the multivariate slash normal

distribution SLk(µ,Σ, q),(see, Wang and Genton [17]).

In the following section, we introduce the expectation, variance and the first two moments of the multivariate generalized

slash student distribution.

7. Moments

The expectation, variance and the first two moments of the multivariate generalized slash student distribution are given in

the following proposition.

43



The Univarite and Multivariate Generalized Slash Student Distribution

Proposition 7.1. If X = µ + Σ1/2TY −1/q has GSLTk(µ,Σ, α, β, q, r), then its expectation, variance and the first two

moments are given by

E(X) = µ, (30)

E(X2) = µ2 +
ΣrΓ(α− 2

q
)Γ(α+ β)

(r − 2)Γ(α)Γ(α+ β − 2
q
)
, α >

2

q
. (31)

V ar(X) =
ΣrΓ(α− 2

q
)Γ(α+ β)

(r − 2)Γ(α)Γ(α+ β − 2
q
)
, α >

2

q
. (32)

Proof. The moments of a beta random variable Y ∼ Beta(α, β) and T ∼ t(t; r) are given in (11) and(12) respectively.

Since T and Y are independent, then the first two moments of X is

E(X) = E(µ+ Σ1/2Y −1/qT )

= µ+ Σ1/2E(Y −1/qT ) = µ, (33)

E(X2) = E(
(
µ+ Σ1/2Y −1/qT

)2

)

= E(µ2 + 2µΣ1/2Y −1/qT + Σ
(
Y −1/qT

)2

)

= µ2 + Σ
rΓ(α− 2

q
)Γ(α+ β)

(r − 2)Γ(α)Γ(α+ β − 2
q
)
, α >

2

q
. (34)

From (33) and (34), one can easily get (32).

We note that, when α = β = 1, then the expectation and variance in (30) and (32), reduce to the expectation and variance

of the multivariate slash student distribution, (see, Tan, F., Peng, [16]).

8. Properties of the Distribution

8.1. Marginal Distributions

Since the marginal distributions of a multivariate student distribution are still student distributions, (see,Tan, F., Peng,

[16]), the marginal distributions of a generalized slash student distribution are also generalized slash student distribution.

The following proposition states this fact.

Proposition 8.1. The marginal distributions of a generalized slash student distribution are still generalized slash student.

Proof. It suffices to show without loss of generality that

∫
ψk(x1, .., xk; 0, Ik,α,β, q, r)dxs+1..dxk = ψs (x1, .., xs; 0, Is,α,β, q, r), x1, .., xs ∈ R. (35)

For every 0 ≤ s ≤ k. Substitution of the formula (27) in the left hand of the above gives

LHS =

∫
ψk(x1, ..., xk;0, Ik, α, β, q, r)dxs+1..dxk.

=
q

Beta(α, β)

∫ 1

0

vqα+k−1 (1− vq)β−1

∫
tk(vx1, .., vxk ; 0, Ik, r)dxs+1..dxkdv.

With substitution ys+1 = vxs+1, ...yk = vxk for v > 0 one has
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∫
tk(vx1, .., vxk; 0, Ik, r)dxs+1..dxk = vs−k

∫
tk(vx1, .., vxs, ys+1,.., yk; 0, Ik, r)dys+1..dyk.

Because the marginals of the student distribution are still student, we have

∫
tk(vx1, .., vxs , ys+1, .., yk; 0, Ik, r)dys+1..dyk = ts(vx1, .., vxs ; 0, Is, r).

The last two equalities yield the desired equality.

8.2. Linear Combinations

Since the distribution of a linear function of a student random vector tk(µ,Σ, r) is still student, (see,Tan, F., Peng, [16]), the

distribution of a linear function of GSLTk(µ,Σ, α, β, q, r) random vector is also still generalized slash student distribution, i.e.

the multivariate generalized slash student distribution is invariant under linear transformation. The following proposition

states this fact.

Proposition 8.2. If X ∼ GSLTk(x;µ,Σ, α, β, q, r), then its linear transformation W = b + AX ∼ GSLTk(b +

Aµ,AΣAT , α, β, q, r), b is a vector in Rk, and A is a nonsingular matrix.

Proof. From the transformation, we have X = A−1 (W − b) therefore, the jacobian determinant of the transformation is

|A|−1(J =
∣∣ dX
dW

∣∣), hence the pdf of W is

f(w) = |A|−1 ψk(A−1 (w − b) ;µ,Σ, α, β, q, r)

=
q |A|−1

Beta(α, β)

∫ 1

0

vqα+k−1 (1− vq)β−1 tk(A−1 (w − b) v;µv,Σ, r)dv.

We have

A−1tk(A−1 (w − b) v;µv,Σ, r) = tk (wv; (b+Aµ) v,AΣAT , r). (36)

Hence from (27) and (36) the pdf of W is

f(w) =
q

Beta(α, β)

∫ 1

0

vqα+k−1 (1− vq)β−1 tk (wv; (b+Aµ) v,AΣAT , r)dv

= ψk(w; b+Aµ,AΣAT , α, β, q, r).

This shows that W has a multivariate generalized slash student distribution GSLTk(b+Aµ,AΣAT , α, β, q, r). It implies that

the multivariate generalized slash sudent distribution is invariant under linear transformation. For α = β = 1, this property

is valid for the multivariate slash student distribution, (see, Tan, F., Peng, [16]).

9. Application

We perform a simulation study to investigate bias properties of the estimators asymptotically. All computations were

performed using R program.and all program codes are availabe from the author on request.
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9.1. Simulation Results

Because of the complexity of the log-likelihood function, one cannot derive the information matrix. It is impossible to

find a theoretical asymptotic property of the maximum likelihood estimators. Therefore, we investigate the properties of

the estimators numerically. We perform simulations to investigate the properties (bias and variance) of the estimators

depending on the shape parameters. We first generate 500 samples of different sizes from the GSLT distribution for fixed

shape parameters then use the iterative forms of the estimators given in (23) and (24) to compute the estimates. The mean

and variances of the estimates are given in Table (1),

n M(
∧
µ) V (

∧
µ) M(

∧
σ ) V (

∧
σ )

(α, β, q) = (1, 1, 2)

20 1.049566 0.6115208 1.939781 0.1921698

50 1.006134 0.23005 1.999149 0.0826686

250 0.9980009 0.04518617 2.043632 0.01731016

500 0.9983787 0.02015888 1.994506 0.008053589

(α, β, q) = (3, 1, 3)

20 0.9978287 0.2834570 2.000467 0.1416984

50 1.025751 0.1177836 2.013447 0.04421132

250 1.003973 0.02301845 2.059674 0.00846452

500 1.003072 0.01140199 2.048103 0.004683706

(α, β, q) = (3, 1, 2)

20 0.9757207 0.2790355 2.040304 0.1368656

50 0.992953 0.1144998 2.074444 0.05528438

250 1.001507 0.02409617 2.098894 0.01162367

500 1.000022 0.01209849 2.098481 0.005489125

(α, β, q) = (2, 1, 3)

20 1.037093 0.3076454 1.994529 0.1344278

50 0.9746617 0.1239348 2.031742 0.05213233

250 0.9923936 0.02641631 2.083123 0.00859241

500 0.9944237 0.01193728 2.063900 0.00542433

(α, β, q) = (2, 2, 3)

20 1.015662 0.4365982 1.836518 0.1319999

50 1.020890 0.1524086 1.838626 0.04815509

250 0.9919161 0.02842560 1.858968 0.008212608

500 0.9894796 0.01353102 1.881916 0.004621278

(α, β, q) = (3, 1, 1)

20 0.9680027 0.4385706 2.314456 0.27541

50 1.018360 0.1916392 2.333695 0.08958936

250 1.004492 0.04158386 2.330454 0.01765299

500 0.9988717 0.01736267 2.356971 0.008150121

(α, β, q) = (1, 3, 3)

20 1.09693 0.833911 1.384517 0.08370373

50 0.9657198 0.2877105 1.448615 0.03766548

250 0.9932118 0.05880109 1.436281 0.00745219

500 1.006750 0.03134134 1.427915 0.00400891

(α, β, q) = (2, 1, 3)

20 1.037093 0.3076454 1.994529 0.1344278

50 0.9746617 0.1239348 2.031742 0.05213233

250 0.9960281 0.02407785 2.051052 0.01061027

500 0.9944237 0.01193728 2.063900 0.00542433

Table 1. Means and variances of the location-scale estimates of 500 samples of sizes n = 20, 50, 250, 500 from the GSLT, with µ = 1 and
σ = 2 and (α, β, q) = (1, 1, 2), (3, 1, 3), (3, 1, 2), (2, 1 , 3), (2, 2, 3), (3, 1, 1), (1, 1, 3), (2, 1, 3).

Table (1) tells us that the estimates
∧
µ and

∧
σ seem asymptotically unbiased. As the sample size increase, the variance of

the estimates approaches to 0, as expected.
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10. Conclusion

We have introduced a new generalized family of slash student distribution for univariate and multivariate distributions.

The basic idea is to replace the uniform random variable in the denominator of the slash student random variable by the

beta random variable with the parameters α and β. The width and the amplitude of the symmetric univariate generalized

slash student distribution of the random variable X, have been controlled by α and β. The multivariate generalized slash

student distribution is invariant under linear transformation. The likelihood estimation is also studied. A simulation study

is performed to investigate asymptotically the bias properties of the estimators.
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