ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

New Generalized Continuous Functions

Research Article

M. Murugalingam¹, O. Ravi^{2*} and S. Nagarani³

- 1 Department of Mathematics, Thiruvalluvar College, Papanasam, Tirunelveli, Tamil Nadu, India.
- 2 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai, Tamil Nadu, India.
- 3 Department of Mathematics, N. M. S. S. V. N. College, Nagamalai, Madurai, Tamil Nadu, India.

Abstract: We introduce some new generalized continuous functions and new generalized open sets like B- α -open, B-semi-open, B-propen, B- β -open sets on simply extended topological spaces. We investigate characterizations and relationships among

such functions and sets.

MSC: 54A05, 54D10.

Keywords: $(\tau(B), \sigma(B'))$ -continuity, $(\alpha, \sigma(B'))$ -continuity, $(\sigma, \sigma(B'))$ -continuity, $(\pi, \sigma(B'))$ -continuity, $(\beta, \sigma(B'))$ -continuity.

© JS Publication.

1. Introduction

Levine [4] introduced the notion of simple extension of topologies in 1964. Quite recently, Abd El-Monsef et al. [2] introduced and studied the notion of B-open sets and B-closed sets on topological spaces and Vadivel et al. [12] introduced and studied B-generalized regular and B-generalized normal spaces.

In this paper, we introduce new generalized continuous functions and new generalized open sets like B- α -open sets, B-semi-open sets, B-preopen sets and B- β -open sets in simply extended topological spaces. We investigate characterizations and relationships among such functions and sets.

2. Preliminaries

Let X be a non-empty set and Levine [4] defined as $\tau(B) = \{O \cup (O' \cap B) : O, O' \in \tau\}$ and called it simple extension of $\tau \, by \, B$, where $B \notin \tau$. We call the pair $(X, \tau(B))$ a simply extended topological space (briefly SETS). The elements of $\tau(B)$ are called B-open sets [2] and the complements of B-open sets are called B-closed sets [2]. The B-closure of a subset S of X, denoted by Bcl(S), is the intersection of B-closed sets of X including S [2]. The B-interior of S, denoted by Bint(S), is the union of B-open sets of X contained in S [2].

Definition 2.1. Let (X,τ) be a topological space and $A\subseteq X$. Then A is said to be

(1) semi-open [5] if $A \subseteq cl(int(A))$,

^{*} E-mail: siinqam@yahoo.com

- (2) preopen [7] if $A \subseteq int(cl(A))$,
- (3) α -open [9] if $A \subseteq int(cl(int(A)))$,
- (4) β -open [1] if $A \subseteq cl(int(cl(A)))$.

The complement of semi-open (resp. preopen, α -open, β -open) is said to be semi-closed (resp. preclosed, α -closed, β -closed).

Definition 2.2. A function $f:(X,\tau)\to (Y,\sigma)$ is called:

- (1) a semi-continuous [5] if $f^{-1}(V)$ is a semi-closed in (X,τ) for every closed set V in (Y,σ) ,
- (2) a precontinuous [7] if $f^{-1}(V)$ is a preclosed in (X,τ) for every closed set V in (Y,σ) ,
- (3) an α -continuous [8] if $f^{-1}(V)$ is an α -closed in (X,τ) for every closed set V in (Y,σ) ,
- (4) a β -continuous [1] if $f^{-1}(V)$ is a β -closed in (X, τ) for every closed set V in (Y, σ) .

Definition 2.3. A function $f:(X,\tau)\to (Y,\sigma)$ is called:

- (1) α -irresolute [6] if $f^{-1}(V)$ is α -closed in X for every α -closed subset V of Y.
- (2) irresolute [3] if $f^{-1}(V)$ is semi-closed in X for every semi-closed subset V of Y.
- (3) preirresolute [11] if $f^{-1}(V)$ is preclosed in X for every preclosed subset V of Y.
- (4) β -irresolute [10] if $f^{-1}(V)$ is β -closed in X for every β -closed subset V of Y.

3. New Generalized Open Sets

Theorem 3.1. For an $x \in X$, $x \in Bcl(A)$ if and only if $V \cap A \neq \phi$ for every B-open set V containing x.

Proof. Let $x \in X$ and $x \in Bcl(A)$. To prove $V \cap A \neq \phi$ for every B-open set V containing x. Suppose there exists a B-open set V containing x such that $V \cap A = \phi$. Then $A \subset X - V$ and X - V is B-closed. We have $Bcl(A) \subset X - V$. This shows that $x \notin Bcl(A)$, which is a contradiction. Hence $V \cap A \neq \phi$ for every B-open set V containing x.

Conversely, let $V \cap A \neq \phi$ for every B-open set V containing x. To prove $x \in Bcl(A)$. Suppose $x \notin Bcl(A)$. Then there exists a B-closed subset F containing A such that $x \notin F$. Then $x \in X - F$ and X - F is B-open. Also $(X - F) \cap A = \phi$ which is a contradiction. Hence $x \in Bcl(A)$.

Theorem 3.2. Let $(X, \tau(B))$ be SETS. Then

- (1) Bcl(A) = X Bint(X A),
- (2) Bint(A) = X Bcl(X A).

Proof. (1) Let $x \in X - Bint(X - A)$. Then $x \notin Bint(X - A)$. That is, every B-open set U containing x is such that $U \nsubseteq X - A$. That is, every B-open set U containing x is such that $U \cap A \neq \phi$. By Theorem 3.1, $x \in Bcl(A)$ and therefore $X - Bint(X - A) \subset Bcl(A)$.

Conversely, let $x \in Bcl(A)$. Then by Theorem 3.1 every B-open set U containing x is such that $U \cap A \neq \phi$. That is every B-open set U containing x is such that $U \nsubseteq X - A$. This implies by definition of B-interior of (X - A), $x \notin Bint(X - A)$. That is $x \in X - Bint(X - A)$ and we have $Bcl(A) \subset X - Bint(X - A)$. Thus X - Bint(X - A) = Bcl(A).

(2) It is similar to the proof of (1).

Definition 3.3. Let $(X, \tau(B))$ be SETS and $A \subseteq X$. Then A is said to be

- (1) B-semi-open if $A \subseteq Bcl(Bint(A))$;
- (2) B-preopen if $A \subseteq Bint(Bcl(A))$;
- (3) B- α -open if $A \subseteq Bint(Bcl(Bint(A)))$;
- (4) B- β -open if $A \subseteq Bcl(Bint(Bcl(A)))$.

The complement of B-semi-open (resp. B-preopen, B- α -open, B- β -open) is said to be B-semi-closed (resp. B-preclosed, B- α -closed, B- β -closed).

In this paper, let us denote by $\sigma(\tau(B))$ (or σ) the class of all B-semi-open sets on X, by $\pi(\tau(B))$ (or π) the class of all B-preopen sets on X, by $\alpha(\tau(B))$ (or α) the class of all B- α -open sets on X and by $\beta(\tau(B))$ (or β) the class of all B- β -open sets on X.

Remark 3.4. From the above definition we have the following implications but none of the implications is reversible.

Example 3.5. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$ and $B = \{b\}$. Then $\tau(B) = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and B-closed sets are ϕ , $X, \{c\}, \{b, c\}, \{a, c\}$. Then $\{a, c\}$ is B-semi-open set but not B- α -open.

Example 3.6. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}\}$ and $B = \{c\}$. Then $\tau(B) = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}\}$ and B-closed sets are $\phi, X, \{b\}, \{a, b\}, \{b, c\}$. Then $\{a, b\}$ is B- β -open set but not B-preopen.

Example 3.7. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{b, c\}\}$ and $B = \{a\}$. Then $\tau(B) = \{\phi, X, \{a\}, \{b, c\}\}$ and B-closed sets are ϕ , X, $\{a\}$, $\{b, c\}$. Then $\{a, b\}$ is B-preopen set but not B- α -open.

Example 3.8. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a, c\}\}$ and $B = \{b\}$. Then $\tau(B) = \{\phi, X, \{b\}, \{a, c\}\}$ and B-closed sets are $\phi, X, \{b\}, \{a, c\}$. Then $\{a, b\}$ is B- β -open set but not B-semi-open.

Example 3.9. Let $X = \{a, b, c\}$, $\tau = \{\phi, X\}$ and $B = \{c\}$. Then $\tau(B) = \{\phi, X, \{c\}\}$ and B-closed sets are ϕ , X, $\{a, b\}$. Then $\{a, c\}$ is B- α -open set but not B-open.

4. Main Results

Definition 4.1. Let $\tau(B_X)$ and $\sigma(B_Y)$ be simple extensions of τ and σ on X and Y respectively. Then a function defined between SETS $f: X \to Y$ is said to be $(\tau(B_X), \sigma(B_Y))$ -continuous if $B' \in \sigma(B_Y)$ implies that $f^{-1}(B') \in \tau(B_X)$.

Definition 4.2. Let $(X, \tau(B_X))$ and $(Y, \sigma(B_Y))$ be SETS. Then the function defined between SETS $f: X \to Y$ is said to be

- (1) $(\alpha, \sigma(B_Y))$ -continuous if for each B-open set U in Y, $f^{-1}(U)$ is B- α -open in X.
- (2) $(\sigma, \sigma(B_Y))$ -continuous if for each B-open set U in Y, $f^{-1}(U)$ is B-semi-open in X.
- (3) $(\pi, \sigma(B_Y))$ -continuous if for each B-open set U in Y, $f^{-1}(U)$ is B-preopen in X.
- (4) $(\beta, \sigma(B_Y))$ -continuous if for each B-open set U in Y, $f^{-1}(U)$ is B- β -open in X.

Remark 4.3. Let $f:(X,\tau(B_X))\to (Y,\sigma(B_Y))$ be a function. Then we have the following implications but none of the implications is reversible.

$$(\tau(B_X), \sigma(B_Y))\text{-}continuous$$

$$\downarrow$$

$$(\sigma, \sigma(B_Y))\text{-}continuous} \longrightarrow (\pi, \sigma(B_Y))\text{-}continuous$$

$$\downarrow \qquad \qquad \swarrow$$

$$(\beta, \sigma(B_Y))\text{-}continuous$$

Example 4.4. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}\}$ and $B_X = \{a, b\}$. Then $\tau(B_X) = \{\phi, X, \{a\}, \{a, b\}\}$. Let $Y = \{a, b, c\}$, $\sigma = \{\phi, Y\}$ and $B_Y = \{a, c\}$. Then $\sigma(B_Y) = \{\phi, Y, \{a, c\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is $(\alpha, \sigma(B_Y))$ -continuous but not $(\tau(B_X), \sigma(B_Y))$ -continuous, since $f^{-1}(\{a, c\}) = \{a, c\}$ is not B_X -open.

Example 4.5. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}\}$ and $B_X = \{c\}$. Then $\tau(B_X) = \{\phi, X, \{a\}, \{c\}, \{a, c\}\})$. Let $Y = \{a, b, c\}$, $\sigma = \{\phi, Y\}$ and $B_Y = \{a, b\}$. Then $\sigma(B_Y) = \{\phi, Y, \{a, b\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is $(\sigma, \sigma(B_Y))$ -continuous and $(\beta, \sigma(B_Y))$ -continuous but not $(\alpha, \sigma(B_Y))$ -continuous, since $f^{-1}(\{a, b\}) = \{a, b\}$ is not B_X - α -open.

Example 4.6. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a, c\}\}$ and $B_X = \{b\}$. Then $\tau(B_X) = \{\phi, X, \{b\}, \{a, c\}\}$. Let $Y = \{a, b, c\}$, $\sigma = \{\phi, Y\}$ and $B_Y = \{a, b\}$. Then $\sigma(B_Y) = \{\phi, Y, \{a, b\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is $(\beta, \sigma(B_Y))$ -continuous but not $(\sigma, \sigma(B_Y))$ -continuous, since $f^{-1}(\{a, b\}) = \{a, b\}$ is not B_X -semi-open.

Example 4.7. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{b, c\}\}$ and $B_X = \{a\}$. Then $\tau(B_X) = \{\phi, X, \{a\}, \{b, c\}\}$. Let $Y = \{a, b, c\}$, $\sigma = \{\phi, Y\}$ and $B_Y = \{a, b\}$. Then $\sigma(B_Y) = \{\phi, Y, \{a, b\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity function. Then f is $(\pi, \sigma(B_Y))$ -continuous but not $(\alpha, \sigma(B_Y))$ -continuous, since $f^{-1}(\{a, b\}) = \{a, b\}$ is not B_X - α -open.

Example 4.8. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$ and $B_X = \{c\}$. Then $\tau(B_X) = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$. Let $Y = \{a, b, c\}, \sigma = \{\phi, Y\}$ and $B_Y = \{b, c\}$. Then $\sigma(B_Y) = \{\phi, Y, \{b, c\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity function. Then f is $(\beta, \sigma(B_Y))$ -continuous but not $(\pi, \sigma(B_Y))$ -continuous, since $f^{-1}(\{b, c\}) = \{b, c\}$ is not B_X -preopen.

Theorem 4.9. Let $f:(X,\tau(B_X))\to (Y,\sigma(B_Y))$ be a function. Then the following statements are equivalent.

- (1) f is $(\alpha, \sigma(B_Y))$ -continuous.
- (2) For every B-closed subset F in Y, $f^{-1}(F)$ is B- α -closed in X.
- (3) $Bcl(Bint(Bcl(f^{-1}(G)))) \subseteq f^{-1}(Bcl(G))$ for every subset G in Y.
- (4) $f^{-1}(Bint(G)) \subseteq Bint(Bcl(Bint(f^{-1}(G))))$ for every subset G in Y.
- (5) $f(Bcl(Bint(Bcl(A)))) \subseteq Bcl(f(A))$ for every subset A in X.

Proof. $(1) \Leftrightarrow (2)$ It is obvious.

- (2) \Rightarrow (3) For $G \subseteq Y$, since Bcl(G) is a B-closed set in Y by hypothesis $f^{-1}(Bcl(G))$ is B- α -closed in X. Hence $Bcl(Bint(Bcl(f^{-1}(G)))) \subseteq f^{-1}(Bcl(G))$.
- $(3) \Rightarrow (4)$ It follows from Theorem 3.2.
- $(3) \Rightarrow (5)$ For any subset A in X, from (3), it follows that $Bcl\left(Bint\left(Bcl(A)\right)\right) \subseteq Bcl\left(Bint\left(Bcl(f^{-1}(f(A))\right)\right)) \subseteq f^{-1}(Bcl(f(A)))$. Hence $f(Bcl\left(Bint\left(Bcl(A)\right)\right)) \subseteq Bcl(f(A))$.
- (5) \Rightarrow (2) Let F be any B-closed set in Y. By (5), $f(Bcl(Bint(Bcl(f^{-1}(F))))) \subseteq Bcl(f(f^{-1}(F))) \subseteq Bcl(F)$. This implies $Bcl(Bint(Bcl(f^{-1}(F)))) \subseteq f^{-1}(Bcl(F)) = f^{-1}(F)$. Thus $f^{-1}(F)$ is B- α -closed in X.

In this same manner, we have the following theorems.

Theorem 4.10. Let $f:(X,\tau(B_X))\to (Y,\sigma(B_Y))$ be a function. Then the following statements are equivalent.

- (1) f is $(\sigma, \sigma(B_Y))$ -continuous.
- (2) For every B-closed subset F in Y, $f^{-1}(F)$ is B-semi-closed in X.
- (3) Bint $(Bcl(f^{-1}(G))) \subseteq f^{-1}(Bcl(G))$ for every subset G in Y.
- (4) $f^{-1}(Bint(G)) \subseteq Bcl(Bint(f^{-1}(G)))$ for every subset G in Y.
- (5) $f(Bint(Bcl(A))) \subseteq Bcl(f(A))$ for every subset A in X.

Proof. It is similar to the proof of Theorem 4.9.

Theorem 4.11. Let $f:(X,\tau(B_X))\to (Y,\sigma(B_Y))$ be a function. Then the following statements are equivalent.

- (1) f is $(\pi, \sigma(B_Y))$ -continuous.
- (2) For every B-closed subset F in Y, $f^{-1}(F)$ is B-preclosed in X.
- (3) $Bcl(Bint(f^{-1}(G))) \subseteq f^{-1}(Bcl(G))$ for every subset G in Y.
- (4) $f^{-1}(Bint(G)) \subseteq Bint(Bcl(f^{-1}(G)))$ for every subset G in Y.
- (5) $f(Bcl(Bint(A))) \subseteq Bcl(f(A))$ for every subset A in X.

Proof. It is similar to the proof of Theorem 4.9.

Theorem 4.12. Let $f:(X,\tau(B_X))\to (Y,\sigma(B_Y))$ be a function. Then the following statements are equivalent.

- (1) f is $(\beta, \sigma(B_Y))$ -continuous.
- (2) For every B-closed subset F in Y, $f^{-1}(F)$ is B- β -closed in X.
- (3) $Bint(Bcl(Bint(f^{-1}(G)))) \subseteq f^{-1}(Bcl(G))$ for every subset G in Y.
- (4) $f^{-1}(Bint(G)) \subseteq Bcl(Bint(Bcl(f^{-1}(G))))$ for every subset G in Y.
- (5) $f(Bint(Bcl(Bint(A)))) \subseteq Bcl(f(A))$ for every subset A in X.

Proof. It is similar to the proof of Theorem 4.9.

Remark 4.13. Let $f:(X,\tau(B_X)) \to (Y,\sigma(B_Y))$ be a function. In the particular case $(X,\tau(B_X))$ and $(Y,\sigma(B_Y))$ are topological spaces, every $(\alpha,\sigma(B_Y))$ -continuous (resp. $(\sigma,\sigma(B_Y))$ -continuous, $(\pi,\sigma(B_Y))$ -continuous, $(\beta,\sigma(B_Y))$ -continuous) function is α -continuous (resp. semi-continuous, precontinuous, β -continuous).

Let $\tau(B)$ be a simple extension of τ by B on a non-empty set X and $S \subseteq X$. The B- α -closure (resp. B-semi-closure, B-preclosure, B- β -closure) of a subset S of X, denoted by $Bcl_{\alpha}(S)$ (resp. $Bcl_{\sigma}(S)$, $Bcl_{\pi}(S)$, $Bcl_{\beta}(S)$), is the intersection of B- α -closed (resp. B-semi-closed, B-preclosed, B- β -closed) sets of X including S.

The B- α -interior (resp. B-semi-interior, B-preinterior, B- β -interior) of a subset S of X, denoted by $Bint_{\alpha}(S)$ (resp. $Bint_{\sigma}(S)$, $Bint_{\pi}(S)$, $Bint_{\beta}(S)$), is the union of B- α -open (resp. B-semi-open, B-preopen, B- β -open) sets contained in S.

Lemma 4.14. Let $\tau(B)$ be a simple extension of τ by B on a non-empty set X and $A \subseteq X$. Then we have

- (1) $Bint_{\alpha}(A) = A \cap Bint(Bcl(Bint(A)))$ and $Bcl_{\alpha}(A) = A \cup Bcl(Bint(Bcl(A)))$;
- (2) $Bint_{\sigma}(A) = A \cap Bcl(Bint(A))$ and $Bcl_{\sigma}(A) = A \cup Bint(Bcl(A))$.

Lemma 4.15. Let $\tau(B)$ be a simple extension of τ by B on a non-empty set X and $A \subseteq X$. Then for $\mu = \alpha, \sigma, \pi, \beta$

- (1) $Bint_{\mu}(A) = X Bcl_{\mu}(X A);$
- (2) $Bcl_{\mu}(A) = X Bint_{\mu}(X A)$.

Proof. We only show that
$$Bint_{\alpha}(A) = X - Bcl_{\alpha}(X - A)$$
. For any $A \subseteq X, X - Bcl_{\alpha}(X - A) = X - \bigcap \{F \subseteq X : X - A \subseteq F \text{ and } F^c \in \alpha\} = \bigcup \{X - F \subseteq X : X - F \subseteq A \text{ and } F^c \in \alpha\} = Bint_{\alpha}(A)$.

Theorem 4.16. Let f be a function between the SETS's $(X, \tau(B_X))$ and $(Y, \sigma(B_Y))$. Then the following statements are equivalent.

- (1) f is $(\alpha, \sigma(B_Y))$ -continuous.
- (2) $Bcl_{\alpha}(f^{-1}(G)) \subseteq f^{-1}(Bcl(G))$ for every subset G in Y.
- (3) $f^{-1}(Bint(G)) \subseteq Bint_{\alpha}(f^{-1}(G))$ for every subset G in Y.
- (4) $f(Bcl_{\alpha}(A)) \subseteq Bcl(f(A))$ for every subset A in X.

Proof. (1) \Rightarrow (2) For $G \subseteq Y$, from Theorem 4.9 and Lemma 4.14 it follows: $f^{-1}(Bcl(G)) = f^{-1}(Bcl(G)) \cup f^{-1}(G) \supseteq Bcl(Bint(Bcl(f^{-1}(G)))) \cup f^{-1}(G) = Bcl_{\alpha}(f^{-1}(G))$. Hence $Bcl_{\alpha}(f^{-1}(G)) \subseteq f^{-1}(Bcl(G))$.

- $(2) \Leftrightarrow (3)$ It follows from Lemma 4.15.
- $(2) \Rightarrow (4)$ It is obvious.
- $(4) \Rightarrow (1)$ Let F be any B-closed set in Y.

Then by (4), $f(Bcl_{\alpha}(f^{-1}(F))) \subseteq Bcl(f(f^{-1}(F))) \subseteq Bcl(F) = F$. This implies $Bcl_{\alpha}(f^{-1}(F)) \subseteq f^{-1}(F)$ and so $f^{-1}(F)$ is $B-\alpha$ -closed in X. Hence by Theorem 4.9, f is $(\alpha, \sigma(B_Y))$ -continuous.

Theorem 4.17. Let f be a function between the SETS's $(X, \tau(B_X))$ and $(Y, \sigma(B_Y))$. Then the following statements are equivalent.

- (1) f is $(\sigma, \sigma(B_Y))$ -continuous.
- (2) $Bcl_{\sigma}(f^{-1}(G)) \subseteq f^{-1}(Bcl(G))$ for every subset G in Y.
- (3) $f^{-1}(Bint(G)) \subseteq Bint_{\alpha}(f^{-1}(G))$ for every subset G in Y.
- (4) $f(Bcl_{\sigma}(A)) \subseteq Bcl(f(A))$ for every subset A in X.

Proof. It is similar to the proof of Theorem 4.16.

Theorem 4.18. Let f be a function between the SETS's $(X, \tau(B_X))$ and $(Y, \sigma(B_Y))$. Then the following statements are equivalent.

- (1) f is $(\pi, \sigma(B_Y))$ -continuous.
- (2) $Bcl_{\pi}(f^{-1}(G)) \subseteq f^{-1}(Bcl(G))$ for every subset G in Y.
- (3) $f^{-1}(Bint(G)) \subseteq Bint_{\pi}(f^{-1}(G))$ for every subset G in Y.

(4) $f(Bcl_{\pi}(A)) \subseteq Bcl(f(A))$ for every subset A in X.

Proof. (1) \Rightarrow (2) For $G \subseteq Y$, since Bcl(G) is B-closed in Y, by Theorem 4.11, $f^{-1}(Bcl(G))$ is B-preclosed in X. This implies $Bcl_{\pi}(f^{-1}(G)) \subseteq Bcl_{\pi}(f^{-1}(Bcl(G))) = f^{-1}(Bcl(G))$. So $Bcl_{\pi}(f^{-1}(G)) \subseteq f^{-1}(Bcl(G))$.

- (2) \Rightarrow (1) Let F be any B-closed set in Y. Then from (2), $Bcl_{\pi}(f^{-1}(F)) \subseteq f^{-1}(Bcl(F)) = f^{-1}(F)$. So $f^{-1}(F)$ is B-preclosed and hence by Theorem 4.11(2), f is $(\pi, \sigma(B_Y))$ -continuous.
- $(2) \Leftrightarrow (3)$ It follows from Lemma 4.15.

$$(2) \Leftrightarrow (4)$$
 It is obvious.

Theorem 4.19. Let f be a function between the SETS's $(X, \tau(B_X))$ and $(Y, \sigma(B_Y))$. Then the following statements are equivalent.

- (1) f is $(\beta, \sigma(B_Y))$ -continuous.
- (2) $Bcl_{\beta}(f^{-1}(G)) \subseteq f^{-1}(Bcl(G))$ for every subset G in Y.
- (3) $f^{-1}(Bint(G)) \subseteq Bint_{\beta}(f^{-1}(G))$ for every subset G in Y.
- (4) $f(Bcl_{\beta}(A)) \subseteq Bcl(f(A))$ for every subset A in X.

Proof. It is similar to the proof of Theorem 4.18.

Theorem 4.20. Let f be a function between the SETS's $(X, \tau(B_X))$ and $(Y, \sigma(B_Y))$. Then the following statements are equivalent.

- (1) f is $(\tau(B_X), \sigma(B_Y))$ -continuous.
- (2) $f^{-1}(Bint(G)) \subseteq Bint(f^{-1}(G))$ for all $G \subseteq Y$.
- (3) $Bcl(f^{-1}(G)) \subseteq f^{-1}(Bcl(G))$ for all $G \subseteq Y$.
- (4) $f(Bcl(A)) \subseteq Bcl(f(A))$ for every subset $A \subseteq X$.
- (5) For every B-closed set F in Y, $f^{-1}(F)$ is B-closed in X.

References

- [1] M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sc. Assuit Univ., 12(1983), 77-90.
- [2] M.E.Abd El-Monsef, A.M.Kozae and R.A.Abu-Gdairi, New approaches for generalized continuous functions, Int. Journal of Math. Analysis, 4(27)(2010), 1329-1339.
- [3] S.G.Crossley and S.K.Hildebrand, Semi-topological properties, Fund. Math., 74(1972), 233-254.
- [4] N.Levine, Simple extension of topologies, Amer. Math. Monthly, 71(1964), 22-25.
- [5] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [6] S.N.Maheswari and S.S.Thakur, On α-irresolute mappings, Tamkang J. Math., 11(1980), 209-214.
- [7] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [8] A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, α -continuous and α -open mappings, Acta Math. Hungar., 41(3-4)(1983), 213-218.

- [9] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [10] V.Popa and T.Noiri, On β -continuous functions, Real Anal. Exchange, 18 (1992/1993), 544-548.
- [11] L.Reilly and M.K.Vamanamurthy, On α -continuity in topological spaces, Acta Math. Hungar., 45(1985), 27-32.
- $[12] \ \, A. Vadivel, R. Vijayalakshmi \ \, and \ \, D. Krishnaswamy, \ \, \textit{B-Generalized regular and B-generalized normal spaces}, \ \, International \ \, Mathematical Forum, \ \, 5(54)(2010), \ \, 2699-2706.$