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Abstract: The non-homogeneous octic equation with five unknowns represented by the Diophantine equation (x − y)(x3 + y3) =
4(w2 − p2)T 6 is analyzed for its patterns of non-zero distinct integral solutions and seven different patterns of integral

solutions are illustrated. Various interesting relations between the solutions and special numbers, namely, Pyramidal

numbers, Pronic numbers, Stella octangular numbers, Gnomonic numbers, polygonal numbers, four dimensional figurate
numbers are exhibited.
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1. Introduction and Notations

The theory of diophantine equations offers a rich variety of fascinating problems. In particular, homogeneous and non-

homogeneous equations of higher degree have aroused the interest of numerous Mathematicians since antiquity [1–4]. In

[5–12] heptic equations with three, four and five unknowns are analyzed. This communication analyses a non homogeneous

octic equation with five unknowns given by (x − y)(x3 + y3) = 4(w2 − p2)T 6 for determining its infinitely many non-zero

integer quintuples (x, y, w, p, T ) satisfying the above equation are obtained. Various interesting properties among the values

of x, y, p, w and T are presented. In this paper we use the following notations.

tm,n : Polygonal number of rank n with size m

SOn : Stella octangular number of rank n

Prn : Pronic number of rank n

Gn : Gnomonic number of rank n

CPm
n : Centered Pyramidal number of rank n with size m.

Jn : Jacobsthal number of rank n

jn : Jacobsthal-Lucas number of rank n

kyn : keynea number of rank n.

F4,n,6 : Four dimensional hexagonal figurate number of rank n
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2. Method of Analysis

The non-homogeneous octic equation with five unknowns to be solved for its distinct non-zero integral solutions is

(x− y)(x3 + y3) = 4(w2 − p2)T 6 (1)

Introduction of the linear transformations,

x = u+ v, w = uv + 1

y = u− v, p = uv − 1

 (2)

in (1) leads to

u2 + 3v2 = 4T 6 (3)

Different methods of obtaining the patterns of integer solutions to (1) are illustrated below:

Pattern: 1

Let

T = (a2 + 3b2) (4)

Write 4 as

4 = (1 + i
√

3)(1− i
√

3). (5)

Using (4), (5) in (3) and applying the method of factorization define

u+ i
√

3v = (1 + i
√

3)(α+ i
√

3β) (6)

where α+ i
√

3β = (a+ i
√

3b)6 from which we have

α = a6 − 45a4b2 + 135a2b4 − 27b6

β = 6a5b− 60a3b3 + 54ab5

 (7)

Equating real and imaginary parts in (6), we have

u = α− 3β

v = α+ β

 (8)

Using (8) and (2) the value of x, y, w, T and p are given by

x(a, b) = α− 2β

y(a, b) = −4β

p(a, b) = α2 − 2αβ − 3β2 − 1

w(a, b) = α2 − 2αβ − 3β2 + 1

T (a, b) = a2 + 3b2

Properties:

(1) 2x(1, n)− y(1, n) = 2[1 + 5t4,n(27t4,n − 9)− (3t4,n)3]
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(2) y(n, 1) = 24[CP 6
n(t4,n − 10)− CP19,n + 9t4,n − 1]

(3) T (2n, 2n) is a square number

Pattern: 2

Instead of (5) we write

4 =
(2 + 8i

√
3)(2− 8i

√
3)

49
(9)

Substituting (4) and (9) in (3) and employing the factorization method, define u + i
√

3v = 1
7
[(2α − 24β) + i

√
3(8α + 2β)].

Equating real and imaginary pats, we have

u = 1
7
(2α− 24β)

v = 1
7
(8α+ 2β)

 (10)

As our interest is on finding integer solutions, we choose a and b suitably so that u and v are integers. Replace a by 7a and

b by 7b in (7) substituting the corresponding values of α and β in (10) and employing (2) non-zero integral solutions to (1)

are found to be

x(a, b) = 75(10α− 22β)

y(a, b) = 75(−6α− 26β)

w(a, b) = 710(16α2 − 188αβ − 48β2) + 1

p(a, b) = 710(16α2 − 188αβ − 48β2)− 1

T (a, b) = T 2(a2 + 3b2)

Properties:

(1) 3x(n, 1) + 5y(n, 1) = −14275.6[t4,n(2CP 3
n + 2t15,n − 13t4,n) + CP18,n − 9t4,n − 1]

(2) 13x(n, 1)− 11y(n, 1) = 75142{t4,n[6F4,n,6 − 2CP 9
n − Prn − 46t4,n + 135]− 27}

(3) T (2n, 2n−1) = 72[Kyn − j2n+1 + 9J2n−2 + 3]

Pattern: 3

(3) can be written as

u2 + 3v2 = 4T 6 ∗ 1 (11)

Write 1 as

1 =
(11 + i5

√
3)(11− i5

√
3)

142
(12)

Substituting (4), (5) and (12) in (11) and employing the factorization method, define

(u+ i
√

3v) =
1

14
[−4(α+ 12β) + i

√
3(4α− β)] (13)

Equating real and imaginary parts, we have

u = − 1
14
.4(α+ 12β)

v = 1
14
.4(4α− β)

 (14)
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Using (14) in (2) and proceeding as in Pattern: 2, the corresponding integer solutions to (1) are as follows

x(a, b) = 4.145(3α− 13β)

y(a, b) = −4.145(5α+ 11β)

w(a, b) = −141042(α+ 12β)(4α− β) + 1

p(a, b) = −141042(α+ 12β)(4α− β)− 1

T = 142(a2 + 3b2)

Properties:

(1) 5x(n, 1) + 3y(n, 1) = 2372145.6{CP 6
n(t4,n − 10)− 54}

(2) 11x(n, 1)− 13y(n, 1) = 2372145t4,n[24F4,n,3 − 6CP 5
n − 2CP 3

n − CP8,n − 52t4,n + 136]− 27

(3) T (2n, 2n−1) = 142[9J2n−2 + j2n + 2]

Pattern: 4

Let

u = 2U

v = 2V

 (15)

Substituting (15) in (3), we get

U2 + 3V 2 = T 6 (16)

Using (4) and (16) and employing the method of factorization, define

U + i
√

3V = (α+ i
√

3β) (17)

Equating real and imaginary parts, in (17) we get

U = α and V = β (18)

Substituting (18) in (15) and using (2), the non-zero distinct integral solutions to (1) are

x(a, b) = 2(α+ β)

y(a, b) = 2(α− β)

w(a, b) = 4αβ + 1

p(a, b) = 4αβ − 1

T (a, b) = a2 + 3b2

Pattern: 5

(16) can be written as,

U2 + 3V 2 = T 6 ∗ 1 (19)
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Using (4) and (12) and following the procedure as presented in Pattern: 3, the corresponding non-zero integral solutions to

(1) are given by

x(a, b) = 75(16α− 4β)

y(a, b) = 75(6α− 26β)

w(a, b) = 710(11α− 15β)(5α+ 11β) + 1

p(a, b) = 710(11α− 15β)(5α+ 11β)− 1

T (a, b) = 72(a2 + 3b2)

Pattern: 6

Instead of (2), we can write

x = 2u+ v, y = 2u− v

w = u+ v, p = u− v

 (20)

in (1) which leads to

v2 + 2u2 = T 6 (21)

Let

T (a, b) = a2 + 2b2 (22)

Using (22) in (21) and applying the method of factorization, we define

v + i
√

2u = α1 + i
√

2β1 (23)

where α1 + i
√

2β1 = (a+
√

2b)6 from which we have

α1 = a6 − 30a4b2 + 60a2b4 − 8b6

β1 = 6a5b− 40a3b3 + 24ab5

 (24)

Equating real and imaginary parts, we find

v = α1 and u = β1 (25)

Using (25) and (2), the values of x, y, w, p and T are given by

x(a, b) = α1 + 2β1

y(a, b) = −α1 + 2β1

w(a, b) = α1 + β1

p(a, b) = −α1 + β1

T (a, b) = a2 + 2b2

Pattern: 7

Consider (21) as

v2 + 2u2 = T 6 ∗ 1 (26)
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Write 1 as

1 =
(1 + i2

√
2)(1− i2

√
2)

32
(27)

Substituting (22) and (27) in (26) and employing the factorization method, define

v + i
√

2u =
(1 + i2

√
2)

3
(a+ i

√
2b)6

v + i
√

2u =
1

3
[(α1 − 4β1) + i

√
2(2α1 + β1)]

Equating real and imaginary parts, we have

u =
(2α1 + β1)

3
v =

(α1 − 4β1)

3
(28)

Using (28) in (20) and following as in Pattern: 2, the corresponding integer solutions to (1) are

x(a, b) = 35(5α1 − 2β1)

y(a, b) = 35(3α1 + 6β1)

w(a, b) = 35(3α1 − 3β1)

p(a, b) = 35(α1 + 5β1) along with (22)

3. Conclusion

In this paper, we have made an attempt to determine different patterns of non-zero distinct integer solutions to the non-

homogeneous octic equation with five unknowns. As the octic equations are rich in variety, one may search for other forms

of octic equation with variables greater than or equal to five and obtain their corresponding properties.
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