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Abstract: The objective of this paper is to examine oscillatory properties of the third order neutral delay difference equations of the

form

∆ (a(n)∆ (b(n)∆ (x(n) + p(n)x(σ(n))))) + q(n)x(τ(n)) = 0.

Riccati transformation technique is used to obtain some new oscillation criteria.
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1. Introduction

The aim of this paper is to study the oscillation of solutions of the third order neutral delay difference equation of the form

∆ (a(n)∆ (b(n)∆ (x(n) + p(n)x(σ(n))))) + q(n)x(τ(n)) = 0. (1)

where a(n), b(n), p(n), q(n) are positive sequences and n ∈ N(n0) = {n0, n0 + 1...}, n0 is a nonnegative integer.

In this paper, we consider the following three cases

∞∑
s=n

1

a(s)
=∞,

∞∑
s=n

1

b(s)
=∞, (2)

∞∑
s=n

1

a(s)
<∞,

∞∑
s=n

1

b(s)
=∞, (3)

∞∑
s=n

1

a(s)
<∞,

∞∑
s=n

1

b(s)
<∞, (4)

Let θ = max {σ(n), τ(n)}. By a solution of equation (1) we mean a real sequence x(n) is defined for all n ≥ n0 − θ satisfies

(1) for all n ≥ n0. A nontrivial solution x(n) is said to be oscillatory if it is neither eventually positive or eventually negative;

otherwise, it is nonoscillatory. Equation (1) is said to be oscillatory if all its solutions are oscillatory.
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There has been considerable interest in studying the oscillation of solutions of neutral delay difference equations in the last

two decades. Although the oscillation of third-order equations has received less attentions relatively comparing with those

of second-order, however there is an increasing interest in studying the oscillation of neutral delay third-order equations [3–

7, 9–12]. For general theory of oscillation of difference equations, we refer to [1, 2]. Compared to the second-order difference

equations, the study of third-order difference equations has received considerably less attention in the literature even though

such equations arise in economics, mathematical biology, and other areas of mathematics. There are many papers dealing

with the oscillatory and asymptotic behavior of solutions of difference and differential equations, see. The following lemma

is useful in establishing oscillation criteria for equation (1).

Lemma 1.1 ([8]). If X and Y are nonnegative, then

mXY m−1 −Xm ≤ (m− 1)Y m for m > 1 (5)

where equality holds if and only if X = Y .

2. Main Results

In this section, we provide some important theorems regarding the oscillation of the equation (1). In the following theorems,

we set z(n) = x(n) + p(n)x(σ(n)).

Theorem 2.1. Assume that (2) holds, 0 ≤ p(n) ≤ p1 < 1, for all sufficiently large n1 ≥ n0 and for n3 > n2 > n1, one has

lim sup
n→∞

n−1∑
s=n3

ρ(s)

q(s)(1− p(τ(s)))
τ(s)−1∑
t=n2

s−1∑
u=n1

1
a(u)

b(t)

s∑
t=n1

1
a(t)

− (∆ρ(s))2a(s)

4ρ2(s+ 1)ρ(s)
=∞ (6)

then (1) is almost oscillatory.

Proof. Assume that x(n) is a positive solution of (1) on n ≥ n0. Based on the condition (2) there exists two possible

cases:

(1) z(n) > 0,∆z(n) > 0,∆(b(n)∆z(n)) > 0,∆(a(n)∆(b(n)∆z(n))) < 0,

(2) z(n) > 0,∆z(n) < 0,∆(b(n)∆z(n)) > 0,∆(a(n)∆(b(n)∆z(n))) < 0 for n ≥ n1, n1 large enough.

Assume that case (1) holds. We define the function w by

w(n) = ρ(n)
a(n)∆(b(n)∆z(n))

b(n)∆z(n)
, n ≥ n1. (7)

Then w(n) > 0 for n ≥ n1. Using ∆z(n) > 0, we have

x(n) ≥ (1− p(n))z(n). (8)

Since

b(n)∆z(n) ≥
n−1∑
s=n1

a(s)∆(b(s)∆z(s))

a(s)
≥ a(n)∆(b(n)∆z(n))

n−1∑
s=n1

1

a(s)
, (9)

we have that

∆

 b(n)∆z(n)
n−1∑
s=n1

1
a(s)

 ≤ 0. (10)
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Thus, we get

z(n) = z(n2) +

n−1∑
s=n2

b(s)∆z(s)
s−1∑
t=n1

1
a(t)

s−1∑
t=n1

1
a(t)

b(s)

≥ b(n+ 1)∆z(n+ 1)
n∑

s=n1

1
a(s)

n−1∑
s=n2

s−1∑
t=n1

1
a(t)

b(s)
,

(11)

for n > n2 > n1, we obtain

∆w(n) = ρ(n)

(
∆(a(n)∆(b(n)∆z(n)))

b(n+ 1)∆z(n+ 1)
− a(n)∆(b(n)∆z(n))∆(b(n)∆z(n))

b(n+ 1)∆z(n+ 1)b(n)∆z(n)

)
+ ∆ρ(n)

a(n+ 1)∆(b(n+ 1)∆z(n+ 1))

b(n+ 1)∆z(n+ 1)

≤ −ρ(n)

q(n)(1− p(τ(n))) b(τ(n)+1)∆z(τ(n)+1)
τ(n)∑
s=n1

1
a(s)

τ(n)−1∑
s=n2

s−1∑
t=n1

1
a(t)

b(s)

b(n+ 1)∆z(n+ 1)
− ρ(n)w2(n+ 1)

a(n)ρ2(n+ 1)
+ ∆ρ(n)

w(n+ 1)

ρ(n+ 1)

≤ −ρ(n)

q(n)(1− p(τ(n)))
τ(n)−1∑
s=n2

s−1∑
t=n1

1
a(t)

b(s)

n∑
s=n1

1
a(s)

+ ∆ρ(n)
w(n+ 1)

ρ(n+ 1)
− ρ(n)w2(n+ 1)

a(n)ρ2(n+ 1)

Using the inequality (5), we get

let m = 2 X =

√
ρ(n)w(n+1)√
a(n)ρ(n+1)

, Y =
∆ρ(n)

√
a(n)

2
√
ρ(n)ρ(n+1)

∆w(n) ≤ −ρ(n)

q(n)(1− p(τ(n)))
τ(n)−1∑
s=n2

s−1∑
t=n1

1
a(t)

b(s)

n∑
s=n1

1
a(s)

+
(∆ρ(n))2a(n)

4ρ2(n+ 1)ρ(n)
.

Summing the last inequality from n3 to n− 1

n−1∑
s=n3

ρ(s)

q(s)(1− p(τ(s)))
τ(s)−1∑
t=n2

s−1∑
u=n1

1
a(u)

b(t)

s∑
t=n1

1
a(t)

− (∆ρ(s))2a(s)

4ρ2(s+ 1)ρ(s)
≤ w(n3).

which contradicts (6).

Theorem 2.2. Assume that (3) holds, 0 ≤ p(n) ≤ p1 < 1, for all sufficiently large n1 ≥ n0 and for n3 > n2 > n1, one has

lim sup
n→∞

n−1∑
s=n2

δ(s)q(s)(1− p(τ(s)))

τ(s)−1∑
t=n1

1

b(t)
− a(s)(∆δ(s))2

4δ(s)
=∞, (12)

where δ(n) =
∞∑
s=n

1
a(s)

then (1) is almost oscillatory.

Proof. Assume that x(n) is a positive solution of (1) on n ≥ n0. Based on the condition (2) there exists two possible cases

and

(3) z(n) > 0,∆z(n) > 0,∆(b(n)∆z(n)) < 0,∆(a(n)∆(b(n)∆z(n))) < 0, for n ≥ n1, n1 large enough.

Assume that case(3) holds.

a(n+ 1)∆(b(n+ 1)∆z(n+ 1)) ≤ a(n)∆(b(n)∆z(n)). (13)
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Divide the above inequality by a(n+ 1) and summing it from n to ∞, we obtain that is

0 ≤ b(n)∆z(n) + a(n)∆(b(n)∆z(n))

∞∑
s=n

1

a(s+ 1)
. (14)

−
∞∑
s=t

a(n)∆(b(n)∆z(n))

a(s+ 1)b(n)∆z(n)
≤ 1 (15)

We define the function w by

w(n) =
a(n)∆(b(n)∆z(n))

b(n)∆z(n)
, n ≥ n1. (16)

Then, w(n) < 0 for n ≥ n1. Hence by (15) and (16), we obtain

− δ(n)w(n) ≤ 1. (17)

For n > n2 > n1, from (7) we obtain

∆w(n) =

(
∆(a(n)∆(b(n)∆z(n)))

b(n+ 1)∆z(n+ 1)
− a(n)∆(b(n)∆z(n))∆(b(n)∆z(n))

b(n+ 1)∆z(n+ 1)b(n)∆z(n)

)
≤ −q(n)(1− p(τ(n)))z(τ(n))

b(n+ 1)∆z(n+ 1)
− (a(n+ 1)∆(b(n+ 1)∆z(n+ 1)))2

a(n) (b(n+ 1)∆z(n+ 1))2

≤ −q(n)(1− p(τ(n)))z(τ(n))

b(n+ 1)∆z(n+ 1)
− w2(n+ 1)

a(n)
.

(18)

In view of (3), we see that

z(n) ≥ b(n)∆z(n)

n−1∑
s=n1

1

b(s)
. (19)

∆

 z(n)
n−1∑
s=n1

1
b(s)

 ≤ 0.. (20)

which implies that

z(τ(n))

z(n)
≥

τ(n)−1∑
s=n1

1
b(s)

n−1∑
s=n1

1
b(s)

(21)

By (17) and (19), (20) and (22), we obtain

∆w(n) ≤ −q(n)(1− p(τ(n)))

τ(n)−1∑
s=n1

1

b(s)
− w2(n+ 1)

a(n)
. (22)

Multiplying the last inequality (22) by δ(n) and summing it from n2 > n1 to n− 1, we have

n−1∑
s=n2

δ(s)w(s) +

n−1∑
s=n2

δ(s)q(s)(1− p(τ(s)))

τ(s)−1∑
t=n1

1

b(t)
+

n−1∑
s=n2

δ(s)

a(s)
w2(s+ 1) ≤ 0,

w(n)δ(n)− w(n2)δ(n2)−
n−1∑
s=n2

∆δ(s)w(s+ 1)

+

n−1∑
s=n2

δ(s)q(s)(1− p(τ(s)))

τ(s)−1∑
t=n1

1

b(t)
+

n−1∑
s=n2

δ(s)

a(s)
w2(s+ 1) ≤ 0,
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n−1∑
s=n2

δ(s)q(s)(1− p(τ(s)))

τ(s)−1∑
t=n1

1

b(t)
−

n−1∑
s=n2

∆δ(s)w(s+ 1)− δ(s)

a(s)
w2(s+ 1)

≤ 1 + w(n2)δ(n2).

Let

m = 2, X =

√
δ(n)

a(n)
w(n+ 1), Y =

∆δ(n)

2
√

δ(n)
a(n)

which follows that

n−1∑
s=n2

δ(s)q(s)(1− p(τ(s)))

τ(s)−1∑
t=n1

1

b(t)

−
n−1∑
s=n2

2

√
δ(s)

a(s)
w(s+ 1)

 ∆δ(s)

2
√

δ(s)
a(s)

2−1

−

(√
δ(s)

a(s)
w(s+ 1)

)2

≤ 1 + w(n2)δ(n2).

n−1∑
s=n2

δ(s)q(s)(1− p(τ(s)))

τ(s)−1∑
t=n1

1

b(t)
− a(s)(∆δ(s))2

4δ(s)
≤ 1 + w(n2)δ(n2).

which contradicts (14). This completes the proof.
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