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1. Introduction

In mathematics, a weakly symmetric space is a notion introduced by the Norwegian mathematician Atle Selberg in the 1950s

as a generalization of a symmetric space, due to Elie Cartan. Geometrically, the spaces are defined as a complete Riemannian

manifolds such that any two points can be exchanged by an isometry, the symmetric case being when the isometry is required

to have period two. The classification of weakly symmetric space relies on that of periodic automorphism of complex bi-semi

simple Lie algebras.

As a proper generalization of Pseudo symmetric manifolds by Chaki [13] in 1989. The notions of weakly symmetric and

weakly projective symmetric manifolds were introduced by Tamassy and Binh [11] and later Binh [12] studied decomposable

weakly symmetric manifolds. The notion of weakly symmetric manifolds was introduced by Tamassy and Binh [12]. A non

flat Riemannian Manifold (Mn, g) (n > 2) is called weakly symmetric if its curvature tensor R of type (0, 4) satisfies the

condition

(∇XR)(Y,Z, U, V ) = A(X)R(Y,Z, U, V ) +B(Y )R(X,Z,U, V ) +H(Z)R(Y,X,U, V ) (1)

+D(U)R(Y,Z,X, V ) + E(V )R(Y,Z, U,X)

for all vector fields X,Y, Z, U, V ∈ χ(Mn); χ(M) being the Lie Algebra of the smooth vector fields of M . Where A,B,H,D

and E are 1-forms (not simultaneously zero) and ∇ denotes the operator of covariant differentiation with respect to the

Riemannian metric g. The 1-forms are called the associated 1-forms of the manifold and an n-dimensional manifold of this
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kind is denoted by (WS)n. If in (1) the 1-form A is replaced by 2A and E is replaced by A, then a (WS)n reduces to the

notion of generalized pseudo symmetric manifold by Chaki [13]. In 1999, De and Bandyopadhyay [19] studied a (WS)n and

proved that in such a manifold the associated 1-forms B = H and D = E . Hence (1) reduces to the following form.

(∇XR)(Y,Z, U, V ) = A(X)R(Y,Z, U, V ) +B(Y )R(X,Z,U, V ) +B(Z)R(Y,X,U, V ) (2)

+D(U)R(Y,Z,X, V ) +D(V )R(Y,Z, U,X)

A transformation of 3-dimensional Riemannian manifold M, which transforms every geodesic circle of M into a geodesic

circle, is called a concircular transformation [10] and is defined by

C(Y,Z)U = R(Y,Z)U − r

6
[g(Z,U)Y − g(Y,U)Z] (3)

where r is the scalar curvature of the manifold.

Recently Shaikh and Hui [1] introduced the notion of weakly concircular symmetric manifolds. A Riemannian manifold

(Mn, g)(n > 2) is called weakly concircular symmetric manifold if its concircular curvature tensor C satisfies the condition

(∇XC)(Y,Z, U) = A(X)C(Y,Z, U) +B(Y )C(X,Z,U) +H(Z)C(Y,X.U) +D(U)R(Y,Z,X) (4)

for all vector fields X,Y, Z, U ∈ X(M3), where A,B,H and D are 1-forms (not simultaneously zero) and 3-dimensional

manifold of this kind is denoted by (WCS)3. Also it is shown that in a (WCS)3 the associated 1-forms B = H, and hence

the defining condition (4) of a (WCS)3 reduces to the following form:

(∇XC)(Y,Z, U) = A(X)C(Y,Z, U) +B(Y )C(X,Z,U) +B(Z)C(Y,X,U) +D(U)R(Y,Z,X) (5)

A,B and D are 1-forms (not simultaneously zero).

Again Tamassy and Binh [12] introduced the notion of weakly Ricci symmetric manifolds. A Riemannian manifold (Mn, g)

(n > 2) is called weakly Ricci symmetric manifold if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the

condition

(∇XS)(Y,Z) = A(X)S(Y,Z) +B(Y )S(X,Z) +D(Z)C(Y,X) (6)

where A,B and D are three non-zero 1-forms, called the associated 1-forms of the manifolds, and ∇ denotes the operator

of covariant differentiation with respect to the metric g. Such 3-dimensional manifold is denoted by (WCS)3.

Let {e1, e2, e3} be an orthonormal basis of the tangent space at each point of the manifold and let

P (Y, V ) =

3∑
i=1

C(Y, ei, ei, V ) (7)

then from (3), we get

P (Y, V ) = S(Y, V )− r

3
g(Y, V ) (8)

The tensor P is called the concircular Ricci symmetric tensor [17], which is a symmetric tensor of type (0, 2). In [17], De and

Ghosh introduced the notion of weakly concircular Ricci symmetric manifolds. A Riemannian manifold (Mn, g) (n > 2) is
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called weakly concircular Ricci symmetric manifold [17], if its concircular Ricci tensor P of type (0, 2) is not identically zero

and satisfies the condition

(∇XP )(Y,Z) = A(X)P (Y,Z) +B(Y )P (X,Z) +D(Z)P (Y,X) (9)

where A,B and D are 1-forms (not simultaneously zero).

In [3], A. Bejancu and K. L. Duggal introduced the notion of ε-Sasakian manifolds with indefinite metric. In 1998, Xu.

Xufeng and Chao Xiaoli proved that every ε-Sasakian manifold is a hypersurface of an indefinite Khalerian manifold and

established a necessary and sufficient condition for an odd dimensional Riemannian manifold to be an ε-Sasakian manifolds

[21]. In [16], U.C. De and Avijit Sarkar introduced and studied the notion of ε-Kenmotsu manifolds with indefinite mertic

with an example.

In this paper we consider the three dimensional ε-trans- Sasakian manifold. The purpose of this paper is to introduce a

new concept such as weakly concircular symmetries of three-dimensional ε-trans- Sasakian manifold, and studying some

properties. Section 2 is devoted to the preliminary results of ε-trans- Sasakian manifold that are needed in the rest of

sections. Recently S.K.Hui [14] studied weak concircular symmetries of the trans-Sasakian manifolds, However, In section 3

of this paper we have obtained all the 1-forms of weakly concircular symmetric three dimensional ε-trans- Sasakian manifold

and hence such a structure exist. In the last section we study weakly concircular Ricci symmetric three dimensional ε-trans-

Sasakian manifolds and obtained all the 1-forms of weakly concircular Ricci symmetric three dimensional ε-trans- Sasakian

manifold and consequently such a structure exist.

2. Preliminaries

In this section, we list the basic definitions and known results of ε-trans- Sasakian manifolds.

Definition 2.1. A (2n+ 1)-dimensional differentiable manifold (M, g) is said to be an ε-almost contact metric manifold, if

it admits a (1, 1) tensor field φ, a structure vector field ξ, a 1-form η an indefinite metric g such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1 (10)

g(ξ, ξ) = ε, η(X) = εg(X, ξ) (11)

g(φX, φY ) = g(X,Y )− εη(X)η(Y ) (12)

for all vector fields X,Y on M , where ε is 1 or −1 according as ξ is space like or timelike and rank of φ is 2n. From the

above equations, one can deduce that

φξ = 0, η(φX) = 0 (13)

Definition 2.2. An ε-almost contact metric manifold is called an ε-Trans- Sasakian manifold if

(∇Xφ)Y = α{g(X,Y )ξ − εη(Y )X}+ β{g(φX, Y )ξ − εη(Y )φX} (14)

for any X,Y on M where ∇ is the Lie-Civita connection with respect to g.
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we note that if ε = 1, i.e. structure vector field ξ is space like, and then an ε-Trans-Sasakian manifold is usual trans-

sasakian manifold [5]. A Trans-Sasakian manifold of type (0, 0), (0, β), (α, 0) are the cosympletic, β-Kenmotsu and α-Sasakian

manifolds recpectively. In particular if α = 1, β = 0 and α = 0, β = 1, then trans-Sasakian manifold reduces to Sasakian

and Kenmotsu manifold, we have [17].

(∇Xξ) = ε{−αφX + β(X − η(X)ξ)} (15)

(∇Xη)Y = −αg(φX, Y ) + β{g(X,Y )− εη(X)η(Y )} (16)

In a ε-Trans-Sasakian manifold M3(φ, ξ, η, g) the following relations hold

R(X,Y )ξ = (α2 − β2){η(Y )X − η(X)Y }+ 2αβ{η(Y )φX − η(X)φY } (17)

+ε{(Y α)φX − (Xα)φY + (Y β)φ2X − (Xβ)φ2Y }

η(R(X,Y )Z) = ε(α2 − β2){g(Y,Z)η(X)− g(X,Z)η(Y )}+ 2εαβ{η(X)g(φY,Z)− η(Y )g(φX,Z)} (18)

+{(Xβ)g(φ2Y,Z)− (Y β)g(φ2X,Z)}+ {(Xα)g(φY,Z)− (Y α)g(φX,Z)}

S(X, ξ) = {2(α2 − β2)− ε(ξβ)}η(X)− ε(φX)α− ε(Xβ) (19)

R(ξ,X)ξ = {α2 − β2 − ε(ξβ)}{−X + η(X)ξ} − {2αβ + ε(ξα)}(φX) (20)

S(ξ, ξ) = 2{α2 − β2 − ε(ξβ)} (21)

2αβ + ε(ξα) = 0 (22)

where R is the curvature tensor of type (1, 3) of the manifold and Q is the symmetric endomorphism of the tangent space

at each point of the manifold corresponding to the Ricci tensor S, that is, g(QX,Y ) = S(X,Y ) for any vector fields X,Y

on M.

3. Weakly Concircular Symmetric Three-Dimensional ε−Trans-
Sasakian Manifolds

Definition 3.1. An ε-trans-Sasakian manifold M3(φ, ξ, η, g) is said to be weakly concircular symmetric if its concircular

curvature tensor C satisfies (5)

Putting Y = V = ei in (5) and taking summation over i, 1 ≤ i ≤ 3, we obtain

(∇XS)(Z,U)− dr(X)

3
g(Z,U) = A(X)[S(Z,U)− r

3
g(Z,U)] +B(Z)[S(X,U)− r

3
g(X,U)] (23)

+D(U)[S(X,Z)− r

3
g(X,Z)]− r

6
[{B(X) +D(X)}g(Z,U)

−B(Z)g(X,U)−D(U)g(Z,X)] +B(R(X,Z)U) +D(R(X,U)Z)
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Putting X = Y = U = ξ in (23) and then using (16) and (20) we get

A(ξ) +B(ξ) +D(ξ) =
grad F.ξ

F
(24)

where F = 6(α2 − β2 − εξβ)− εr. We can see that if grad F is orthogonal to ξ then

A(ξ) +B(ξ) +D(ξ) = 0 (25)

since A(X) = g(X, ρ), A(ξ) = B(ξ) = D(ξ) = g(ρ, ξ). In view of (25) we get A(ξ) = B(ξ) = D(ξ) = 0. If grad F and ξ are

not inclined orthogonal then grad F.ξ 6= 0. Hence

A(ξ) +B(ξ) +D(ξ) 6= 0 (26)

that is A(ξ) = B(ξ) = D(ξ) 6= 0. We can state the following theorem:

Theorem 3.2. In a weakly concircular ε-trans-Sasakian manifold M3(φ, ξ, η, g) the relation (24) holds.

Next putting X and Z by ξ in (23) and then using (18) and (21) we get

6(∇ξS)(ξ, U)− 2εdr(ξ)η(U) = 6[A(ξ) +B(ξ)][S(U, ξ)− r

3
εη(U)] (27)

+[6(α2 − β2 − εξβ)− εr][D(U) + η(U)D(ξ)]

Again we have

(∇ξS)(ξ, U) = ∇ξS(ξ, U)− S(∇ξξ, U)− S(ξ,∇ξU) (28)

= [2{2α(ξα)− 2β(ξβ)} − εξ(ξβ)]η(U)− ε(U(ξβ))− ε(φU(ξα))

where (18) has been used. In view of (27) and (28) we get from (24) that

D(U) =
[12{2α(ξα)− 2β(ξβ)} − 6εξ(ξβ)]η(U)

F
(29)

−6εU [ξβ] + 6εφU [ξα] + 2εξ[r]η(U)

F
−
{
ξ[F ]

F 2

}
{{6[2(α2 − β2)− εξβ]− 2εr}η(U)− 6{εU [β] + εφU [α]}}

+D(ξ)

{
6{(α2 − β2)η(U)− εU [β]} − 6εφU [α]− εrη(U)

F

}

for any vector field U. If grad F and ξ are orthogonal then by virtue of (24) we obtain

D(U) =
[12{2α(ξα)− 2β(ξβ)} − 6εξ(ξβ)]η(U)

F
− 6U [ξβ] + 6εφU [ξα] + 2εξ[r]η(U)

F

6= 0

If grad F and ξ are not orthogonal then by virtue of (26) we obtain D(U) 6= 0.

Next Putting X = Y = ξ in (23) and proceeding in a similar manner as above we obtain

B(Z) =
[12{2α(ξα)− 2β(ξβ)} − 6εξ(ξβ)]η(Z)

F
(30)

−6εZ[ξβ] + 6εφZ[ξα] + 2εξ[r]η(Z)

F
−
{
ξ[F ]

F 2

}
{{6[2(α2 − β2)− εξβ]− 2εr}η(Z)− 6{εZ[β] + εφZ[α]}}

+B(ξ)

{
6{(α2 − β2)η(Z)− εZ[β]} − 6εφZ[α]− εrη(Z)

F

}
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for any vector field Z. If grad F and ξ are orthogonal then by virtue of (24) and (25) we obtain

B(Z) =
[12{2α(ξα)− 2β(ξβ)} − 6εξ(ξβ)]η(Z)

F
− 6εZ[ξβ] + 6εφZ[ξα] + 2εξ[r]η(Z)

F

6= 0

If grad F and ξ are not orthogonal then by virtue of (26) we obtain B(Z) 6= 0. Again putting Z = U = ξ in (23) we obtain

(∇XS)(ξ, ξ)− εdr(X)

3
= A(X)[S(ξ, ξ)− r

3
ε] +B(R(X, ξ)ξ) +D(R(X, ξ)ξ) (31)

+[B(ξ) +D(ξ)] [S(X, ξ)− r

3
εη(X)]− r

6
[{B(X) +D(X)}ε− εB(ξ)η(X)− εD(ξ)η(X)]

Now we have

(∇XS)(ξ, U) = ∇XS(ξ, ξ)− 2S(∇Xξ, ξ)

which yields by using (14) and (18) that

(∇XS)(ξ, U) = 2[2α(Xα)− 2β(Xβ)− ε(X(ξβ))] (32)

+2α[(Xα)− η(X)(ξα)− (φX)β] + 2β[(φX)α+ {Xβ − (ξβ)η(X)}]

using (19), (20) and (32) in (31) we get

A(X) =
X(F + εr)

F
+

6α{(Xα)− η(X)(ξα)− (φX)β}
F

(33)

+
6β[(φX)[α] + {X[β]− ξβη(X)}]− εX[r]

F
− [B(ξ) +D(ξ)]

[3{(α2 − β2)η(X)− εX[β]} − 3εφX[α]− r
2
εη(X)]

F

−
[B(X) +D(X)][3(α2 − β2)− r

2
εξβ]

F

for any vector X. If grad F and ξ are orthogonal then by virtue of (24) and (25) we obtain

A(X) =
X(F + εr)

F
+

6α{(Xα)− η(X)(ξα)− (φX)β}
F

+
6β[(φX)[α] + {X[β]− ξβη(X)}]− εX[r]

F

−
[B(X) +D(X)][3(α2 − β2)− r

2
εξβ]

F

6= 0

If grad F and ξ are not orthogonal then by virtue of (26) we obtain

A(X) 6= 0.

We can state the following theorem:

Theorem 3.3. There exists no weakly concircular symmetric ε-trans-Sasakian manifold M3, if A+B+D is not everywhere

zero.
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4. Weakly Concircular Ricci Symmetric Three-Dimensional ε− Trans-
Sasakian Manifolds

Definition 4.1. An ε-trans-Sasakian manifold M3(φ, ξ, η, g) is said to be weakly concircular Ricci symmetric if its concir-

cular Ricci tensor P of type (0, 2) satisfies (9).

In view of (8), (9) yields

(∇XS)(Y,Z)− dr(X)

3
g(Y,Z) = A(X)[S(Y,Z)− r

3
g(Y,Z)] (34)

+B(Y )[S(X,Z)− r

3
g(X,Z)] +D(Z)[S(X,Y )− r

3
g(X,Y )]

Putting X = Y = Z = ξ in (34), we get the relation (24) and hence we can state the following:

Theorem 4.2. In a weakly concircular Ricci symmetric ε-trans-Sasakian manifold M3(φ, ξ, η, g), the relation (24) holds

Next, putting X and Y by ξ in (34) and using (18) and (24), we get

D(Z) =
{6ξ[α2 − β2]− 3εξ[ξβ]}η(Z)

F
− 3εZξ[β] + 3εφZ[ξα] + εξ[r]η(Z)

F
(35)

+D(ξ)
{[6(α2 − β2)− 3εξβ − εr]η(Z)− 3εφZ[α]− 3εZ[β]}

F

−
{
ξ[F ]

F 2

}
{[2n(α2 − β2)− ε(ξβ)]η(Z)− εZ[β]− εφZ[α]− r

3
εη(Z)}

for any vector Z. If grad F and ξ are orthogonal then by virtue of (24) and (25) we obtain

D(Z) =
{6ξ[α2 − β2]− 3εξ[ξβ]}η(Z)

F
− 3εZξ[β] + 3εφZ[ξα] + εξ[r]η(Z)

F

6= 0

If grad F and ξ are not orthogonal then by virtue of (26) we obtain D(Z) 6= 0. Again putting X = Z = ξ in (34) and

proceeding in a similar manner as above. we obtain

B(Y ) =
{6ξ[α2 − β2]− 3εξ[ξβ]}η(Y )

F
(36)

−3εY ξ[β] + 3εφY [ξα] + εξ[r]η(Y )

F

+B(ξ)
{[6(α2 − β2)− 3εξβ − εr]η(Y )− 3εφY [α]− 3εY [β]}

F

−
{
ξ[F ]

F 2

}
{[2n(α2 − β2)− ε(ξβ)]η(Y )− εY [β]− εφY [α]− r

3
εη(Y )}

for any vector Y. If grad F and ξ are orthogonal then by virtue of (24) and (25) we obtain

B(Y ) =
{6ξ[α2 − β2]− 3εξ[ξβ]}η(Y )

F
− 3εY ξ[β] + 3εφY [ξα] + εξ[r]η(Y )

F

6= 0

If grad F and ξ are not orthogonal then by virtue of (26) we obtain B(Y ) 6= 0. Again putting Y = Z = ξ in (34) and using

(20) and (24), we obtain
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A(X) =
X(F + εr)

F
+

6α{(Xα)− η(X)(ξα)− (φX)β}
F

(37)

+
6β[(φX)[α] + {X[β]− ξβη(X)}]− εX[r]

F

+A(ξ)
{[6(α2 − β2)− 3εξβ − εr]η(X)− 3εφX[α]− 3εX[β]}

F

−
{
ξ[F ]

F 2

}
{[2n(α2 − β2)− ε(ξβ)]η(X)− εX[β]− εφX[α]− r

3
εη(X)}

for any vector X. If grad F and ξ are orthogonal then by virtue of (24) and (25) we obtain

A(X) =
X(F + εr)

F
+

6α{(Xα)− η(X)(ξα)− (φX)β}
F

+
6β[(φX)[α] + {X[β]− ξβη(X)}]− εX[r]

F

6= 0

If grad F and ξ are not orthogonal then by virtue of (26) we obtain A(X) 6= 0.

We can state the following theorem:

Theorem 4.3. There exists no weakly concircular Ricci symmetric ε-trans-Sasakian manifold M3(φ, ξ, η, g), if sum of the

associated 1-forms D, B and A is not everywhere zero.
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