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Abstract: A path in an edgecolored graph is said to be a rainbow path if every edge in the path has a different color. An edge colored

graph is rainbow connected if there exists a rainbow path between every pair of its vertices. The rainbow connection

number of a graph G, denoted by rc(G), is the smallest number of colors required to color the edges of G such that G
is rainbow connected. Given two arbitrary vertices u and v in G, a rainbow u − v geodesic in G is a rainbow u − v

path of length d(u, v), where d(u, v) is the distance between u and v. G is strongly rainbow connected if there exist

a rainbow u − v geodesic for any two vertices u and v in G. The strong rainbow connection number of G, denoted by
src(G), is the minimum number of colors required to make G strongly rainbow connected. SyafrizalSyet. al. in [2]

proved that, for the sunlet graph Sn, rc(Sn) = src(Sn) = bn
2
c + n for n ≥ 2. In this paper, we improve this result and

showthat rc(Sn) = src(Sn) =

{
n, if n is odd;
3n−2

2
, if n is even.

We also obtain the rainbow connection number and strong rainbow

connection number for the line, middle and total graphs of Sn.
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1. Introduction

All graphs in this paper are finite, undirected and simple. Let G be a nontrivial connected graph on which an edge-coloring

c : E(G)→ {1, . . . , k}, k ∈ N is defined, where adjacent edges may be colored the same. A path in G is a rainbow path if no

two edges of it are colored the same. Clearly, if G is rainbow connected, it must be connected. Conversely, any connected

graph has a trivial edge-coloring that makes it rainbow connected-just color each edge with a distinct color. Given two

arbitrary vertices u and v in G, a rainbow u− v geodesic in G is a rainbow u− v path of length d(u, v), where d(u, v) is the

distance between u and v. G is strongly rainbow connected if there exists a rainbow u − v geodesic for any two vertices u

and v in G. The strong rainbow connection number of G, denoted by src(G), is the minimum number of colors required to

make G strongly rainbow connected.

Chartrand et al. in [3] introduced the concept of rainbow coloring and determined rc(G) and src(G) of the cycle, path, tree

and wheel graphs. In [4] and [5], Li and Sun studied the rainbow connection numbers of line graphs in the light of particular

properties of line graphs shown in [6] and [7]. They gave two sharp upper bounds for rainbow connection number of a line

graph.
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Yuefang Sun in [1], investigated the rainbow connection number of the line graph, middle graph and total graph of a

connected triangle-free graph G and obtained three (near) sharp upper bounds in terms of the number of vertex-disjoint

cycles of the original graph G.

Definition 1.1. The n-Sun let graph of 2n vertices is obtained by attaching n-pendent edges to the cycle Cn and is denoted

by Sn. Figure 1 below illustrates the Sunlet graph Sn.

Figure 1. Sun let graph S5.

Definition 1.2. The line graph of a graph G, denoted by L(G), is a graph whose vertices are the edges of G, and if

u, v ∈ E(G) then uv ∈ E(L(G)) if u and v share a vertex in G.

Definition 1.3. Let G be a graph with vertex set V(G) and edge set E(G). The middle graph of G, denoted by T(G), is

defined as follows. The vertex set of M(G) is V (G) ∪ E(G). Two vertices x, y in the vertex set of M(G) are adjacent in

M(G) in case one of the following holds:

i) x,y are in E(G) and x, y are adjacent in G.

ii) x is in V(G), y is in E(G), and x,y are incident in G.

Definition 1.4. Let G be a graph with vertex set V(G) and edge set E(G). The Total graph of G, denoted by T(G), is

defined as follows. The vertex set of T(G) is V (G)∪E(G). Two vertices x, y in the vertex set of T(G) are adjacent in T(G)

in case one of the following holds

i) x, y are in V(G) and x is adjacent to y in G.

ii) x, y are in E(G) and x, y are adjacent in G.

iii) x is in V(G), y is in E(G), and x, y are incident in G.

2. Preliminary Result

In the following corollary SyafrizalSy et.al in [2] determined the rc(Sn) and src(Sn).

Corollary 2.1. The rainbow connection number and strong rainbow connection number of a graph Sn for n ≥ 2 are

rc(Sn) = src(Sn) = bn
2
c+ n.
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3. Main Result

In this section, we improve the result proved by SyafrizalSy et.al in [2]. We state this result in Theorem 3.1 below.

Theorem 3.1. If n ≥ 3, rc(Sn) = src(Sn) =

 n, if n is odd;

3n−2
2

, if n is even.

Proof. Let us define the vertex set V and the edge set E of Sn as V (Sn) = {v1, . . . , vn} ∪ {u1, . . . , un} where vi are the

vertices of cycles taken in cyclic order and ui are the pendent vertices such that viui is a pendent edge and E(Sn) = {e′i :

1 ≤ i ≤ n} ∪ {ei : 1 ≤ i ≤ n− 1} ∪ {en}, where ei is the edge vivi+1 (1 ≤ i ≤ n− 1), en is the edge vnvl and e′i is the edge

viui (1 ≤ i ≤ n).

Case 1: n is odd

Since all the paths from ui to uj for 1 ≤ i ≤ n and 1 ≤ j ≤ n go through the pendent edges e′i, it is obvious that the color

of the edges e′i must be different. i.e. c(e′i) = i for 1 ≤ i ≤ n. Hence

rc(Sn) ≥ n (1)

Now to get rainbow connectivity between any two vertices of Sn, assign the colors to the edges of cycle as c
(
e(i+2)(mod n)

)
= i

for 1 ≤ i ≤ n (multiplicative modulo n). From the above assignment of colors it is clear that,

rc(Sn) ≤ n (2)

From (1) and (2) rc(Sn) = src(Sn) = n.

Figure 2. Sun let Graph S5 with rc(S5) = src(S5) = 5

Case 2: n is even

As in case (1), let c(e′i) = i for 1 ≤ i ≤ n. Assign colors to the edges of the cycle as,

c(ei) =



i
2

+ 1, for i = n

2i, for i = n
2

i + n, for 1 ≤ i ≤ n
2
− 1

i + n
2
, for n

2
+ 1 ≤ i ≤ n− 1.

From the above assignment, it is clear that for n = 4, 6, 8, . . .

rc(Sn) = src(Sn) = 5, 8, 11, . . . .
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Figure 3. Assignment of colors in S4

This proves rc(Sn) = src(Sn) = 3n−2
2

.

Theorem 3.2. If n ≥ 3 and G = L(Sn), then rc(G) = src(G) =



2, for n = 3

3, for n = 4

4, for n = 5 & 6

dn
2
e+ 2, for n ≥ 7.

Proof. The vertex and edge sets of Sn are as described in Theorem 3.1. By the definition of line graph V (G) = E(Sn) =

{u′i : 1 ≤ i ≤ n} ∪ {v′i : 1 ≤ i ≤ n− 1} ∪ {v′n} where v′i and u′i represent the edge ei and e′i (1 ≤ i ≤ n) respectively.

Case 1 : For n = 3, define the coloring c : E(G)→ {1, 2} as,

c(v′1v
′
2) = c(v′2v

′
3) = c(v′3v

′
1) = 1

c(v′iu
′
i) = 1 for 1 ≤ i ≤ 3

c(v′iu
′
i+1) = 2 for 1 ≤ i ≤ 2 and

c(v′3u
′
1) = 2, which is a rainbow coloring.

In this assignment since we cannot assign more than 2 colors (which is optimum) and hence it follows that rc(G) = src(G) = 2.

Figure 4. Line graph of Sun let Graph L(S3)
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Case 2 : For n = 4, define the coloring c : E(G)→ {1, 2, 3} as,

c(v′iv
′
i+1) =

 1, if i is odd and 1 ≤ i ≤ 4

2, if i is even and 1 ≤ i ≤ 4

c(v′iu
′
i) = 3 for 1 ≤ i ≤ 4

c(v′iu
′
i+1) = 2 for 1 ≤ i ≤ 3 and

c(v′nu
′
l) = 2, which is a rainbow coloring.

In this assignment since we cannot assign more than 3 colors (which is optimum) and hence it follows that rc(G) = src(G) = 3.

Figure 5. Line graph of Sun let Graph L(S4)

Case 3 : For n = 5, define the coloring c : E(G)→ {1, 2, 3, 4} as,

c(v′iv
′
i+1) =

 1, if i is odd and 1 ≤ i ≤ 4

2, if i is even and 1 ≤ i ≤ 5

c(v′nv
′
l) = 1

c(v′iu
′
i) = 3 for 1 ≤ i ≤ 5

c(v′iu
′
i+1) = 4 for 1 ≤ i ≤ 4 and

c(v′5u
′
l) = 4, which is a rainbow coloring.

In this assignment since we cannot assign more than 4 colors (which is optimum) and hence it follows that rc(G) = src(G) = 4.

Figure 6. Line graph of Sun let Graph L(S5)
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Case 4 : For n = 6, define the coloring c : E(L(Sn))→ {1, 2, 3, 4} as,

c(v′iv
′
i+1) =

 1, if i is odd and 1 ≤ i ≤ 6

2, if i is even and 1 ≤ i ≤ 6

c(v′iu
′
i) = 3 for 1 ≤ i ≤ 6

c(v′iu
′
i+1) = 4 for 1 ≤ i ≤ 5 and

c(v′6u
′
l) = 4, which is a rainbow coloring.

In this assignment since we cannot assign more than 4 colors (which is optimum) and hence it follows that rc(G) = src(G) = 4.

Case 5 : If n ≥ 7,

Let Cn : v′1, v
′
2, . . . , v

′
n, v
′
n+1 = v′1 and for each i for 1 ≤ i ≤ n, be the vertices of inner cycle and let the edges of Cn be

ei = v′iv
′
i+1. Define

c(ei) =

 i, for 1 ≤ i ≤ dn
2
e

i− dn
2
e, for dn

2
e+ 1 ≤ i ≤ n

c(v′iu
′
i) = dn

2
e+ 1 for 1 ≤ i ≤ n

c
(
u′i, v

′
(i+1)(mod n)

)
= dn

2
e+ 2 for 1 ≤ i ≤ n (3)

This assignment is clearly a rainbow coloring and from (3), It follows that rc(G) = src(G) = dn
2
e+ 2.

Theorem 3.3. If n ≥ 3 and G = M(Sn), then rc(G) = src(G) = n + 1.

Proof. The vertex and edge sets of Sn are as described in Theorem 3.1. By the definition of middle graph

V (G) = V (Sn) ∪ E(Sn) = {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤ n} ∪ {v′i : 1 ≤ i ≤ n} ∪ {u′i : 1 ≤ i ≤ n},

where v′i and u′i represents the edge ei and e′i (1 ≤ i ≤ n) respectively. Define

c(u′iui) = i 1 ≤ i ≤ n

c(v′iu
′
i) = n + 1 1 ≤ i ≤ n

c(v′i+1u
′
i+1) = i 1 ≤ i ≤ n− 1

c(v1u
′
1) = n

c(v′iu
′
i+1) = (i + 2)(mod n) 1 ≤ i ≤ n− 1

c(v′nu
′
1) = 2

c(viv
′
i) = i 1 ≤ i ≤ n

c(v′ivi+1) = i + 1 1 ≤ i ≤ n− 1

c(v′nv1) = 1

c(v′iv
′
i+1) = i + 1 1 ≤ i ≤ n− 1

c(v′nv
′
1) = 1

From this assignment, it follows that rc(G) = src(G) = n + 1.
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Figure 7. The graph M(S5)

Theorem 3.4. If n ≥ 3 and G = T (Sn), then rc(G) = src(G) =

 n, if n is odd

n + 1, if n is even

Proof. The vertex and edge sets of Sn are as described in Theorem 3.1. By the definition of total graph

V (G) = V (Sn) ∪ E(Sn) = {vi : 1 ≤ i ≤ n} ∪ {v′i : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤ n} ∪ {u′i : 1 ≤ i ≤ n},

where v′i and u′i represents the edge ei and e′i (1 ≤ i ≤ n) respectively.

Case 1 : If n is odd

Define

c(viui) = i 1 ≤ i ≤ n

c(v′iu
′
i) = i 1 ≤ i ≤ n

c(viu
′
i) = i 1 ≤ i ≤ n

c(v1u
′
1) = n

c(v′iu
′
i+1) = i + 1 1 ≤ i ≤ n− 1

c(v′nu
′
1) = 1

c(v1u
′
1) = n

c(u′iui) = (i + 3)(mod n) 1 ≤ i ≤ n

c(viv
′
i) = i 1 ≤ i ≤ n

c(v′ivi+1) = i + 1 1 ≤ i ≤ n− 1

c(v′nv
′
1) = 1

c(vivi+1) = (i + 3)(mod n) 1 ≤ i ≤ n− 1

c(vnv1) = n− 2

From this assignment, it follows that rc(G) = src(G) = n.
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Figure 8. The graph T (S5)

Case 2 : If n is even

Define

c(viui) = i 1 ≤ i ≤ n

c(u′iui) = i 1 ≤ i ≤ n

c(v′iu
′
i) = n + 1 1 ≤ i ≤ n

c(v′i+1u
′
i+1) = i 1 ≤ i ≤ n− 1

c(v1u
′
1) = n

c(v′iu
′
i+1) = (i + 2)(mod n) 1 ≤ i ≤ n− 1

c(v′nu
′
1) = 2

c(viv
′
i) = i 1 ≤ i ≤ n

c(v′iv
′
i+1) = i + 1 1 ≤ i ≤ n− 1

c(v′nv1) = 1

c(v′iv
′
i+1) = i + 1 1 ≤ i ≤ n− 1

c(v′nv
′
1) = 1

c(vivi+1) = (i + 3)(mod n) 1 ≤ i ≤ n− 1

c(vnv1) = n− 2

From this assignment, it follows that rc(G) = src(G) = n + 1.
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Figure 9. The graph T (S6)

4. Conclusion

SyafrizalSy et. al. in [2] proved that, for the sunlet graph Sn, rc(Sn) = src(Sn) = bn
2
c + n for n ≥ 2. In this paper, we

improve this result and show that rc(Sn) = src(Sn) = n if n is odd and 3n−2
2

if n is even. We also obtain the rainbow

connection number and strong rainbow connection number for the line, middle and total graphs of Sn.
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