Volume 3, Issue 4-C (2015), 1-8.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

\ddot{g} -closed and \ddot{g} -open Maps in Topological Spaces

Research Article

O.Ravi^{1*}, S.Padmasekaran², S.Usharani³ and I.Rajasekaran¹

- 1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.
- 2 Department of Mathematics, Periyar University, Salem, Tamil Nadu, India.
- 3 Research Scholar, Periyar University, Salem, Tamil Nadu, India.

Abstract: A set A in a topological space (X, τ) is said to be \check{g} -closed set if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is B-open in X. In this

paper, we introduce \check{g} -closed map from a topological space X to a topological space Y as the image of every closed set is \check{g} -closed, and also we prove that the composition of two \check{g} -closed maps need not be a \check{g} -closed map. We also obtain some

properties of \check{g} -closed maps.

MSC: 54C10, 54C08, 54C05.

Keywords: Topological space, \check{g} -closed map, \check{g}^* -closed map, \check{g} -open map, \check{g}^* -open map.

© JS Publication.

1. Introduction

Malghan [8] introduced the concept of generalized closed maps in topological spaces. Devi [5] introduced and studied sgclosed maps and gs-closed maps. Recently, Sheik John [16] defined ω -closed maps and studied some of their properties. In this paper, we introduce \check{g} -closed maps, \check{g} -open maps, \check{g}^* -closed maps and \check{g}^* -open maps in topological spaces and obtain certain characterizations of these classes of maps.

2. Preliminaries

Throughout this paper, (X, τ) , (Y, σ) and (Z, η) (or X, Y and Z) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For any subset A of a space (X, τ) , the closure of A, the interior of A and the complement of A are denoted by cl(A), int(A) and A^c respectively.

We recall the following definitions which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called semi-open set [7] if $A \subseteq cl(int(A))$. The complement of semi-open set is semi-closed.

The semi-closure [4] of a subset A of X, denoted by scl(A), is defined to be the intersection of all semi-closed sets of (X, τ) containing A. It is known that scl(A) is a semi-closed set. For any subset A of an arbitrarily chosen topological space, the semi-interior [4] of A, denoted by sint(A), is defined to be the union of all semi-open sets of (X, τ) contained in A.

1

^{*} E-mail: siingam@yahoo.com

Definition 2.2. A subset A of a space (X, τ) is called:

- (1). a generalized closed (briefly, g-closed) set [6] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in X. The complement of g-closed set is called g-open set;
- (2). a \hat{g} -closed set [18](= ω -closed set [16]) if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is semi-open in X. The complement of \hat{g} -closed set is called \hat{g} -open set;
- (3). a semi-generalized closed (briefly, sg-closed) set [2] if scl(A)⊆U whenever A⊆U and U is semi-open in X. The complement of sg-closed set is called sg-open set;
- (4). a generalized semi-closed (briefly, gs-closed) set [1] if $scl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in X. The complement of gs-closed set is called gs-open set;
- (5). a \ddot{g} -closed set [10] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is sg-open in X. The complement of \ddot{g} -closed set is called \ddot{g} -open set;
- (6). ψ -closed set [9, 19] if $scl(A)\subseteq U$ whenever $A\subseteq U$ and U is sg-open in X. The complement of Ψ -closed set is called Ψ -open set;
- (7). a A-closed set [11] if cl(A)⊆U whenever A⊆U and U is ÿ-open in X. The complement of A-closed set is called A-open set:
- (8). a B-closed set [11] if $scl(A)\subseteq U$ whenever $A\subseteq U$ and U is A-open in X. The complement of B-closed set is called B-open set;
- (9). a ğ-closed set [11] if cl(A)⊆U whenever A⊆U and U is B-open in X. The complement of ğ-closed set is called ğ-open set.

The collection of all \check{g} -closed sets of X is denoted by $\check{g}C(X)$.

Definition 2.3 ([12]).

- (1). For any $A \subseteq X$, \check{g} -int(A) is defined as the union of all \check{g} -open sets contained in A. In symbols, \check{g} -int(A) = $\cup \{G : G \subseteq A \text{ and } G \text{ is } \check{g}\text{-open}\}$.
- (2). For every set $A \subseteq X$, we define the \check{g} -closure of A to be the intersection of all \check{g} -closed sets containing A. In symbols, \check{g} -cl(A)= \cap { $F: A \subseteq F \in \check{g} \ C(X)$ }.

Definition 2.4 ([12]). Let $\tau_{\check{g}}$ be the topology on X generated by \check{g} -closure in the usual manner. That is, $\tau_{\check{g}} = \{U \subseteq X : \check{g}\text{-}cl(U^c) = U^c\}$.

Definition 2.5 ([13]). Let (X, τ) be a topological space. Let x be a point of X and G be a subset of X. Then G is called an \check{g} -neighborhood of x (briefly, \check{g} -nbhd of x) in X if there exists an \check{g} -open set U of X such that $x \in U \subseteq G$.

Definition 2.6. A space X is called

- (1). T_{ω} -space if every ω -closed set in it is closed [16].
- (2). $T_{\breve{g}}$ -space if every \breve{g} -closed set in it is closed [15].

Definition 2.7. A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is called

- (1). ω -continuous [16] if the inverse image of every closed set in (Y, σ) is ω -closed in (X, τ) .
- (2). \check{g} -continuous [14] if the inverse image of every closed set in (Y, σ) is \check{g} -closed in (X, τ) .
- (3). \check{g} -irresolute [14] if the inverse image of every \check{g} -closed set in (Y, σ) is \check{g} -closed in (X, τ) .
- (4). strongly \check{g} -continuous [14] if the inverse image of every \check{g} -open set in (Y, σ) is open in (X, τ) .
- (5). B-irresolute [14] if $f^{-1}(V)$ is B-open in (X, τ) for every B-open subset V in (Y, σ) .

Proposition 2.8 ([12]). For any $A \subseteq X$, the following hold:

- (2). A is \check{g} -open if and only if \check{g} -int(A) = A.

Proposition 2.9 ([12]). For any $A \subseteq X$, the following hold:

- (1). \check{g} -cl(A) is the smallest \check{g} -closed set containing A.
- (2). A is \check{g} -closed if and only if \check{g} -cl(A) = A.

Proposition 2.10 ([12]). For any two subsets A and B of (X, τ) , the following hold:

- (1). If $A \subseteq B$, then \breve{g} - $cl(A) \subseteq \breve{g}$ -cl(B).
- (2). \breve{g} - $cl(A \cap B) \subseteq \breve{g}$ - $cl(A) \cap \breve{g}$ -cl(B).

Theorem 2.11 ([14]). A subset A of X is \check{g} -open if and only if $F\subseteq int(A)$ whenever F is B-closed and $F\subseteq A$.

Definition 2.12. A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is called

- (1). g-closed [8] if f(V) is g-closed in (Y, σ) for every closed set V of (X, τ) .
- (2). sg-closed [5] if f(V) is sg-closed in (Y, σ) for every closed set V of (X, τ) .
- (3). gs-closed [5] if f(V) is gs-closed in (Y, σ) for every closed set V of (X, τ) .
- (4). ψ -closed [9] if f(V) is ψ -closed in (Y, σ) for every closed set V of (X, τ) .

3. \ddot{g} -closed Maps

We introduce the following definition:

Definition 3.1. A map $f:(X, \tau) \to (Y, \sigma)$ is said to be \check{g} -closed if the image of every closed set in (X, τ) is \check{g} -closed in (Y, σ) .

Example 3.2. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is an \check{g} -closed map.

Proposition 3.3. A map $f:(X,\tau)\to (Y,\sigma)$ is \check{g} -closed if and only if \check{g} -cl(f(A)) $\subseteq f(cl(A))$ for every subset A of (X,τ) .

Proof. Suppose that f is \check{g} -closed and $A \subseteq X$. Then cl(A) is closed in X and so f(cl(A)) is \check{g} -closed in (Y, σ) . We have $f(A) \subseteq f(cl(A))$ and by Propositions 2.9 and 2.10, \check{g} -cl $(f(A)) \subseteq \check{g}$ -cl(f(Cl(A))) = f(Cl(A)).

Conversely, let A be any closed set in (X, τ) . Then A = cl(A) and so $f(A) = f(cl(A)) \supseteq \check{g} - cl(f(A))$, by hypothesis. We have $f(A) \subseteq \check{g} - cl(f(A))$. Therefore $f(A) = \check{g} - cl(f(A))$. i.e., f(A) is $\check{g} - closed$ by Proposition 2.9 and hence f is $\check{g} - closed$.

Proposition 3.4. Let $f:(X, \tau) \to (Y, \sigma)$ be a map such that $\check{g}\text{-}cl(f(A)) \subseteq f(cl(A))$ for every subset $A \subseteq X$. Then the image f(A) of a closed set A in (X, τ) is $\check{g}\text{-}closed$ in (Y, σ) .

Proof. Let A be a closed set in (X, τ) . Then by hypothesis $\check{g}\text{-cl}(f(A))\subseteq f(cl(A))=f(A)$ and so $\check{g}\text{-cl}(f(A))=f(A)$. Therefore f(A) is $\check{g}\text{-closed}$ in (Y, σ) .

Theorem 3.5. A map $f: (X, \tau) \to (Y, \sigma)$ is \check{g} -closed if and only if for each subset S of (Y, σ) and each open set U containing $f^{-1}(S)$ there is an \check{g} -open set V of (Y, σ) such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof. Suppose f is \check{g} -closed. Let $S \subseteq Y$ and U be an open set of (X, τ) such that $f^{-1}(S) \subseteq U$. Then $V = (f(U^c))^c$ is an \check{g} -open set containing S such that $f^{-1}(V) \subseteq U$.

For the converse, let F be a closed set of (X, τ) . Then $f^{-1}((f(F))^c) \subseteq F^c$ and F^c is open. By assumption, there exists an \check{g} -open set V in (Y, σ) such that $(f(F))^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$ and so $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies $f(F) = V^c$. Since V^c is \check{g} -closed, f(F) is \check{g} -closed and therefore f is \check{g} -closed.

Proposition 3.6. If $f:(X, \tau) \to (Y, \sigma)$ is B-irresolute \check{g} -closed and A is an \check{g} -closed subset of (X, τ) , then f(A) is \check{g} -closed in (Y, σ) .

Proof. Let U be an B-open set in (Y, σ) such that $f(A)\subseteq U$. Since f is B-irresolute, $f^{-1}(U)$ is an B-open set containing A. Hence $cl(A)\subseteq f^{-1}(U)$ as A is \check{g} -closed in (X, τ) . Since f is \check{g} -closed, f(cl(A)) is an \check{g} -closed set contained in the B-open set U, which implies that $cl(f(cl(A)))\subseteq U$ and hence $cl(f(A))\subseteq U$. Therefore, f(A) is an \check{g} -closed set in (Y, σ) .

The following example shows that the composition of two \check{g} -closed maps need not be a \check{g} -closed.

Example 3.7. Let (X, τ) , (Y, σ) and f be as in Example 3.2. Let $Z = \{a, b, c\}$ and $\eta = \{\phi, \{a\}, \{a, b\}, Z\}$. Let $g : (Y, \sigma) \to (Z, \eta)$ be the identity map. Then both f and g are \check{g} -closed maps but their composition g of $f : (X, \tau) \to (Z, \eta)$ is not an \check{g} -closed map, since for the closed set $\{a, c\}$ in (X, τ) , $(g \circ f)(\{a, c\}) = \{a, c\}$, which is not an \check{g} -closed set in (Z, η) .

Corollary 3.8. Let $f:(X, \tau) \to (Y, \sigma)$ be \check{g} -closed and $g:(Y, \sigma) \to (Z, \eta)$ be \check{g} -closed and B-irresolute, then their composition $g \circ f:(X, \tau) \to (Z, \eta)$ is \check{g} -closed.

Proof. Let A be a closed set of (X, τ) . Then by hypothesis f(A) is an \check{g} -closed set in (Y, σ) . Since g is both \check{g} -closed and B-irresolute by Proposition 3.6, $g(f(A)) = (g \circ f)(A)$ is \check{g} -closed in (Z, η) and therefore g of is \check{g} -closed.

Proposition 3.9. Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Z, \eta)$ be \check{g} -closed maps where (Y, σ) is a $T_{\check{g}}$ -space. Then their composition $g \circ f:(X, \tau) \to (Z, \eta)$ is \check{g} -closed.

Proof. Let A be a closed set of (X, τ) . Then by assumption f(A) is \check{g} -closed in (Y, σ) . Since (Y, σ) is a $T_{\check{g}}$ -space, f(A) is closed in (Y, σ) and again by assumption g(f(A)) is \check{g} -closed in (Z, η) . i.e., $(g \circ f)(A)$ is \check{g} -closed in (Z, η) and so $g \circ f$ is \check{g} -closed.

Proposition 3.10. If $f:(X, \tau) \to (Y, \sigma)$ is \check{g} -closed, $g:(Y, \sigma) \to (Z, \eta)$ is \check{g} -closed, (resp. ψ -closed, sg-closed and gs-closed) and (Y, σ) is a $T_{\check{g}}$ -space, then their composition g of $f:(X, \tau) \to (Z, \eta)$ is g-closed(resp. ψ -closed, sg-closed and gs-closed).

Proof. Let A be a closed set of (X, τ) . Then by assumption f(A) is \check{g} -closed in (Y, σ) . Since (Y, σ) is a $T_{\check{g}}$ -space, f(A) is closed in (Y, σ) and again by assumption g(f(A)) is g-closed (resp. ψ -closed, sg-closed and gs-closed) in (Z, η) . i.e., $(g \circ f)(A)$ is g-closed (resp. ψ -closed, sg-closed and gs-closed) in (Z, η) and so $g \circ f$ is g-closed (resp. ψ -closed, sg-closed and gs-closed).

Proposition 3.11. Let $f:(X, \tau) \to (Y, \sigma)$ be a closed map and $g:(Y, \sigma) \to (Z, \eta)$ be an \check{g} -closed map, then their composition $g \circ f:(X, \tau) \to (Z, \eta)$ is \check{g} -closed.

Proof. Let A be a closed set of (X, τ) . Then by assumption f(A) is closed in (Y, σ) and again by assumption g(f(A)) is \check{g} -closed in (Z, η) . i.e., $(g \circ f)(A)$ is \check{g} -closed in (Z, η) and so $g \circ f$ is \check{g} -closed.

Remark 3.12. If $f:(X, \tau) \to (Y, \sigma)$ is an \check{g} -closed and $g:(Y, \sigma) \to (Z, \eta)$ is closed, then their composition need not be an \check{g} -closed map as seen from the following example.

Example 3.13. Let (X, τ) , (Y, σ) and f be as in Example 3.2. Let $Z = \{a, b, c\}$ and $\eta = \{\phi, \{a\}, \{a, b\}, Z\}$. Let $g : (Y, \sigma) \to (Z, \eta)$ be the identity map. Then f is an \check{g} -closed map and g is a closed map. But their composition g of $f : (X, \tau) \to (Z, \eta)$ is not an \check{g} -closed map, since for the closed set $\{a, c\}$ in (X, τ) , $(g \circ f)(\{a, c\}) = \{a, c\}$, which is not an \check{g} -closed set in (Z, η) .

Theorem 3.14. Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Z, \eta)$ be two maps such that their composition g of $f:(X, \tau) \to (Z, \eta)$ is an \check{g} -closed map. Then the following statements are true.

- (1). If f is continuous and surjective, then g is \(\bar{g}\)-closed.
- (2). If g is \(\bar{g}\)-irresolute and injective, then f is \(\bar{g}\)-closed.
- (3). If f is ω -continuous, surjective and (X, τ) is a T_{ω} -space, then g is \check{g} -closed.
- (4). If g is strongly \(\bar{g}\)-continuous and injective, then f is closed.
- *Proof.* (1). Let A be a closed set of (Y, σ) . Since f is continuous, $f^{-1}(A)$ is closed in (X, τ) and since g o f is \check{g} -closed, $(g \circ f)(f^{-1}(A))$ is \check{g} -closed in (Z, η) . That is g(A) is \check{g} -closed in (Z, η) , since f is surjective. Therefore g is an \check{g} -closed map.
- (2). Let B be a closed set of (X, τ) . Since g of is \check{g} -closed, $(g \circ f)(B)$ is \check{g} -closed in (Z, η) . Since g is \check{g} -irresolute, $g^{-1}((g \circ f)(B))$ is \check{g} -closed set in (Y, σ) . That is f(B) is \check{g} -closed in (Y, σ) , since g is injective. Thus f is an \check{g} -closed map.
- (3). Let C be a closed set of (Y, σ) . Since f is ω -continuous, $f^{-1}(C)$ is ω -closed in (X, τ) . Since (X, τ) is a T_{ω} -space, $f^{-1}(C)$ is closed in (X, τ) and so as in (1), g is an \check{g} -closed map.
- (4). Let D be a closed set of (X, τ) . Since g o f is \check{g} -closed, $(g \circ f)(D)$ is \check{g} -closed in (Z, η) . Since g is strongly \check{g} -continuous, $g^{-1}((g \circ f)(D))$ is closed in (Y, σ) . That is f(D) is closed set in (Y, σ) , since g is injective. Therefore f is a closed map.

In the next theorem we show that normality is preserved under continuous \check{g} -closed maps.

Theorem 3.15. If $f:(X, \tau) \to (Y, \sigma)$ is a continuous, \check{g} -closed map from a normal space (X, τ) onto a space (Y, σ) , then (Y, σ) is normal.

Proof. Let A and B be two disjoint closed subsets of (Y, σ) . Since f is continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint closed sets of (X, τ) . Since (X, τ) is normal, there exist disjoint open sets U and V of (X, τ) such that $f^{-1}(A)\subseteq U$ and $f^{-1}(B)\subseteq V$. Since f is \check{g} -closed, by Theorem 3.5, there exist disjoint \check{g} -open sets G and H in (Y, σ) such that $A\subseteq G$, $B\subseteq H$, $f^{-1}(G)\subseteq U$ and $f^{-1}(H)\subseteq V$. Since U and V are disjoint, int(G) and int(H) are disjoint open sets in (Y, σ) . Since A is closed, A is B-closed and therefore we have by Theorem 2.11, $A\subseteq \inf(G)$. Similarly $B\subseteq \inf(H)$ and hence (Y, σ) is normal.

Analogous to an \check{g} -closed map, we define an \check{g} -open map as follows:

П

Definition 3.16. A map $f:(X, \tau) \to (Y, \sigma)$ is said to be an \check{g} -open map if the image f(A) is \check{g} -open in (Y, σ) for each open set A in (X, τ) .

Proposition 3.17. For any bijection $f:(X,\tau)\to (Y,\sigma)$, the following statements are equivalent:

- (1). $f^{-1}: (Y, \sigma) \rightarrow (X, \tau)$ is \breve{g} -continuous.
- (2). f is \check{g} -open map.
- (3). f is \check{g} -closed map.

Proof. (1) \Rightarrow (2) Let U be an open set of (X, τ) . By assumption, $(f^{-1})^{-1}(U) = f(U)$ is \check{g} -open in (Y, σ) and so f is \check{g} -open. (2) \Rightarrow (3) Let F be a closed set of (X, τ) . Then F^c is open set in (X, τ) . By assumption, $f(F^c)$ is \check{g} -open in (Y, σ) . That is $f(F^c) = (f(F))^c$ is \check{g} -open in (Y, σ) and therefore f(F) is \check{g} -closed in (Y, σ) . Hence f is \check{g} -closed.

(3) \Rightarrow (1) Let F be a closed set of (X, τ). By assumption, f(F) is \check{g} -closed in (Y, σ). But f(F) = (f⁻¹)⁻¹(F) and therefore f⁻¹ is \check{g} -continuous.

In the next two theorems, we obtain various characterizations of \check{g} -open maps.

Theorem 3.18. Assume that the collection of all \check{g} -open sets of Y is closed under arbitrary union. Let $f:(X, \tau)\to (Y, \sigma)$ be a map. Then the following statements are equivalent:

- (1). f is an ğ-open map.
- (2). For a subset A of (X, τ) , $f(int(A))\subseteq \check{g}-int(f(A))$.
- (3). For each $x \in X$ and for each neighborhood U of x in (X, τ) , there exists an \check{g} -neighborhood W of f(x) in (Y, σ) such that $W \subseteq f(U)$.

Proof. (1) \Rightarrow (2). Suppose f is \check{g} -open. Let $A \subseteq X$. Then int(A) is open in (X, τ) and so f(int(A)) is \check{g} -open in (Y, σ) . We have $f(int(A)) \subseteq f(A)$. Therefore by Proposition 2.8, $f(int(A)) \subseteq \check{g}$ -int(f(A)).

- (2) \Rightarrow (3). Suppose (2) holds. Let $x \in X$ and U be an arbitrary neighborhood of x in (X, τ) . Then there exists an open set G such that $x \in G \subseteq U$. By assumption, $f(G) = f(\text{int}(G)) \subseteq \check{g}\text{-int}(f(G))$. This implies $f(G) = \check{g}\text{-int}(f(G))$. By Proposition 2.8, we have f(G) is \check{g} -open in (Y, σ) . Further, $f(x) \in f(G) \subseteq f(U)$ and so (3) holds, by taking W = f(G).
- (3) \Rightarrow (1). Suppose (3) holds. Let U be any open set in (X, τ) , $x \in U$ and f(x) = y. Then $y \in f(U)$ and for each $y \in f(U)$, by assumption there exists an \check{g} -neighborhood W_y of y in (Y, σ) such that $W_y \subseteq f(U)$. Since W_y is an \check{g} -neighborhood of y, there exists an \check{g} -open set V_y in (Y, σ) such that $y \in V_y \subseteq W_y$. Therefore, $f(U) = \bigcup \{V_y : y \in f(U)\}$ is an \check{g} -open set in (Y, σ) by the given condition. Thus f is an \check{g} -open map.

Theorem 3.19. A map $f:(X, \tau) \to (Y, \sigma)$ is \check{g} -open if and only if for any subset S of (Y, σ) and for any closed set F containing $f^{-1}(S)$, there exists an \check{g} -closed set K of (Y, σ) containing S such that $f^{-1}(K) \subseteq F$.

Proof. Similar to Theorem 3.5. \Box

Corollary 3.20. A map $f:(X, \tau) \to (Y, \sigma)$ is \check{g} -open if and only if $f^{-1}(\check{g}\text{-}cl(B)) \subseteq cl(f^{-1}(B))$ for each subset B of (Y, σ) .

Proof. Suppose that f is \check{g} -open. Then for any $B\subseteq Y$, $f^{-1}(B)\subseteq cl(f^{-1}(B))$. By Theorem 3.19, there exists an \check{g} -closed set K of (Y, σ) such that $B\subseteq K$ and $f^{-1}(K)\subseteq cl(f^{-1}(B))$. Therefore, $f^{-1}(\check{g}\text{-}cl(B))\subseteq (f^{-1}(K))\subseteq cl(f^{-1}(B))$, since K is an \check{g} -closed set in (Y, σ) .

Conversely, let S be any subset of (Y, σ) and F be any closed set containing $f^{-1}(S)$. Put $K = \check{g}\text{-cl}(S)$. Then K is an $\check{g}\text{-closed}$ set and $S \subseteq K$. By assumption, $f^{-1}(K) = f^{-1}(\check{g}\text{-cl}(S)) \subseteq l(f^{-1}(S)) \subseteq F$ and therefore by Theorem 3.19, f is $\check{g}\text{-open}$.

Finally in this section, we define another new class of maps called \check{g}^* -closed maps which are stronger than \check{g} -closed maps.

Definition 3.21. A map $f:(X, \tau) \to (Y, \sigma)$ is said to be \check{g}^* -closed if the image f(A) is \check{g} -closed in (Y, σ) for every \check{g} -closed set A in (X, τ) .

For example the map f in Example 3.2 is an \check{g}^* -closed map. Analogous to \check{g}^* -closed map we can also define \check{g}^* -open map.

Remark 3.22. Since every closed set is an \check{g} -closed set we have \check{g}^* -closed map is an \check{g} -closed map. The converse is not true in general as seen from the following example.

Example 3.23. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is an \check{g} -closed but not \check{g}^* -closed map. Since $\{a, c\}$ is \check{g} -closed set in (X, τ) , but its image under f is $\{a, c\}$ which is not \check{g} -closed set in (Y, σ) .

Proposition 3.24. A map $f:(X, \tau) \to (Y, \sigma)$ is \check{g}^* -closed if and only if \check{g} -cl(f(A)) $\subseteq f(\check{g}$ -cl(A)) for every subset A of (X, τ) .

Proof. Similar to Proposition 3.3.

Proposition 3.25. For any bijection $f:(X,\tau)\to (Y,\sigma)$, the following statements are equivalent:

- (1). $f^{-1}: (Y, \sigma) \rightarrow (X, \tau)$ is \breve{g} -irresolute.
- (2). f is \breve{g}^* -open map.
- (3). f is \breve{g}^* -closed map.

Proof. Similar to Proposition 3.17.

Proposition 3.26. If a map $f:(X,\tau)\to (Y,\sigma)$ is B-irresolute and \check{g} -closed, then it is an \check{g}^* -closed map.

Proof. The proof follows from Proposition 3.6.

References

- [1] S.P.Arya and T.M.Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21(8)(1990), 717-719.
- [2] P.Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- [3] M.Caldas, Semi-generalized continuous maps in topological spaces, Portugaliae Mathematica., 52(4)(1995), 339-407.
- [4] S.G.Crossley and S.K.Hildebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.
- [5] R.Devi, Studies on generalizations of closed maps and homeomorphisms in topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, (1994).
- [6] N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [7] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [8] S.R.Malghan, Generalized closed maps, J. Karnataka Univ. Sci., 27(1982), 82-88.
- [9] G.B.Navalagi, Semi generalized separation axioms in topology, Atlas (internet).
- [10] O.Ravi and S.Ganesan, \(\bar{g}\)-closed sets in topology, International Journal of Computer Science and Emerging Technologies, 2(3)(2011), 330-337.
- [11] O.Ravi, S.Padmasekaran, S.Usharani and I.Rajasekaran, ğ-closed sets in topological spaces, Submitted,
- [12] O.Ravi, S.Padmasekaran, S.Usharani and I.Rajasekaran, ğ-interior and ğ-closure in topological spaces, Submitted.

- [13] O.Ravi, S.Padmasekaran, S.Usharani and I.Rajasekaran, On decomposition of continuity, submitted.
- [15] O.Ravi, S.Padmasekaran, S.Usharani and I.Rajasekaran, On Tğ-spaces in topological spaces, Submitted.
- [16] M.Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September, (2002).
- [17] P.Sundaram, H.Maki and K.Balachandran, Semi-generalized continuous maps and semi- $T_{1/2}$ -spaces, Bull. Fukuoka Univ. Ed. III, 40(1991), 33-40.
- [18] M.K.R.S.Veera Kumar, \hat{g} -closed sets in Topological spaces, Bull. Allahabad Math. Soc., 18(2003), 99-112.
- [19] M.K.R.S.Veera Kumar, Between semi-closed sets and semi pre-closed sets, Rend Istit Mat. Univ. Trieste Vol XXXII (2000), 25-41.