International Journal of Mathematics And its Applications Volume 3, Issue 4–C (2015), 17–20. ISSN: 2347-1557 Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Irreducible Elements in (\mathcal{Z}^+, \leq_C)

Research Article

Sankar Sagi¹*

1 Assistant Professor, College of Applied Sciences, Sohar, Sultanate of Oman.

Abstract: A convolution is a mapping C of the set Z^+ of positive integers into the set $\mathcal{P}(Z^+)$ of all subsets of Z^+ such that, for any $n \in Z^+$, each member of C(n) is a divisor of n. If D(n) is the set of all divisors of n, for any n, then D is called the Dirichlet's convolution. If U(n) is the set of all Unitary(square free) divisors of n, for any n, then U is called unitary(square free) convolution. Corresponding to any general convolution C, we can define a binary relation \leq_C on Z^+ by ' $m \leq_C n$ if and only if $m \in C(n)$ '. In this paper, we present irreducible elements in (\mathcal{Z}^+, \leq_C) , where \leq_C is the binary relation induced by the convolution C.

MSC: 06B10,11A99.

Keywords: Semi Lattice, Convolution, Multiplicative convolution, Irreducible elements. © JS Publication.

1. Introduction

A Convolution is a mapping C of the set Z^+ of positive integers into the set $\mathcal{P}(Z^+)$ of subsets of Z^+ such that, for any $n \in Z^+$, C(n) is a nonempty set of divisors of n. If C(n) is the set of all divisors of n, for each $n \in Z^+$, then C is the classical Dirichlet convolution [2]. If $C(n) = \{d \mid d \mid n \text{ and } (d, \frac{n}{d}) = 1\}$, then C is the Unitary convolution [1]. As another example if $C(n) = \{d \mid d \mid n \text{ and } (d \text{ for any } m \in Z^+\}$ then C is the k-free convolution. Corresponding to any convolution C, we can define a binary relation \leq_C in a natural way by

 $m \leq_{\mathcal{C}} n$ if and only if $m \in \mathcal{C}(n)$.

 $\leq_{\mathcal{C}}$ is a partial order on \mathcal{Z}^+ and is called partial order induced by the convolution \mathcal{C} [5, 6]. In this paper, we present a characterization of join-irreducible elements and non existence of meet-irreducible elements in (\mathcal{Z}^+, \leq_C) , where \mathcal{C} is a multiplicative convolution.

2. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation \leq on X which is reflexive $(a \leq a)$, transitive $(a \leq b, b \leq c \Longrightarrow a \leq c)$ and antisymmetric $(a \leq b, b \leq a \Longrightarrow a = b)$ and that a pair (X, \leq) is called a partially ordered set(poset) if X is a non-empty set and \leq is a partial order on X. For any $A \subseteq X$ and $x \in X$, x is called a lower(upper) bound of A if $x \leq a$ (respectively $a \leq x$) for all $a \in A$. We have the usual notations of the greatest lower bound(glb) and least upper bound(lub) of A in X. If A is a finite subset $\{a_1, a_2, \dots, a_n\}$, the glb of A(lub of A) is denoted

E-mail: $sagi_sankar@yahoo.co.in$

by $a_1 \wedge a_2 \wedge \cdots \wedge a_n$ or $\bigwedge_{i=1}^n a_i$ (respectively by $a_1 \vee a_2 \vee \cdots \vee a_n$ or $\bigvee_{i=1}^n a_i$). A partially ordered set (X, \leq) is called a meet semi lattice if $a \wedge b$ (=glb{a, b}) exists for all a and $b \in X$. (X, \leq) is called a join semi lattice if $a \vee b$ (=lub{a, b}) exists for all a and $b \in X$. A poset (X, \leq) is called a lattice if it is both a meet and join semi lattice. Equivalently, lattice can also be defined as an algebraic system (X, \wedge, \vee) , where \wedge and \vee are binary operations which are associative, commutative and idempotent and satisfying the absorption laws, namely $a \wedge (a \vee b) = a = a \vee (a \wedge b)$ for all $a, b \in X$; in this case the partial order \leq on X is such that $a \wedge b$ and $a \vee b$ are respectively the glb and lub of {a, b}. The algebraic operations \wedge and \vee and the partial order \leq are related by

$$a = a \wedge b \iff a \leq b \iff a \vee b = b$$

Throughout the paper, \mathcal{Z}^+ and \mathcal{N} denote the set of positive integers and the set of non-negative integers respectively.

Definition 2.1. A mapping $C: \mathbb{Z}^+ \longrightarrow \mathcal{P}(\mathbb{Z}^+)$ is called a convolution if the following are satisfied for any $n \in \mathbb{Z}^+$.

- (1). C(n) is a set of positive divisors of n
- (2). $n \in \mathcal{C}(n)$

(3). $C(n) = \bigcup_{m \in C(n)} C(m).$

Definition 2.2. For any convolution C and m and $n \in Z^+$, we define

$$m \leq n$$
 if and only if $m \in \mathcal{C}(n)$

Then $\leq_{\mathcal{C}}$ is a partial order on \mathcal{Z}^+ and is called the partial order induced by \mathcal{C} on \mathcal{Z}^+ . In fact, for any mapping $\mathcal{C}: \mathcal{Z}^+ \longrightarrow \mathcal{P}(\mathcal{Z}^+)$ such that each member of $\mathcal{C}(n)$ is a divisor of $n, \leq_{\mathcal{C}}$ is a partial order on \mathcal{Z}^+ if and only if \mathcal{C} is a convolution [6], as defined above.

Definition 2.3. Let (S, \wedge) be a meet semi lattice with smallest element 0 and let $0 \neq x \in S$. x is said to be join-irreducible if x is not the supremum of any two elements which are strictly less than x.

In other words, x is said to be join irreducible if $x \neq 0$ and y and $z \in S$ and $x = y \lor z \Longrightarrow x = y$ or x = z

Definition 2.4. A convolution C is said to be multiplicative if, for any relatively prime integers m and n,

$$\mathcal{C}(mn) = \mathcal{C}(m)\mathcal{C}(n) := \{ab \mid a \in \mathcal{C}(m) and b \in \mathcal{C}(n)\}.$$

It can be verified that a convolution C is multiplicative if and only if, for any distinct primes p_1, p_2, \dots, p_r and non-negative integers a_1, a_2, \dots, a_r ,

$$\mathcal{C}(\prod_{i=1}^{r} p_i^{a_i}) = \prod_{i=1}^{r} \mathcal{C}(p_i^{a_i}) := \{m_1 m_2 \cdots m_r \mid m_i \in \mathcal{C}(p_i^{a_i})\} [4].$$

Theorem 2.5. Let C be a multiplicative convolution. If m and n are relatively prime positive integers, then $m \lor n$ exists in (\mathcal{Z}^+, \leq_C) and is equal to the product mn [3, 4].

Theorem 2.6. Let C be multiplicative convolution such that (\mathcal{Z}^+, \leq_C) is meet semi lattice and $x \in \mathcal{Z}^+$. Then x is join-irreducible in (\mathcal{Z}^+, \leq_C) if and only if $x = p^a$ for some prime number p and a join-irreducible element in (\mathcal{N}, \leq_C^p) .

Proof. We can assume that x > 1. Suppose that x is join-irreducible in (\mathcal{Z}^+, \leq_C) . We can choose a prime p dividing x. Then we can write

$$x = p^a y$$
, where a and $y \in \mathbb{Z}^+$ and $(p, y) = 1$.

Then $(p^a, y) = 1$ and hence $p^a \vee y$ exists and is equal to $p^a \cdot y = x$. Since x is join-irreducible and $y \neq x$ (since $p^a \neq 1$) it follows that $x = p^a$. Also, if b and $c \in \mathcal{N}$ such that $a = b \vee c$ in (\mathcal{N}, \leq_C^p) , then $x = p^a = p^b \vee p^c$ and hence $x = p^b$ or $x = p^c$ so that a = b or a = c. Thus a is join-irreducible in (\mathcal{N}, \leq_C^p) , and $x = p^a$.

Conversely suppose that $x = p^a$, where p is a prime number and a is join-irreducible element in (\mathcal{N}, \leq_C^p) . Let y and $z \in \mathbb{Z}^+$ such that $x = y \lor z$. Then $y \leq_C x$ and $z \leq_C x$ and, in particular y and z are divisors of $x = p^a$. Therefore $y = p^b$ and $z = p^c$ for some b and $c \in \mathcal{N}$. Since $y \lor z$ exists in (\mathbb{Z}^+, \leq_C) , $b \lor c$ exists in (\mathcal{N}, \leq_C^p) and $b \lor c = a$. Since a is join-irreducible, a = bor a = c so that x = y or x = z. Thus x is join-irreducible.

Example 2.7. With respect to the Dirichlet convolution D, join-irreducible elements in (\mathcal{Z}^+, \leq_D) are precisely of the form p^a where p is a prime and a is a positive integer, since the partial order \leq_D^p on \mathcal{N} is the usual order which is a total order and hence every non-zero element is join-irreducible.

Example 2.8. For any prime p and $a \in \mathcal{N}$, define

$$\mathcal{C}(p^{a}) = \begin{cases} \{1, p^{a}\} & \text{if } a < 3\\ \{1, p, p^{2}, \cdots, p^{a}\} & \text{if } a \ge 3 \end{cases}$$

and extend C multiplicative; that is,

$$\mathcal{C}(\prod_{i=1}^r p_i^{a_i}) \ = \ \prod_{i=1}^r \mathcal{C}(p_i^{a_i})$$

for any distinct primes p_1, p_2, \dots, p_r and non negative integers a_1, a_2, \dots, a_r . Then the join-irreducible elements in (\mathcal{Z}^+, \leq_C) are precisely of the form p^a , where p is prime and $3 \neq a \in \mathcal{Z}^+$. For, consider the Hasse diagram for (\mathcal{N}, \leq_C^p) for any $p \in \mathcal{P}$.

Example 2.9. Consider the Unitary convolution \mathcal{U} defined by

$$\mathcal{U}(n) = \{ d \in \mathcal{D}(n) \mid (d, \frac{n}{d}) = 1 \}$$

Here, the join-irreducible elements in $(\mathcal{Z}^+, \leq_{\mathcal{U}})$ are precisely those in $(\mathcal{Z}^+, \leq_{\mathcal{D}})$. The Hasse diagram for $(\mathcal{N}, \leq_{\mathcal{U}}^p)$ is given below for any $p \in \mathcal{P}$.

In fact, any element *a* having the unique immediate predecessor is join-irreducible in (\mathcal{N}, \leq_C^p) and hence p^a is join-irreducible in (\mathcal{Z}^+, \leq_C) , for any multiplicative convolution \mathcal{C} . We can consider the concept dual to that of a join-irreducible element, namely the meet irreducibility. However, for any multiplicative convolution \mathcal{C} , (\mathcal{Z}^+, \leq_C) have no meet-irreducible elements. Let us have the formal definition of meet irreducibility.

Definition 2.10. An element x of a meet semi lattice (S, \wedge) is said to be meet-irreducible if x is not the greatest element and, for any y and $z \in S$, $x = y \wedge z \Longrightarrow x = y$ or x = z.

Theorem 2.11. Let C be any multiplicative convolution such that (\mathcal{Z}^+, \leq_C) is a meet semi lattice. Then there are no meet-irreducible elements in (\mathcal{Z}^+, \leq_C) .

Proof. let n be an arbitrary element in \mathcal{Z}^+ . Choose prime numbers p and q not dividing n and put

$$y = pn$$
 and $z = qn$

Then $n = 1.n \in \mathcal{C}(p)\mathcal{C}(n) = \mathcal{C}(pn) = \mathcal{C}(y)$ and hence $n \leq_C y$ and, similarly $n \leq_C z$. If $m \leq_C y$ and $m \leq_C z$, then $m \in \mathcal{C}(y) \cap \mathcal{C}(z) = (\mathcal{C}(p)\mathcal{C}(n)) \cap (\mathcal{C}(q)\mathcal{C}(n)) = \mathcal{C}(n)$

and hence $m \leq_C n$. Therefore $n = y \wedge z$; but $n \neq y$ and $n \neq z$. Thus n is not meet-irreducible. Recall that an element x is called prime if, for any elements y and z,

$$y \wedge z \leq x \Longrightarrow y \leq x$$
 or $z \leq x$.

Clearly any prime element is meet-irreducible and the converse is not true. For this reason, the prime elements are also called strongly meet-irreducible.

The following is an immediate consequence of the above theorem.

Corollary 2.12. If C is a multiplicative convolution such that (\mathcal{Z}^+, \leq_C) is a meet semi lattice, then there are no prime elements in (\mathcal{Z}^+, \leq_C) .

Unlike the meet-irreducible elements, (\mathcal{Z}^+, \leq_C) may possess join-irreducible elements, for any multiplicative convolution \mathcal{C} . For example, with respect to the Dirichlet's convolution \mathcal{D} , every non-zero a is join-irreducible in $(\mathcal{N}, \leq_{\mathcal{D}}^p)$ for every prime p and hence p^a is join-irreducible in $(\mathcal{Z}^+, \leq_{\mathcal{D}})$ for all $p \in \mathcal{P}$ and $a \in \mathcal{Z}^+$. However, $(\mathcal{Z}^+, \leq_{\mathcal{D}})$ has no meet-irreducible elements.

References

- [1] E.Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math.Z., 74(1960), 66-80.
- [2] W.Narkiewicz, On a class of arithmetical convolutions, Collow.Math., 10(1963), 81-94.
- [3] Sankar Sagi, Lattice Theory of Convolutions, Ph.D. Thesis, Andhra University, Waltair, Visakhapatnam, India (2010).
- [4] Sankar Sagi, Lattice Structures on Z⁺ Induced by Convolutions, European Journal of Pure and Applied Mathematics, 4(4)(2011), 424-434.
- [5] U.M.Swamy, G.C.Rao and V.Sita Ramaiah, On a conjecture in a ring of arithmetic functions, Indian J. Pure Appl. Math., 14(12)(1983).
- [6] U.M.Swamy and Sankar Sagi, Partial orders induced by convolutions, International journal of Mathematics and Soft Computing, 2(1)(2012), 25-33.