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Abstract: A convolution is a mapping C of the set Z+ of positive integers into the set P(Z+) of all subsets of Z+ such that, for
any n ∈ Z+ , each member of C(n) is a divisor of n. If D(n) is the set of all divisors of n, for any n, then D is called

the Dirichlet’s convolution[2]. If U(n) is the set of all Unitary(square free) divisors of n , for any n, then U is called

unitary(square free) convolution. Corresponding to any general convolution C, we can define a binary relation ≤C on Z+

by ‘ m ≤C n if and only if m ∈ C(n) ’. In this paper, we discuss co-maximal filters in (Z+,≤C) , where ≤C is the binary

relation induced by the convolution C.
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1. Introduction

A Convolution is a mapping C of the set Z+of positive integers into the set P(Z+) of subsets of Z+ such that, for any n

∈ Z+, C(n) is a nonempty set of divisors of n. If C(n) is the set of all divisors of n, for each n ∈ Z+, then C is the classical

Dirichlet convolution[2]. If C(n)= {d / d|n and (d, n
d

) = 1},Then C is the Unitary convolution[1]. As another example if

C(n)={d / d|n and mk doesnot divide d for any m ∈ Z+} then C is the k-free convolution.

C(n) = {d | d/n and (d,
n

d
) = 1}

Corresponding to any convolution C , we can define a binary relation ≤C in a natural way by

m ≤C n if and only if m ∈ C(n).

≤C is a partial order on Z+ and is called partial order induced by the convolution C[5, 6]. In this paper, we discuss

co-maximality of filters in (Z+,≤C) .

2. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation ≤ on X which is reflexive (a ≤ a),

transitive (a ≤ b, b ≤ c =⇒ a ≤ c) and antisymmetric (a ≤ b, b ≤ a =⇒ a = b) and that a pair (X,≤) is called a partially

ordered set(poset) if X is a non-empty set and ≤ is a partial order on X. For any A ⊆ X and x ∈ X, x is called a
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lower(upper) bound of A if x ≤ a(respectively a ≤ x) for all a ∈ A. We have the usual notations of the greatest lower

bound(glb) and least upper bound(lub) of A in X. If A is a finite subset {a1, a2, · · · , an}, the glb of A(lub of A) is denoted

by a1 ∧ a2 ∧ · · · ∧ an or
n∧

i=1

ai (respectively by a1 ∨ a2 ∨ · · · ∨ an or
n∨

i=1

ai). A partially ordered set (X,≤) is called a meet

semi lattice if a∧ b (=glb{a, b}) exists for all a and b ∈ X. (X,≤) is called a join semi lattice if a∨ b (=lub{a, b}) exists for

all a and b ∈ X. A poset (X,≤) is called a lattice if it is both a meet and join semi lattice. Equivalently, lattice can also

be defined as an algebraic system (X,∧,∨), where ∧ and ∨ are binary operations which are associative, commutative and

idempotent and satisfying the absorption laws, namely a ∧ (a ∨ b) = a = a ∨ (a ∧ b) for all a, b ∈ X ; in this case the partial

order ≤ on X is such that a ∧ b and a ∨ b are respectively the glb and lub of {a, b}. The algebraic operations ∧ and ∨ and

the partial order ≤ are related by

a = a ∧ b ⇐⇒ a ≤ b ⇐⇒ a ∨ b = b.

Throughout the paper, Z+ and N denote the set of positive integers and the set of non-negative integers respectively.

Definition 2.1. A mapping C : Z+ −→ P(Z+) is called a convolution if the following are satisfied for any n ∈ Z+.

1. C(n) is a set of positive divisors of n

2. n ∈ C(n)

3. C(n) =
⋃

m∈C(n)

C(m).

Definition 2.2. For any convolution C and m and n ∈ Z+, we define

m ≤ n if and only if m ∈ C(n)

Then ≤C is a partial order on Z+ and is called the partial order induced by C on Z+. In fact, for any mapping C : Z+ −→

P(Z+) such that each member of C(n) is a divisor of n, ≤C is a partial order on Z+ if and only if C is a convolution [6],

as defined above.

Definition 2.3. A poset is said to satisfy the Descending Chain Condition (D.C.C) if every non-empty subset has a minimal

element.

Definition 2.4. A chain is a totally ordered subset of the partially ordered set (X,≤) and a maximal chain is one that is

not a proper subset of another chain.

Definition 2.5. A partially ordered set (X,≤) is said to be a disjoint union of maximal chains if there is a class {Yi}i∈I of

subsets of X satisfying the following properties [4].

1. Each Yi, i ∈ I is a maximal chain in (X,≤)

2. Yi ∩ Yj = φ for all i 6= j ∈ I

3. x and y are incomparable (we express this by x‖y) for any x ∈ Xi and y ∈ Yj with i 6= j.

4. X =
⋃
i∈I

Yi

Example 2.6. Any chain (totally ordered set) is a disjoint union of maximal chains.

Example 2.7. Let X = Z+ ×Z+ and, for any (a, b) and (c, d) ∈ X, define

(a, b) ≤ (c, d) if and only if a = c and b ≤ d
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where ≤ is the usual ordering in Z+. Then, for any a ∈ Z+, {a} × Z+ is a maximal chain in X. X is the disjoint union

of ({a} × Z+)′s.

Definition 2.8. Two filters F and G of a meet semi lattice (S,∧) are said to be co-maximal if no proper filter of S contains

both F and G (or, equivalently, S is the only filter of S containing F ∪G). In this case, we write F ∧G = S.

Example 2.9. For any m and n ∈ Z+ with (m,n) = 1, [m) and [n) are co-maximal in (Z+,≤C) for any convolution C.

Definition 2.10. Let (S,∧) be a meet semi lattice. A proper filter F of S is called a prime filter if, for any a and b in S,

a ∨ b exists in S and a ∨ b ∈ F =⇒ a ∈ F or b ∈ F .

3. Co-maximality in (Z+,≤C)

First we have the following theorem on prime filters.

Theorem 3.1. Let (S,∧) be any meet semi lattice. Then every proper filter of (S,∧) is prime if and only if, for any x and

y in S,

x ∨ y exists in S ⇔ x and y are comparable.

Proof. Suppose that every proper filter of (S,∧) is prime. Let x and y ∈ S. If x and y are comparable, then clearly x∨ y

exists in S.On the other hand, suppose x ∨ y exists and x ∨ y = z. If [z) = S, then x and y ∈ [z) and hence x = z = y.

If [z) 6= S, then by hypothesis, [z) is a prime filter and x ∨ y ∈ [z) and hence x ∈ [z) or y ∈ [z) so that x = z or y = z.

Therefore x = x ∨ y or y = x ∨ y, which imply that x and y are comparable. The converse is trivial.

Theorem 3.2. Let (S,∧) be any meet semi lattice with smallest element 0 satisfying the Descending Chain Condition(DCC)

. Also, suppose that every proper filter of S is prime. Then the following are equivalent to each other.

1. For any x and y ∈ S, x‖y =⇒ x ∧ y = 0

2. S − {0} is a disjoint union of maximal chains

3. Any two incomparable filters of S are co-maximal.

Proof. (1)⇒ (2) : Let M be the set of all minimal elements in S − {0} and, for any m ∈M , et

Xm = [m) = {x ∈ S | m ≤ x}.

If x and y ∈ Xm and x‖y, then, by (1), x ∧ y = 0 which is not true since m ≤ x and m ≤ y and hence 0 < m ≤ x ∧ y.

Therefore, any two elements of Xm are comparable. That is, Xm is a chain for each m ∈ M . We shall prove that each

Xm is a maximal chain and S − {0} is the disjoint union of Xm’s. If 0 6= x ∈ S and Xm ∪ {x} is a chain, then x must be

comparable with m and hence m ≤ x (since m is minimal, 0 < x < m is not possible), so that x ∈ Xm. This shows that

Xm is a maximal chain in S − {0}, for each m ∈ M . Next, suppose m 6= n ∈ M . Then m and n are incomparable (since

both are minimal) and hence, by Theorem 1, m ∨ n does not exist in S. This implies that m and n have no common upper

bounds in S (since S is a meet semi lattice satisfying the descending chain condition) and hence Xm ∩Xn = φ. Further, let

m 6= n ∈M , x ∈Mm and y ∈Mn. Then

x ≤ y =⇒ m ≤ x ≤ y

=⇒ y ∈ Xm ∩Xn.
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But, since Xm ∩ Xn = φ, it follows that x and y are incomparable. Finally, for any x ∈ S − {0}, there exists a minimal

element in {y ∈ S − {0} | y ≤ x} (since S satisfies descending chain condition), say m. Then m is minimal in the whole of

S − {0} and hence m ∈M and x ∈ [m) = Xm. Therefore S − {0} is the disjoint union maximal chains Xm’s, m ∈M .

(2)⇒ (3) : Suppose that {Yi}i∈I is a class of maximal chains in S − {0} such that S − {0} is the disjoint union of Yi’s. Let

F and G be two incomparable filters of S. Then F = [x) and G = [y) for some x, y ∈ S. Since F and G are incomparable,

x and y are also incomparable. Since x and y ∈ S − {0} =
⋃
i∈I

Yi, there exist i 6= j ∈ I such that x ∈ Yi and y ∈ Yj . Then

x ∧ y = 0 (otherwise, by (3) of Definition 5, x ∧ y ∈ Yi ∩ Yj , which is a contradiction to (2) of Definition 5). Therefore, if

H is any filter containing both F and G, then x and y ∈ H and hence 0 = x ∧ y ∈ H, so that H = S. Thus F and G are

co-maximal.

(3) ⇒ (1) : Let x and y ∈ S such that x‖y. Then [x) and [y) are incomparable filters of S and, by (3), [x) and [y) are

co-maximal. Since [x) ⊆ [x ∧ y) and [y) ⊆ [x ∧ y), it follows that [x ∧ y) = S and hence x ∧ y = 0.

Theorem 3.3. Let C be any multiplicative convolution such that (Z+,≤C) is a meet semi lattice. Then any two incomparable

prime filters of (Z+,≤C) are co-maximal if and only if any two incomparable prime filters of (N ,≤p
C) are co-maximal, for

each p ∈ P.

Proof. This follows from the fact that F is a prime filter of (Z+,≤C) if and only if F = [pa) for some p ∈ P and a ∈ N

such that [a) is a prime filter in (N ,≤p
C) and that a ∧ b = 0 in (N ,≤p

C) if and only if pa ∧ pb = 1 in (Z+,≤C). Note that

[x) and [y) are co-maximal if and only if x ∧ y = 0.

Theorem 3.4. Let p be a prime number. Then every proper filter in (N ,≤p
C) is prime if and only if [pa) is a prime filter

in (Z+,≤C) for all n > 0.

Proof. By Theorem 3.1, every proper filter in (N ,≤p
C) is prime if and only if, for any a and b ∈ N , a∨ b exists in (N ,≤p

C)

only when a and b are comparable in (N ,≤p
C) and we shall prove that this is equivalent to saying that [pa) is a prime filter

in (Z+,≤C) for all n > 0. Suppose that a∨ b exists in (N ,≤p
C). Let n > 0 and F = [pa). Let m and k ∈ Z+ such that m∨k

exists and belong to F . Let m = pa.u and k = pb.v, where u and v ∈ Z+ such that (p, u) = 1 = (p, v). Then θ(m)(p) = a,

θ(k)(p) = b and θ(m)(p)∨ θ(k)(p) exists and is equal to θ(m∨k)(p) in (N ,≤p
C). Therefore a∨ b exists in (N ,≤p

C). From our

hypothesis, a ≤p
C b or b ≤p

C a and hence pa ≤C pb or pb ≤C pa and therefore n = θ(pn)(p) ≤p
C θ(m ∨ k)(p) = a ∨ b = a or b,

so that pn ≤C pa.u = m or pn ≤C pb.v = k. Therefore m ∈ F or k ∈ F . Thus F is a prime filter in (Z+,≤C). Converse can

be proved by a similar technique.
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