ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Co-maximal Filters in (\mathcal{Z}^+, \leq_C)

Research Article

Sankar Sagi^{1*}

1 Assistant Professor, College of Applied Sciences, Sohar, Sultanate of Oman.

Abstract: A convolution is a mapping C of the set Z^+ of positive integers into the set $\mathcal{P}(Z^+)$ of all subsets of Z^+ such that, for any $n \in Z^+$, each member of C(n) is a divisor of n. If D(n) is the set of all divisors of n, for any n, then D is called

the Dirichlet's convolution[2]. If U(n) is the set of all Unitary(square free) divisors of n, for any n, then U is called unitary(square free) convolution. Corresponding to any general convolution C, we can define a binary relation \leq_C on Z^+ by ' $m \leq_C n$ if and only if $m \in C(n)$ '. In this paper, we discuss co-maximal filters in (\mathcal{Z}^+, \leq_C) , where \leq_C is the binary

relation induced by the convolution C.

MSC: 06B10,11A99

 $\textbf{Keywords:} \ \ Partial \ order, Semi \ Lattice, Convolution, Filter, Prime \ Filter, co-maximal.$

© JS Publication.

1. Introduction

A Convolution is a mapping \mathcal{C} of the set \mathcal{Z}^+ of positive integers into the set $\mathcal{P}(\mathcal{Z}^+)$ of subsets of \mathcal{Z}^+ such that, for any $n \in \mathcal{Z}^+$, $\mathcal{C}(n)$ is a nonempty set of divisors of n. If $\mathcal{C}(n)$ is the set of all divisors of n, for each $n \in \mathcal{Z}^+$, then \mathcal{C} is the classical Dirichlet convolution[2]. If $\mathcal{C}(n) = \{d \mid d \mid n \text{ and } (d, \frac{n}{d}) = 1\}$, Then \mathcal{C} is the Unitary convolution[1]. As another example if $\mathcal{C}(n) = \{d \mid d \mid n \text{ and } m^k \text{ doesnot divide } d \text{ for any } m \in \mathcal{Z}^+\}$ then \mathcal{C} is the k-free convolution.

$$C(n) = \{d \mid d/n \text{ and } (d, \frac{n}{d}) = 1\}$$

Corresponding to any convolution $\mathcal C$, we can define a binary relation $\leq_{\mathcal C}$ in a natural way by

 $m \leq_{\mathcal{C}} n$ if and only if $m \in \mathcal{C}(n)$.

 $\leq_{\mathcal{C}}$ is a partial order on \mathcal{Z}^+ and is called partial order induced by the convolution $\mathcal{C}[5, 6]$. In this paper, we discuss co-maximality of filters in $(\mathcal{Z}^+, \leq_{\mathcal{C}})$.

2. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation \leq on X which is reflexive $(a \leq a)$, transitive $(a \leq b, b \leq c \Longrightarrow a \leq c)$ and antisymmetric $(a \leq b, b \leq a \Longrightarrow a = b)$ and that a pair (X, \leq) is called a partially ordered set(poset) if X is a non-empty set and X is a partial order on X. For any X is called a

^{*} E-mail: sagi_sankar@yahoo.co.in

lower(upper) bound of A if $x \leq a$ (respectively $a \leq x$) for all $a \in A$. We have the usual notations of the greatest lower bound(glb) and least upper bound(lub) of A in X. If A is a finite subset $\{a_1, a_2, \cdots, a_n\}$, the glb of A(lub of A) is denoted by $a_1 \wedge a_2 \wedge \cdots \wedge a_n$ or $\bigwedge_{i=1}^n a_i$ (respectively by $a_1 \vee a_2 \vee \cdots \vee a_n$ or $\bigvee_{i=1}^n a_i$). A partially ordered set (X, \leq) is called a meet semi lattice if $a \wedge b$ (=glb $\{a, b\}$) exists for all a and $b \in X$. (X, \leq) is called a join semi lattice if $a \vee b$ (=lub $\{a, b\}$) exists for all a and $b \in X$. A poset (X, \leq) is called a lattice if it is both a meet and join semi lattice. Equivalently, lattice can also be defined as an algebraic system (X, \wedge, \vee) , where \wedge and \vee are binary operations which are associative, commutative and idempotent and satisfying the absorption laws, namely $a \wedge (a \vee b) = a = a \vee (a \wedge b)$ for all $a, b \in X$; in this case the partial order \leq on X is such that $a \wedge b$ and $a \vee b$ are respectively the glb and lub of $\{a, b\}$. The algebraic operations \wedge and \vee and the partial order \leq are related by

$$a = a \wedge b \iff a \leq b \iff a \vee b = b.$$

Throughout the paper, \mathcal{Z}^+ and \mathcal{N} denote the set of positive integers and the set of non-negative integers respectively.

Definition 2.1. A mapping $C: \mathbb{Z}^+ \longrightarrow \mathcal{P}(\mathbb{Z}^+)$ is called a convolution if the following are satisfied for any $n \in \mathbb{Z}^+$.

- 1. C(n) is a set of positive divisors of n
- 2. $n \in \mathcal{C}(n)$
- 3. $C(n) = \bigcup_{m \in C(n)} C(m)$.

Definition 2.2. For any convolution C and m and $n \in \mathbb{Z}^+$, we define

$$m \leq n$$
 if and only if $m \in \mathcal{C}(n)$

Then $\leq_{\mathcal{C}}$ is a partial order on \mathcal{Z}^+ and is called the partial order induced by \mathcal{C} on \mathcal{Z}^+ . In fact, for any mapping $\mathcal{C}: \mathcal{Z}^+ \longrightarrow \mathcal{P}(\mathcal{Z}^+)$ such that each member of $\mathcal{C}(n)$ is a divisor of $n, \leq_{\mathcal{C}}$ is a partial order on \mathcal{Z}^+ if and only if \mathcal{C} is a convolution [6], as defined above.

Definition 2.3. A poset is said to satisfy the Descending Chain Condition (D.C.C) if every non-empty subset has a minimal element.

Definition 2.4. A chain is a totally ordered subset of the partially ordered set (X, \leq) and a maximal chain is one that is not a proper subset of another chain.

Definition 2.5. A partially ordered set (X, \leq) is said to be a disjoint union of maximal chains if there is a class $\{Y_i\}_{i\in I}$ of subsets of X satisfying the following properties [4].

- 1. Each $Y_i, i \in I$ is a maximal chain in (X, \leq)
- 2. $Y_i \cap Y_j = \phi$ for all $i \neq j \in I$
- 3. x and y are incomparable (we express this by x||y) for any $x \in X_i$ and $y \in Y_j$ with $i \neq j$.
- $4. X = \bigcup_{i \in I} Y_i$

Example 2.6. Any chain (totally ordered set) is a disjoint union of maximal chains.

Example 2.7. Let $X = \mathbb{Z}^+ \times \mathbb{Z}^+$ and, for any (a,b) and $(c,d) \in X$, define

$$(a,b) \le (c,d)$$
 if and only if $a = c$ and $b \le d$

where \leq is the usual ordering in \mathbb{Z}^+ . Then, for any $a \in \mathbb{Z}^+$, $\{a\} \times \mathbb{Z}^+$ is a maximal chain in X. X is the disjoint union of $(\{a\} \times \mathbb{Z}^+)'s$.

Definition 2.8. Two filters F and G of a meet semi lattice (S, \land) are said to be co-maximal if no proper filter of S contains both F and G (or, equivalently, S is the only filter of S containing $F \cup G$). In this case, we write $F \land G = S$.

Example 2.9. For any m and $n \in \mathbb{Z}^+$ with (m, n) = 1, [m] and [n] are co-maximal in (\mathbb{Z}^+, \leq_C) for any convolution C.

Definition 2.10. Let (S, \wedge) be a meet semi lattice. A proper filter F of S is called a prime filter if, for any a and b in S,

 $a \lor b$ exists in S and $a \lor b \in F \implies a \in F$ or $b \in F$.

3. Co-maximality in (\mathcal{Z}^+, \leq_C)

First we have the following theorem on prime filters.

Theorem 3.1. Let (S, \wedge) be any meet semi lattice. Then every proper filter of (S, \wedge) is prime if and only if, for any x and y in S,

 $x \lor y$ exists in $S \Leftrightarrow x$ and y are comparable.

Proof. Suppose that every proper filter of (S, \land) is prime. Let x and $y \in S$. If x and y are comparable, then clearly $x \lor y$ exists in S.On the other hand, suppose $x \lor y$ exists and $x \lor y = z$. If [z) = S, then x and $y \in [z)$ and hence x = z = y. If $[z) \ne S$, then by hypothesis, [z) is a prime filter and $x \lor y \in [z)$ and hence $x \in [z)$ or $y \in [z)$ so that x = z or y = z. Therefore $x = x \lor y$ or $y = x \lor y$, which imply that x and y are comparable. The converse is trivial.

Theorem 3.2. Let (S, \land) be any meet semi lattice with smallest element 0 satisfying the Descending Chain Condition(DCC). Also, suppose that every proper filter of S is prime. Then the following are equivalent to each other.

- 1. For any x and $y \in S$, $x||y \Longrightarrow x \land y = 0$
- 2. $S \{0\}$ is a disjoint union of maximal chains
- 3. Any two incomparable filters of S are co-maximal.

Proof. $(1) \Rightarrow (2)$: Let M be the set of all minimal elements in $S - \{0\}$ and, for any $m \in M$, et

$$X_m = [m) = \{x \in S \mid m \le x\}.$$

If x and $y \in X_m$ and x || y, then, by (1), $x \wedge y = 0$ which is not true since $m \leq x$ and $m \leq y$ and hence $0 < m \leq x \wedge y$. Therefore, any two elements of X_m are comparable. That is, X_m is a chain for each $m \in M$. We shall prove that each X_m is a maximal chain and $S - \{0\}$ is the disjoint union of X_m 's. If $0 \neq x \in S$ and $X_m \cup \{x\}$ is a chain, then x must be comparable with m and hence $m \leq x$ (since m is minimal, 0 < x < m is not possible), so that $x \in X_m$. This shows that X_m is a maximal chain in $S - \{0\}$, for each $m \in M$. Next, suppose $m \neq n \in M$. Then m and n are incomparable (since both are minimal) and hence, by Theorem 1, $m \vee n$ does not exist in S. This implies that m and n have no common upper bounds in S (since S is a meet semi lattice satisfying the descending chain condition) and hence $X_m \cap X_n = \phi$. Further, let $m \neq n \in M$, $x \in M_m$ and $y \in M_n$. Then

$$x \le y \Longrightarrow m \le x \le y$$

 $\Longrightarrow y \in X_m \cap X_n.$

But, since $X_m \cap X_n = \phi$, it follows that x and y are incomparable. Finally, for any $x \in S - \{0\}$, there exists a minimal element in $\{y \in S - \{0\} \mid y \leq x\}$ (since S satisfies descending chain condition), say m. Then m is minimal in the whole of $S - \{0\}$ and hence $m \in M$ and $x \in [m) = X_m$. Therefore $S - \{0\}$ is the disjoint union maximal chains X_m 's, $m \in M$. (2) \Rightarrow (3): Suppose that $\{Y_i\}_{i \in I}$ is a class of maximal chains in $S - \{0\}$ such that $S - \{0\}$ is the disjoint union of Y_i 's. Let F and G be two incomparable filters of S. Then F = [x] and G = [y] for some $x, y \in S$. Since F and G are incomparable, X and X are also incomparable. Since X and X are also incomparable. Since X and X are X and X are also incomparable. Since X and X are X and X are also incomparable. Since X and X are X and X are also incomparable. Since X and X are X and X are also incomparable. Since X and X are X and X are also incomparable. Since X and X are X and X and X are X and X and X are X and X and X are X

 $(3) \Rightarrow (1):$ Let x and $y \in S$ such that $x \| y$. Then [x) and [y) are incomparable filters of S and, by (3), [x) and [y) are co-maximal. Since $[x) \subseteq [x \wedge y)$ and $[y) \subseteq [x \wedge y)$, it follows that $[x \wedge y) = S$ and hence $x \wedge y = 0$.

Theorem 3.3. Let C be any multiplicative convolution such that (\mathcal{Z}^+, \leq_C) is a meet semi lattice. Then any two incomparable prime filters of (\mathcal{Z}^+, \leq_C) are co-maximal if and only if any two incomparable prime filters of (\mathcal{N}, \leq_C^p) are co-maximal, for each $p \in \mathcal{P}$.

Proof. This follows from the fact that F is a prime filter of (\mathcal{Z}^+, \leq_C) if and only if $F = [p^a)$ for some $p \in \mathcal{P}$ and $a \in \mathcal{N}$ such that [a) is a prime filter in (\mathcal{N}, \leq_C^p) and that $a \wedge b = 0$ in (\mathcal{N}, \leq_C^p) if and only if $p^a \wedge p^b = 1$ in (\mathcal{Z}^+, \leq_C) . Note that [x] and [y] are co-maximal if and only if $x \wedge y = 0$.

Theorem 3.4. Let p be a prime number. Then every proper filter in (\mathcal{N}, \leq_C^p) is prime if and only if $[p^a)$ is a prime filter in (\mathcal{Z}^+, \leq_C) for all n > 0.

Proof. By Theorem 3.1, every proper filter in (\mathcal{N}, \leq_C^p) is prime if and only if, for any a and $b \in \mathcal{N}$, $a \lor b$ exists in (\mathcal{N}, \leq_C^p) only when a and b are comparable in (\mathcal{N}, \leq_C^p) and we shall prove that this is equivalent to saying that $[p^a]$ is a prime filter in (\mathcal{Z}^+, \leq_C) for all n > 0. Suppose that $a \lor b$ exists in (\mathcal{N}, \leq_C^p) . Let n > 0 and $F = [p^a]$. Let m and $k \in \mathcal{Z}^+$ such that $m \lor k$ exists and belong to F. Let $m = p^a.u$ and $k = p^b.v$, where u and $v \in \mathcal{Z}^+$ such that (p, u) = 1 = (p, v). Then $\theta(m)(p) = a$, $\theta(k)(p) = b$ and $\theta(m)(p) \lor \theta(k)(p)$ exists and is equal to $\theta(m \lor k)(p)$ in (\mathcal{N}, \leq_C^p) . Therefore $a \lor b$ exists in (\mathcal{N}, \leq_C^p) . From our hypothesis, $a \leq_C^p b$ or $b \leq_C^p a$ and hence $p^a \leq_C p^b$ or $p^b \leq_C p^a$ and therefore $n = \theta(p^n)(p) \leq_C^p \theta(m \lor k)(p) = a \lor b = a$ or b, so that $p^n \leq_C p^a.u = m$ or $p^n \leq_C p^b.v = k$. Therefore $m \in F$ or $k \in F$. Thus F is a prime filter in (\mathcal{Z}^+, \leq_C) . Converse can be proved by a similar technique.

References

^[1] E.Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math.Z., 74(1960), 66-80.

^[2] W.Narkiewicz, On a class of arithmetical convolutions, Collow.Math., 10(1963), 81-94.

^[3] Sankar Sagi, Filters in (\mathcal{Z}^+, \leq_C) and (\mathcal{N}, \leq_C^p) , Journal of Algebra, Number Theory: Advances and Applications, 11(2)(2014), 93-102.

^[4] Sankar Sagi, Lattice Theory of Convolutions, Ph.D. Thesis, Andhra University, Waltair, Visakhapatnam, India (2010).

^[5] U.M.Swamy, G.C.Rao and V.Sita Ramaiah, On a conjecture in a ring of arithmetic functions, Indian J. Pure Appl. Math., 14(12)(1983).

 ^[6] U.M.Swamy and Sankar Sagi, Partial orders induced by convolutions, International journal of Mathematics and Soft Computing, 2(1)(2012), 25-33.