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Abstract: A convolution is a mapping C of the set Z1 of positive integers into the set P(Z%1) of all subsets of Zt such that, for
any n € ZT , each member of C(n) is a divisor of n. If D(n) is the set of all divisors of n, for any n, then D is called
the Dirichlet’s convolution[2]. If U(n) is the set of all Unitary(square free) divisors of n , for any n, then U is called
unitary(square free) convolution. Corresponding to any general convolution C, we can define a binary relation < on Z+
by ¢ m <¢ n if and only if m € C(n) ’. In this paper, we discuss co-maximal filters in (Z+, <¢) , where <¢ is the binary
relation induced by the convolution C.
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1. Introduction

A Convolution is a mapping C of the set Z¥of positive integers into the set P(Z") of subsets of Z* such that, for any n
€ Z%, C(n) is a nonempty set of divisors of n. If C(n) is the set of all divisors of n, for each n € Z*, then C is the classical

Dirichlet convolution[2]. If C(n)= {d / d|n and (d, %) = 1},Then C is the Unitary convolution[l]. As another example if

C(n)={d / d|n and m" doesnot divide d for any m € Z7} then C is the k-free convolution.
C(n)={d | d/n and (d,%):l}

Corresponding to any convolution C , we can define a binary relation <¢ in a natural way by
m <¢ n if and only if m € C(n).
<c is a partial order on Z% and is called partial order induced by the convolution C [5, 6]. In this paper, we discuss

co-maximality of filters in (2, <¢) .

2. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation < on X which is reflexive (a < a),
transitive (a < b,b < ¢ = a < ¢) and antisymmetric (a < b,b < a => a = b) and that a pair (X, <) is called a partially

ordered set(poset) if X is a non-empty set and < is a partial order on X. For any A C X and = € X, x is called a
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lower(upper) bound of A if z < a(respectively a < z) for all @ € A. We have the usual notations of the greatest lower
bound(glb) and least upper bound(lub) of A in X. If A is a finite subset {a1, a2, - ,an}, the glb of A(lub of A) is denoted

n n
by a1 Aaz A+ Aan or A a; (respectively by a1 Vaz V---Va, or \/ a;). A partially ordered set (X, <) is called a meet
i=1 i=1

semi lattice if a A b (=glb{a, b}) exists for all @ and b € X. (X, <) is called a join semi lattice if a V b (=lub{a, b}) exists for
all a and b € X. A poset (X, <) is called a lattice if it is both a meet and join semi lattice. Equivalently, lattice can also
be defined as an algebraic system (X, A, V), where A and V are binary operations which are associative, commutative and
idempotent and satisfying the absorption laws, namely a A (a Vb) =a=aV (a Ab) for all a,b € X ; in this case the partial
order < on X is such that a A b and a V b are respectively the glb and lub of {a,b}. The algebraic operations A and V and

the partial order < are related by
a=aANb < a<b < aVb=0b
Throughout the paper, Z* and A denote the set of positive integers and the set of non-negative integers respectively.
Definition 2.1. A mapping C : Z¥ — P(Z") is called a convolution if the following are satisfied for any n € Z7.
1. C(n) is a set of positive divisors of n
2. ne€C(n)

3.Cn)= U C(m).

meC(n)
Definition 2.2. For any convolution C and m and n € Z%, we define

m <n if and only if m € C(n)

Then <c is a partial order on ZT and is called the partial order induced by C on Z%. In fact, for any mapping C : Z+ —
P(Z) such that each member of C(n) is a divisor of n, <c 1is a partial order on Z* if and only if C is a convolution [6],

as defined above.

Definition 2.3. A poset is said to satisfy the Descending Chain Condition (D.C.C) if every non-empty subset has a minimal

element.

Definition 2.4. A chain is a totally ordered subset of the partially ordered set (X, <) and a mazimal chain is one that is

not a proper subset of another chain.

Definition 2.5. A partially ordered set (X, <) is said to be a disjoint union of mazimal chains if there is a class {Yi}icr of

subsets of X satisfying the following properties [4].
1. Each Yi,i € I is a mazimal chain in (X, <)
2.VinY,=¢ foralli#jel
3. x and y are incomparable (we express this by x||y) for any x € X; and y € Y; with i # j.
4. X=UY
i€l
Example 2.6. Any chain (totally ordered set) is a disjoint union of mazimal chains.

Example 2.7. Let X = Z* x Zt and, for any (a,b) and (c,d) € X, define

(a,b) < (c,d) if and only if a=c and b < d
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where < is the usual ordering in Z*. Then, for any a € Z%, {a} x Z% is a mazimal chain in X. X is the disjoint union

of ({a} x Zt)'s.

Definition 2.8. Two filters F and G of a meet semi lattice (S, \) are said to be co-mazimal if no proper filter of S contains

both F and G (or, equivalently, S is the only filter of S containing F UG). In this case, we write FANG = S.
Example 2.9. For any m and n € Z% with (m,n) = 1, [m) and [n) are co-mazimal in (Z¥,<c) for any convolution C.
Definition 2.10. Let (S,A) be a meet semi lattice. A proper filter F' of S is called a prime filter if, for any a and b in S,

aVbexistsinS andavVbe FF — a€F orbelkF.

3. Co-maximality in (21, <¢)

First we have the following theorem on prime filters.

Theorem 3.1. Let (S, A) be any meet semi lattice. Then every proper filter of (S, A) is prime if and only if, for any x and

yin S,
x Vy erists in S < x and y are comparable.

Proof. Suppose that every proper filter of (S, A) is prime. Let x and y € S. If  and y are comparable, then clearly z V y
exists in S.On the other hand, suppose x V y exists and z Vy = z. If [z) = S, then z and y € [z) and hence z = z = y.
If [2) # S, then by hypothesis, [z) is a prime filter and z V y € [z) and hence x € [z) or y € [z) so that z = z or y = 2.

Therefore x = x V y or y = x V y, which imply that z and y are comparable. The converse is trivial. O

Theorem 3.2. Let (S, \) be any meet semi lattice with smallest element 0 satisfying the Descending Chain Condition(DCC)

. Also, suppose that every proper filter of S is prime. Then the following are equivalent to each other.
1. Foranyz andy € S, z|ly =z Ay=0
2. S — {0} is a disjoint union of mazimal chains
8. Any two incomparable filters of S are co-mazimal.

Proof. (1) = (2) : Let M be the set of all minimal elements in S — {0} and, for any m € M, et
Xm=[m)={reS|m<«z}

If x and y € X, and z||y, then, by (1), z Ay = 0 which is not true since m < z and m < y and hence 0 < m < x A y.
Therefore, any two elements of X, are comparable. That is, X,, is a chain for each m € M. We shall prove that each
Xm is a maximal chain and S — {0} is the disjoint union of X,,’s. If 0 # z € S and X,, U {z} is a chain, then z must be
comparable with m and hence m < z (since m is minimal, 0 < z < m is not possible), so that © € X,,. This shows that
Xm is a maximal chain in S — {0}, for each m € M. Next, suppose m # n € M. Then m and n are incomparable (since
both are minimal) and hence, by Theorem 1, m V n does not exist in S. This implies that m and n have no common upper
bounds in S (since S is a meet semi lattice satisfying the descending chain condition) and hence X,, N X, = ¢. Further, let

m#né€ M,z € My, and y € M,,. Then

z<y=m<z<y

— vy e XnnNX,.
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But, since X,,, N X, = ¢, it follows that x and y are incomparable. Finally, for any z € S — {0}, there exists a minimal
element in {y € S — {0} | y < z} (since S satisfies descending chain condition), say m. Then m is minimal in the whole of
S — {0} and hence m € M and z € [m) = X,,. Therefore S — {0} is the disjoint union maximal chains X,,’s, m € M.

(2) = (3) : Suppose that {Y;}ics is a class of maximal chains in S — {0} such that S — {0} is the disjoint union of ¥;’s. Let
F and G be two incomparable filters of S. Then F = [z) and G = [y) for some z,y € S. Since F' and G are incomparable,
x and y are also incomparable. Since z and y € S — {0} = | Vi, there exist i # j € I such that z € Vi and y € ;. Then
z Ay = 0 (otherwise, by (3) of Definition 5, z Ay € ¥; N sz,ei)vhich is a contradiction to (2) of Definition 5). Therefore, if
H is any filter containing both F' and G, then x and y € H and hence 0 =z Ay € H, so that H = S. Thus F' and G are
co-maximal.

(3) = (1) : Let « and y € S such that z|y. Then [z) and [y) are incomparable filters of S and, by (3), [z) and [y) are

co-maximal. Since [z) C [z Ay) and [y) C [x A y), it follows that [z Ay) = S and hence z Ay = 0. O

Theorem 3.3. Let C be any multiplicative convolution such that (27, <c) is a meet semi lattice. Then any two incomparable
prime filters of (27, <c) are co-mazimal if and only if any two incomparable prime filters of (N, <) are co-mazimal, for

each p € P.

Proof.  This follows from the fact that F is a prime filter of (27, <¢) if and only if F = [p*) for some p € P and a € N/
such that [a) is a prime filter in (A, <) and that a A b= 0 in (N, <P) if and only if p* Ap” = 1 in (2%, <¢). Note that

z) and are co-maximal if and only if x Ay = 0. O
[) Y y y

Theorem 3.4. Let p be a prime number. Then every proper filter in (N, <%.) is prime if and only if [p®) is a prime filter

in (Z%,<¢) for all n > 0.

Proof. By Theorem 3.1, every proper filter in (N, <%) is prime if and only if, for any a and b € N, a Vb exists in (N, <P)
only when a and b are comparable in (N, <7,) and we shall prove that this is equivalent to saying that [p®) is a prime filter
in (2, <¢) for all n > 0. Suppose that a Vb exists in (N, <%). Let n > 0 and F = [p*). Let m and k € Z* such that mV k
exists and belong to F. Let m = p®.u and k = p®.v, where u and v € Z7 such that (p,u) = 1 = (p,v). Then 6(m)(p) = a,
0(k)(p) = b and 6(m)(p) vV O(k)(p) exists and is equal to 8(mV k)(p) in (N, <P). Therefore a Vb exists in (N, <%). From our
hypothesis, a <%, b or b <7, a and hence p* <¢ p® or p* <c p® and therefore n = 6(p™)(p) <% O(mVEk)(p)=aVb=aorb,
so that p" <¢ p®.u =m or p" <c p’.v = k. Therefore m € F or k € F. Thus F is a prime filter in (2, <¢). Converse can

be proved by a similar technique. O
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