

International Journal of Mathematics And its Applications

Alpha Cuts of Fuzzy Basis

Research Article

M.Muthukumari¹, A.Nagarajan² and M.Murugalingam^{3*}

1 Research scholar, V.O.C. College, Tuticorin, Tamilnadu, India.

2 Department of Mathematics, V.O.C. College, Tuticorin, Tamilnadu, India.

3 Department of Mathematics, Thiruvalluvar College, Papanasam, Tamilnadu, India.

Abstract: We introduce fuzzy basis, strong fuzzy basis and alpha cuts of fuzzy basis and strong fuzzy basis. Keywords: Fuzzy basis, Strong fuzzy basis, Alpha cuts.

© JS Publication.

1. Introduction

In metric space and topological space the concept of base(basis) plays an important role. In the year 1965 Lotfi A.Zadeh [2] introduced the concept of fuzzy sets and fuzzy logic. In the year 1968 C.L.Chang [1] introduced Fuzzy topological spaces. In the year 2014 we [3] introduced fuzzy sequences in a metric space. In the same year we [6] introduced fuzzy subsequences and limit points. In the same year we [4], [5] defined fuzzy net and fuzzy filter.

In this paper we introduce fuzzy basis, strong fuzzy basis and alpha cuts.

2. Fuzzy Basis

Now we recall the definition base for a topology in a topological space. Let X be a non empty set. $\mathbf{B} \subset P(X)$ is called a crisp basis if (i) $\cup \{B/B \in \mathbf{B}\} = X$ (ii) $U, V \in \mathbf{B}$ and $x \in U \cap V$ implies there exists $W \in \mathbf{B}$ such that $x \in W \subset U \cap V$. Now we fuzzify this concept.

Definition 2.1 (Fuzzy Basis). Let X be a non empty set. A function $f: P(X) \to [0,1]$ is called a fuzzy basis if

(1).
$$\cup \{B/f(B) = 1\} = X.$$

(2). For each $\alpha \in (0,1]$. $f(U) \ge \alpha$, $f(V) \ge \alpha$ and $x \in U \cap V$ implies there exists W with $f(W) \ge \alpha$ and $x \in W \subset U \cap V$.

Definition 2.2 (Strong fuzzy basis). Let X be a non empty set. A function $f : P(X) \to [0,1]$ is called a strong fuzzy basis if

(1). $\cup \{B/f(B) = 1\} = X.$

^{*} E-mail: mmmurugalingam@yahoo.com

(2). $f(U \cap V) \ge \min\{f(U), f(V)\}$ for $U, V \subset X$ with $U \cap V \ne \phi$.

Definition 2.3 (Strong crisp basis). Let X be a non empty set. $B \subset P(X)$ is called a strong crisp basis if

- (1). $\cup \{B/B \in B\} = X.$
- (2). $U, V \in \mathbf{B}, U \cap V \neq \phi \Rightarrow U \cap V \in \mathbf{B}.$

Now we study the properties of α cuts of fuzzy basis and strong fuzzy basis.

Theorem 2.4. Let X be a non empty set. Let f be a fuzzy basis. Let $\alpha \in (0, l]$. This α cut of f is a crisp basis.

Proof. Let f be a fuzzy basis on a non empty set X. Take $\alpha \in (0,1]$. $\alpha_f = \{A \subset X/f(A) \ge \alpha\}$. We claim that α_f is a crisp basis for X.

- (1). Since f is a fuzzy basis $\cup \{B/f(B) = 1\} = X$. This implies $\cup \{B/f(B) \ge \alpha\} = X$. Hence $\cup \{B/B \in \alpha_f\} = X$.
- (2). Take $U, V \in \alpha_f$. Then $f(U) \ge \alpha$ and $f(V) \ge \alpha$. Let $x \in U \cap V$. Since f is a fuzzy basis $\exists W$ such that $x \in W \subset U \cap V$ and $f(W) \ge \alpha$. This implies that $W \in \alpha_f$. Hence for $U, V \in \alpha_f$ and $x \in U \cap V$, $\exists W$ such that $x \in W \subset U \cap V$ and $W \in \alpha_f$. Hence α_f is a crisp basis.

Result 2.5. Converse is not true.

Let X be a non empty set. $f: P(X) \to [0,1]$ be a map. α_f is a crisp basis for some $\alpha \in (0,1]$. Then f need not be a fuzzy basis.

Example 2.6. Let $X = \{a, b, c\}$. Define $f : P(X) \to [0, 1]$ as $f(\phi) = 0$, $f\{a\} = 0.4$, $f\{b\} = 0$, $f\{c\} = 0.6$, $f\{a, b\} = 0.6$, $f\{a, c\} = 0.5$, $f\{b, c\} = 0.4$, f(X) = 1. Take $\alpha = 0.6$. $\alpha_f = \{\{c\}, \{a, b\}, X\}$. Clearly α_f is a crisp basis. Take $\alpha = 0.4$. Take $U = \{a, b\}, V = \{b, c\}, U \cap V = \{b\}, f(U) \ge \alpha$, $f(V) \ge \alpha$. The only W with $b \in W \subset U \cap V$ is $\{b\}$. And $f(W) = f\{b\} = 0$ is not greater than or equal to α . Hence f is not a fuzzy basis. Therefore α_f is a crisp basis does not imply that f is a fuzzy basis.

Now we try to make the converse true. We see that in the above example we have considered two values of α . For $\alpha = 0.6$, α_f is a crisp basis. But when $\alpha = 0.4$, α_f is not a crisp basis. This gives an idea.

Suppose α_f is a crisp basis for all values of α in (0, 1] then we see that the converse is true.

Theorem 2.7. Let X be a non empty set. $f : P(X) \to (0,1]$ be a function. If α_f is a crisp basis for each $\alpha \in (0,1]$ then f is a fuzzy basis.

Proof. $X \neq \phi$. $f: P(X) \rightarrow [0, 1]$ is a function. α_f is a crisp basis for each $\alpha \in (0, 1]$.

- (1). Take $\alpha = 1$. α_f is a crisp basis. Therefore $\cup \{B/f(B) = 1\} = X$.
- (2). Take U and V subsets of X with $x \in U \cup V$ and let $f(U) \ge \alpha$, $f(V) \ge \alpha$. Now α_f is a crisp basis. $f(U) \ge \alpha$ and $f(V) \ge \alpha$ implies that $U, V \in \alpha_f$. Now α_f is a crisp basis, $U, V \in \alpha_f$, $x \in U \cap V$. Hence \exists W such that $W \in \alpha_f$ and $x \in W \subset U \cap V$. $W \in \alpha_f \Rightarrow f(W) \ge \alpha$. Hence \exists W such that $x \in W \subset U \cap V$ and $f(W) \ge \alpha$.

Therefore for each $\alpha(0,1]$, $f(U) \ge \alpha$, $f(V) \ge \alpha$, $x \in U \cap V$ implies $\exists W$ such that $x \in W \subset U \cap V$ and $f(W) \ge \alpha$. This is true for each α . Hence f is a fuzzy basis.

Now we try similar results in case of Strong fuzzy basis.

Theorem 2.8. Let f be a strong fuzzy basis on X. Let $\alpha \in (0, 1]$. Then the α cut of f is a strong crisp basis.

Proof. $X \neq \phi$. $f: P(X) \rightarrow [0,1]$ be a strong fuzzy basis. Let $\alpha \in (0,1]$. $\alpha_f = \{A/f(A) \ge \alpha\}$.

- (1). Since f is a strong fuzzy basis $\cup \{B/f(B) = 1\} = X$. This implies $\cup \{B/f(B) \ge \alpha\} = X$. Therefore $\cup \{B/B \in \alpha_f\} = X$.
- (2). Let $U, V \in \alpha_f$ and $U \cap V \neq \phi$. Now $f(U) \ge \alpha$ and $f(V) \ge \alpha$ and $U \cap V \neq \phi$. Since f is a strong basis $f(U \cap V) \ge \min\{f(U), f(V)\}$. Therefore $f(U \cap V) \ge \alpha$. Hence $U \cap V \in \alpha_f$. Hence $U, V \in \alpha_f$ and $U \cap V \neq \phi$ implies $U \cap V \in \alpha_f$. Hence α_f is a strong crisp basis. Hence α cut of a strong fuzzy basis is a strong crisp basis.

Result 2.9. Converse is not true.

Let X be a non empty set. $f: P(X) \to [0,1]$ be a function. Let $\alpha \in (0,1]$. α_f is a strong crisp basis does not imply that f is a strong fuzzy basis.

Example 2.10. Let $X = \{a, b, c, d\}$. Define $f : P(X) \to (0, 1]$ as $f(\phi) = 0$, $f\{a, b, c\} = 1$, $f\{b, c, d\} = 1$, $f\{b, c\} = 0.6$, f(X) = 1 and f(A) = 0 for all other A. Take $\alpha = 0.6$. α cut of $f = \{\{a, b, c\}, \{b, c, d\}, \{b, c\}, X\}$. Clearly α cut of f is a strong crisp basis. We claim that f is not a strong fuzzy basis. Take $U = \{a, b, c\}$, $V = \{b, c, d\}$. $U \cap V = \{b, c\}$, $f(U \cap V) = f\{b, c\} = 0.6$. min $\{f(U), f(V)\} = 1$. Now $f(U \cap V)$ is not greater than or equal to min $\{f(U), f(V)\}$. Hence f is not a strong fuzzy basis.

Theorem 2.11. Let X be a non empty set. $f : P(X) \to [0,1]$ be a function. If for each $\alpha \in (0,1]$, α cut of f is a strong crisp basis then f is a strong fuzzy basis.

Proof. $X \neq \phi$. $f: P(X) \to [0, 1]$ is function and for each $\alpha \in (0, 1]$. α cut of f is a strong crisp basis. Take $\alpha = 1$. α_f is a strong crisp basis. Hence $\cup \{B/B \in \alpha_f\} = X$. Hence $\cup \{B/f(B) = 1\} = X$. Take U, V where $U \cap V \neq \phi$. Let $f(U) = \alpha_1$, $f(V) = \alpha_2$. If $\alpha_1 = 0$ or $\alpha_2 = 0$ then whatever be the value of $f(U \cap V)$, we have $f(U \cap V) \ge \min\{f(U), f(V)\}$. Suppose $\alpha_1 \neq 0$ and $\alpha_2 \neq 0$ then let $\alpha = \min\{\alpha_1, \alpha_2\}, \alpha \in (0, 1]$. α cut of f is strong crisp basis $f(U) = \alpha_1 \ge \alpha$, $f(V) = \alpha_2 \ge \alpha$. Hence $f(U) \ge \alpha$ and $f(V) \ge \alpha$. Therefore $U, V \in \alpha_f$. Also $U \cap V \neq \phi$ and α_f is a strong crisp basis. Hence $U \cap V \in \alpha_f$. Therefore $f(U \cap V) \ge \alpha$. Hence $f(U \cap V) \ge \min\{f(U), f(V)\}$. Hence f is a strong fuzzy basis.

References

- [1] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [2] L.A.Zadeh, Fuzzy sets, Information and control, 8(1965), 338-353.
- [3] M.Muthukumari, A.Nagarajan and M.Murugalingam, Fuzzy Sequences in Metric Spaces, Int. Journal of Math. Analysis, 8(15)(2014), 699-706.
- [4] M.Muthukumari, A.Nagarajan and M.Murugalingam, Fuzzy Nets Int. Journal of Math. Analysis, 8(35)(2014), 1715-1721.
- [5] M.Muthukumari, A.Nagarajan and M.Murugalingam, *Fuzzification of Filters*, Mathematical Sciences International Research Journal, 3(2)(2014), 669-671.
- [6] M.Muthukumari, A.Nagarajan and M.Murugalingam, Fuzzy Subsequences and Limit points, Int. J. of Mathematics Sciences & Applications, 5(2)(2015), 227-232.