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1. Introduction

Recently Ravi, Lellis Thivagar, Ekici and Many others defined different weak forms of semi-open, preopen, regular open and

regular semi-open in bitopological spaces.

In this paper, we introduce the notions of (1, 2)?-rω-continuous and (1, 2)?-rω-irresolute functions in bitopological spaces

and study some of their basic properties. In most of the occasions our ideas are illustrated and substantiated by some

suitable examples.

2. Preliminaries

Throughout this paper, X, Y and Z denote bitopological spaces (X, τ1, τ2), (Y, σ1, σ2) and (Z, η1, η2) respectively.

Definition 2.1. Let A be a subset of a bitopological space X. Then A is called τ1,2-open [4, 15] if A = P ∪ Q, for some P

∈ τ1 and Q ∈ τ2. The complement of τ1,2-open set is called τ1,2-closed. The family of all τ1,2-open (resp. τ1,2-closed) sets

of X is denoted by (1, 2)?-O(X) (resp. (1, 2)?-C(X)).

Definition 2.2 ([15, 18]). Let A be a subset of a bitopological space X. Then

(1). the τ1,2-interior of A, denoted by τ1,2-int(A), is defined by ∪ { U : U ⊆ A and U is τ1,2-open}.

(2). the τ1,2-closure of A, denoted by τ1,2-cl(A), is defined by ∩ { U : A ⊆ U and U is τ1,2-closed}.

Notice that τ1,2-open subsets of X need not necessarily form a topology.
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Definition 2.3. A subset A of a bitopological space X is called

(1). (1, 2)?-regular open [14] if A = τ1,2-int(τ1,2-cl(A)),

(2). (1, 2)?-π-open [20] if the finite union of (1, 2)?-regular open sets in X,

(3). (1, 2)?-preopen [19] if A ⊆ τ1,2-int(τ1,2-cl(A)),

(4). (1, 2)?-semi-open [13] if A ⊆ τ1,2-cl(τ1,2-int(A)),

(5). regular (1, 2)?-semi-open [21] if there is a (1, 2)?-regular open set U such that U ⊆ A ⊆ τ1,2-cl(U).

The complements of the above open sets are called their respective closed sets. The (1, 2)?-preclosure of a subset A, (1, 2)?-

pcl(A) of X is the intersection of all (1, 2)?-preclosed sets of X containing A.

Definition 2.4. A subset A of a bitopological space X is called

(1). (1, 2)?-generalized closed (briefly (1, 2)?-g-closed) [8] if τ1,2-cl(A) ⊆ U whenever A ⊆ U and U is τ1,2-open in X,

(2). (1, 2)?-weakly closed (briefly (1, 2)?-ω-closed) [16] if τ1,2-cl(A) ⊆ U whenever A ⊆ U and U is (1, 2)?-semi-open in X,

(3). (1, 2)?-regular generalized closed (briefly (1, 2)?-rg-closed) [16] if τ1,2-cl(A) ⊆ U whenever A ⊆ U and U is (1, 2)?-regular

open in X,

(4). (1, 2)?-weakly generalized closed (briefly (1, 2)?-wg-closed) [20] if τ1,2-cl(τ1,2-int(A)) ⊆ U and U is τ1,2-open in X,

(5). (1, 2)?-generalized pre regular closed (briefly (1, 2)?-gpr-closed) [21] if (1, 2)?-pcl(A) ⊆ U whenever A ⊆ U and U is

(1, 2)?-regular open in X,

(6). (1, 2)?-π-generalized closed (briefly (1, 2)?-πg-closed) [16] if τ1,2-cl(A) ⊆ U whenever A ⊆ U and U is (1, 2)?-π-open in

X,

(7). (1, 2)?-regular ω-closed (briefly (1, 2)?-rω-closed) [21] if τ1,2-cl(A) ⊆ U whenever A ⊆ U and U is regular (1, 2)?-semi-

open in X.

The complements of the above closed sets are called their respective open sets.

Definition 2.5. A function f : X → Y is said to be

(1). (1, 2)?-g-open [8] if f(V) is (1, 2)?-g-open in Y for each τ1,2-open set V in X,

(2). (1, 2)?-ω-open [20] if f(V) is (1, 2)?-ω-open in Y for each τ1,2-open set V in X.

Definition 2.6. A function f : X → Y is said to be

(1). (1, 2)?-g-continuous [8] if f−1(V) is (1, 2)?-g-closed in X for every σ1,2-closed set V in Y,

(2). (1, 2)?-ω-continuous [16] if f−1(V) is (1, 2)?-ω-closed in X for every σ1,2-closed set V in Y,

(3). (1, 2)?-rω-continuous [21] if f−1(V) is (1, 2)?-rω-closed in X for every σ1,2-closed set V in Y,

(4). (1, 2)?-rg-continuous [16] if f−1(V) is (1, 2)?-rg-closed in X for every σ1,2-closed set V in Y,

(5). (1, 2)?-wg-continuous [20] if f−1(V) is (1, 2)?-wg-closed in X for every σ1,2-closed set V in Y,

40



O.Ravi, M.Kamaraj, S.Murugambigai and I.Rajasekaran

(6). (1, 2)?-gpr-continuous [21] if f−1(V) is (1, 2)?-gpr-closed in X for every σ1,2-closed set V in Y,

(7). (1, 2)?-πg-continuous [16] if f−1(V) is (1, 2)?-πg-closed in X for every σ1,2-closed set V in Y,

(8). (1, 2)?-semi-continuous [13] if f−1(V) is (1, 2)?-semi-open in X for every σ1,2-open set V in Y.

Definition 2.7. A function f : X → Y is said to be

(1). (1, 2)?-irresolute [20] if f−1(V) is (1, 2)?-semi-open in X for every (1, 2)?-semi-open set V in Y,

(2). (1, 2)?-ω-irresolute [16] if f−1(V) is (1, 2)?-ω-closed in X for every (1, 2)?-ω-closed set V in Y.

Definition 2.8 ([17]). A bijective function f : X → Y is said to be

(1). (1, 2)?-g-homeomorphism if f is both (1, 2)?-g-continuous and (1, 2)?-g-open,

(2). (1, 2)?-ω?-homeomorphism if both f and f−1 are (1, 2)?-ω-irresolute,

(3). (1, 2)?-ω-homeomorphism if f is both (1, 2)?-ω-continuous and (1, 2)?-ω-open.

Proposition 2.9 ([17]). Every (1, 2)?-homeomorphism is (1, 2)?-ω-homeomorphism but not conversely.

Proposition 2.10 ([17]). Every (1, 2)?-ω-homeomorphism is (1, 2)?-g-homeomorphism but not conversely.

Remark 2.11 ([21]). (1). Every τ1,2-closed set is (1, 2)?-rω-closed but not conversely.

(2). Every τ1,2-closed set is (1, 2)?-ω-closed but not conversely.

(3). Every (1, 2)?-ω-closed set is (1, 2)?-rω-closed but not conversely.

(4). Every (1, 2)?-rω-closed set is (1, 2)?-rg-closed but not conversely.

(5). Every (1, 2)?-rω-closed set is (1, 2)?-gpr-closed but not conversely.

3. (1, 2)?-rω-continuous Functions

Definition 3.1. A function f : X → Y is said to be (1, 2)?-rω-continuous if f−1(V) is (1, 2)?-rω-closed in X, for every

σ1,2-closed set V in Y.

Theorem 3.2. Every (1, 2)?-continuous function is (1, 2)?-rω-continuous.

Proof. Let f : X → Y be (1, 2)?-continuous and V be any σ1,2-closed set in Y. Then f−1(V) is τ1,2-closed set in X. Then

f−1(V) is (1, 2)?-rω-closed in X. Therefore, f is (1, 2)?-rω-continuous.

Remark 3.3. The converse of Theorem 3.2 need not be true as shown in the following example.

Example 3.4. Let X = Y = {a, b, c}, τ1 = {φ, X, {a}}, τ2 = {φ, X, {b}, {a, b}}, σ1 = {φ, Y, {c}} and σ2 = {φ, Y}.

Let the function f : X → Y be the identity function. Then f is a (1, 2)?-rω-continuous but not (1, 2)?-continuous.

Theorem 3.5. If f : X → Y is (1, 2)?-ω-continuous function then it is (1, 2)?-rω-continuous.

Proof. Let V be any σ1,2-closed set of Y. Then by hypothesis f−1(V) is (1, 2)?-ω-closed set in X. But every (1, 2)?-ω-closed

set is (1, 2)?-rω-closed. Therefore, f is (1, 2)?-rω-continuous.
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Remark 3.6. The converse of Theorem 3.5 need not be true as shown in the following Example.

Example 3.7. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {b}, {a, b}}, τ2 = {φ, X, {a, b, c}}, σ1 = {φ, Y, {c, d}} and σ2 =

{φ, Y}. Let the function f : X → Y be the identity function. Then f is a (1, 2)?-rω-continuous but not (1, 2)?-ω-continuous.

Theorem 3.8. If f : X → Y is (1, 2)?-rω-continuous function then it is (1, 2)?-rg-continuous.

Proof. Let V be any σ1,2-closed set of Y. Then by hypothesis f−1(V) is (1, 2)?-rω-closed set in X. But every (1, 2)?-rω-closed

set is (1, 2)?-rg-closed. Therefore, f is (1, 2)?-rg-continuous.

Remark 3.9. The converse of Theorem 3.8 need not be true as shown in the following Example.

Example 3.10. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {b}, {a, b}}, τ2 = {φ, X, {a, b, c}}, σ1 = {φ, Y, {b,

d}} and σ2 = {φ, Y}. Let the function f : X → Y be the identity function. Then f is a (1, 2)?-rg-continuous but not

(1, 2)?-rω-continuous.

Theorem 3.11. If f : X → Y is (1, 2)?-rω-continuous function then it is (1, 2)?-gpr-continuous.

Proof. Let V be any σ1,2-closed set of Y. Then by hypothesis f−1(V) is (1, 2)?-rω-closed set in X. But every (1, 2)?-rω-closed

set is (1, 2)?-gpr-closed. Therefore, f is (1, 2)?-gpr-continuous.

Remark 3.12. The converse of Theorem 3.11 need not be true as shown in the following Example.

Example 3.13. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {a, b}}, τ2 = {φ, X, {b}, {a, b, c}}, σ1 = {φ, Y, {a, b,

d}} and σ2 = {φ, Y}. Let the function f : X → Y be the identity function. Then f is a (1, 2)?-gpr-continuous but not

(1, 2)?-rω-continuous.

Remark 3.14. The concepts of

(1). (1, 2)?-rω-continuous and (1, 2)?-g-continuous are independent.

(2). (1, 2)?-rω-continuous and (1, 2)?-semi-continuous are independent.

(3). (1, 2)?-rω-continuous and (1, 2)?-wg-continuous are independent.

(4). (1, 2)?-rω-continuous and (1, 2)?-πg-continuous are independent.

Example 3.15. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {a, b}}, τ2 = {φ, X, {b}, {a, b, c}}, σ1 = {φ, Y, {c, d}} and σ2

= {φ, Y}. Let the function f : X→ Y be the identity function. Then f is a (1, 2)?-rω-continuous but not (1, 2)?-g-continuous.

Example 3.16. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {b}, {a, b}}, τ2 = {φ, X, {a, b, c}}, σ1 = {φ, Y, {a, c}} and σ2

= {φ, Y}. Let the function f : X→ Y be the identity function. Then f is a (1, 2)?-g-continuous but not (1, 2)?-rω-continuous.

Example 3.17. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {b}, {a, b}}, τ2 = {φ, X, {a, b, c}}, σ1 = {φ, Y, {c,

d}} and σ2 = {φ, Y}. Let the function f : X → Y be the identity function. Then f is a (1, 2)?-rω-continuous but not

(1, 2)?-semi-continuous.

Example 3.18. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {b}, {a, b}}, τ2 = {φ, X, {a, b, c}}, σ1 = {φ, Y, {a, c,

d}} and σ2 = {φ, Y}. Let the function f : X → Y be the identity function. Then f is a (1, 2)?-semi-continuous but not

(1, 2)?-rω-continuous.
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Example 3.19. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {b}, {a, b}}, τ2 = {φ, X, {a, b, c}}, σ1 = {φ, Y, {c,

d}} and σ2 = {φ, Y}. Let the function f : X → Y be the identity function. Then f is a (1, 2)?-rω-continuous but not

(1, 2)?-wg-continuous.

Example 3.20. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {a, b}}, τ2 = {φ, X, {b}, {a, b, c}}, σ1 = {φ, Y, {a, b,

d}} and σ2 = {φ, Y}. Let the function f : X → Y be the identity function. Then f is a (1, 2)?-wg-continuous but not

(1, 2)?-rω-continuous.

Example 3.21. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {b}, {a, b}}, τ2 = {φ, X, {a, b, c}}, σ1 = {φ, Y, {c,

d}} and σ2 = {φ, Y}. Let the function f : X → Y be the identity function. Then f is a (1, 2)?-rω-continuous but not

(1, 2)?-πg-continuous.

Example 3.22. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {b}, {a, b}}, τ2 = {φ, X, {a, b, c}}, σ1 = {φ, Y, {b,

d}} and σ2 = {φ, Y}. Let the function f : X → Y be the identity function. Then f is a (1, 2)?-πg-continuous but not

(1, 2)?-rω-continuous.

Remark 3.23. The following diagram summarizes the above discussions.

Remark 3.24. The following Example shows that the composition of two (1, 2)?-rω-continuous functions need not be a

(1, 2)?-rω-continuous.

Example 3.25. Let X = Y = Z = {a, b, c, d}, τ1 = {φ, X, {a}, {b}, {a, b}}, τ2 = {φ, X, {a, b, c}}, σ1 = {φ, Y, {a, b}},

σ2 = {φ, Y, {c, d}}, η1 = {φ, Z, {a, b, d}} and η2 = {φ, Z}. Let the functions f : X → Y and g : Y → Z be the identity

functions. Then f and g are (1, 2)?-rω-continuous but g ◦ f is not (1, 2)?-rω-continuous, since (g ◦ f)−1({c}) = {c} is not

(1, 2)?-rω-closed set in X.

4. (1, 2)?-rω-irresolute Functions

Definition 4.1. A function f : X → Y is called (1, 2)?-rω-irresolute if the inverse image of every (1, 2)?-rω-closed set in Y

is (1, 2)?-rω-closed in X.

Theorem 4.2. Every (1, 2)?-rω-irresolute function is (1, 2)?-rω-continuous but not conversely.

Proof. Assume that f : X → Y is (1, 2)?-rω-irresolute and V is σ1,2-closed set in Y. So it is (1, 2)?-rω-closed set in Y. By

our assumption f−1(V) is a (1, 2)?-rω-closed set in X. Therefore, f is (1, 2)?-rω-continuous.

Example 4.3. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {b}, {a, b}}, τ2 = {φ, X, {a, b, c}}, σ1 = {φ, Y, {a, b}}

and σ2 = {φ, Y, {c, d}}. Let the function f : X → Y be the identity function. Then f is a (1, 2)?-rω-continuous but not

(1, 2)?-rω-irresolute, because f−1({a, c}) = {a, c} is not an (1, 2)?-rω-closed set in X.
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Theorem 4.4. Let f : X → Y and g : Y → Z be any two functions. Then g ◦ f is (1, 2)?-rω-continuous if g is (1, 2)?-

continuous and f is (1, 2)?-rω-continuous.

Proof. Let V be any η1,2-closed set in Z. Then g−1(V) is σ1,2-closed in Y, since g is (1, 2)?-continuous. Then f−1(g−1(V))

is (1, 2)?-rω-closed in X, as f is (1, 2)?-rω-continuous. That is, (g ◦ f)−1(V) is (1, 2)?-rω-closed in X. Hence g ◦ f is (1, 2)?-

rω-continuous.

Theorem 4.5. Let f : X → Y and g : Y → Z be any two functions. Then g ◦ f is (1, 2)?-rω-irresolute if g is (1, 2)?-rω-

irresolute and f is (1, 2)?-rω-irresolute.

Proof. Let V be any (1, 2)?-rω-closed set in Z. Since g is (1, 2)?-rω-irresolute, g−1(V) is (1, 2)?-rω-closed in Y. Then

f−1(g−1(V)) = (g ◦ f)−1(V) is (1, 2)?-rω-closed in X, as f is (1, 2)?-rω-irresolute. Therefore, g ◦ f is (1, 2)?-rω-irresolute.

Theorem 4.6. Let f : X → Y and g : Y → Z be any two functions. Then g o f is (1, 2)?-rω-continuous if g is (1, 2)?-rω-

continuous and f is (1, 2)?-rω-irresolute.

Proof. Let V be any η1,2-closed set in Z. Since g is (1, 2)?-rω-continuous, g−1(V) is (1, 2)?-rω-closed in Y. Then f−1(g−1(V))

= (g ◦ f)−1(V) is (1, 2)?-rω-closed in X, as f is (1, 2)?-rω-irresolute. Therefore, g ◦ f is (1, 2)?-rω-continuous.

5. (1, 2)?-rω-homeomorphisms

We introduce the following definition.

Definition 5.1. A function f : X → Y is called (1, 2)?-rω-open (resp. (1, 2)?-rω-closed) if f(V) is (1, 2)?-rω-open (resp.

(1, 2)?-rω-closed) in Y for each τ1,2-open set V in X.

Definition 5.2. A bijection f : X → Y is called (1, 2)?-rω-homeomorphism if f is both (1, 2)?-rω-continuous and (1, 2)?-

rω-open. We denote the family of all (1, 2)?-rω-homeomorphisms of a bitopological space X onto itself by (1, 2)?-rω-h(X).

Example 5.3. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {a, b}}, τ2 = {φ, X, {b}, {a, b, c}}, σ1 = {φ, Y, {a, b}} and

σ2 = {φ, Y, {c, d}}. Let the function f : X → Y be the identity function. Then f is bijective, (1, 2)?-rω-continuous and f is

(1, 2)?-rω-open. Therefore f is (1, 2)?-rω-homeomorphism.

Theorem 5.4. Every (1, 2)?-homeomorphism is an (1, 2)?-rω-homeomorphism.

Proof. Let f : X → Y be a (1, 2)?-homeomorphism. Then f is both (1, 2)?-continuous and (1, 2)?-open and f is bijection.

As every (1, 2)?-continuous function is (1, 2)?-rω-continuous and every (1, 2)?-open function is (1, 2)?-rω-open, we have f is

both (1, 2)?-rω-continuous and (1, 2)?-rω-open. Therefore f is (1, 2)?-rω-homeomorphism.

Remark 5.5. The converse of Theorem 5.4 need not be true as shown in the following example.

Example 5.6. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {a, b}}, τ2 = {φ, X, {b}, {a, b, c}}, σ1 = {φ, Y, {a, b}} and

σ2 = {φ, Y, {c, d}}. Let the function f : X → Y be the identity function. Then f is (1, 2)?-rω-homeomorphism but it is not

(1, 2)?-homeomorphism.

Theorem 5.7. Every (1, 2)?-ω-homeomorphism is an (1, 2)?-rω-homeomorphism.

Proof. Let f : X → Y be a (1, 2)?-ω-homeomorphism. Then f is (1, 2)?-ω-continuous and (1, 2)?-ω-open and f is bijection.

As every (1, 2)?-ω-continuous function is (1, 2)?-rω-continuous and every (1, 2)?-ω-open function is (1, 2)?-rω-open, we have

f is both (1, 2)?-rω-continuous and (1, 2)?-rω-open. Therefore f is (1, 2)?-rω-homeomorphism.
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Remark 5.8. The converse of Theorem 5.7 need not be true as shown in the following Example.

Example 5.9. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {a, b}}, τ2 = {φ, X, {b}, {a, b, c}}, σ1 = {φ, Y, {a, b}} and

σ2 = {φ, Y, {c, d}}. Let the function f : X → Y be the identity function. Then f is (1, 2)?-rω-homeomorphism but it is not

(1, 2)?-ω-homeomorphism.

Theorem 5.10. For any bijection function f : X → Y the following statements are equivalent :

(1). f−1 : Y → X is (1, 2)?-rω-continuous.

(2). f is (1, 2)?-rω-open function.

(3). f is (1, 2)?-rω-closed function.

Theorem 5.11. Let f : X → Y be a bijection (1, 2)?-rω-continuous function. Then the following statements are equivalent

(1). f is an (1, 2)?-rω-open function.

(2). f is an (1, 2)?-rω-homeomorphism.

(3). f is an (1, 2)?-rω-closed function.

Proof. Follows from Theorem 5.10.

Remark 5.12. The composition of two (1, 2)?-rω-homeomorphism functions need not be a (1, 2)?-rω-homeomorphism func-

tion as shown in the following Example.

Example 5.13. Let X = Y = Z = {a, b, c, d}, τ1 = {φ, X, {a}}, τ2 = {φ, X, {a, c, d}}, σ1 = {φ, Y, {a, b}}, σ2 = {φ,

Y, {c, d}}, η1 = {φ, Z, {a}, {b}, {a, b}} and η2 = {φ, Z}. Let f : X → Y and g : Y → Z be the identity functions. Then

f and g are (1, 2)?-rω-homeomorphism but their g ◦ f : X → Z is not (1, 2)?-rω-homeomorphism, since for the τ1,2-open set

V = {a, c, d} in X, (g ◦ f)(V) = f(g(V)) = f(g({a, c, d})) = f({a, c, d}) = {a, c, d} is not (1, 2)?-rω-open in Z.

Definition 5.14. A bijection f : X → Y is said to be (1, 2)?-rωc-homeomorphism if both f and f−1 are (1, 2)?-rω-irresolute.

We say that bitopological spaces X and Y are (1, 2)?-rωc-homeomorphic if there exists a (1, 2)?-rωc-homeomorphism from X

onto Y.

We denote the family of all (1, 2)?-rωc-homeomorphisms of a bitopological space X onto itself by (1, 2)?-rωc-h(X).

Theorem 5.15. Every (1, 2)?-rωc-homeomorphism is an (1, 2)?-rω-homeomorphism.

Proof. Let f : X → Y be an (1, 2)?-rωc-homeomorphism. Then f and f−1 are (1, 2)?-rω-irresolute and f is bijection. By

Theorem 4.2, f and f−1 are (1, 2)?-rω-continuous. Therefore f is (1, 2)?-rω-homeomorphism.

Remark 5.16. The converse of Theorem 5.15 need not be true as shown in the following Example.

Example 5.17. Let X = Y = {a, b, c, d}, τ1 = {φ, X, {a}, {b}, {a, b}}, τ2 = {φ, X, {a, b, c}}, σ1 = {φ, Y, {a, b}} and

σ2 = {φ, Y, {c, d}}. Let the function f : X → Y be the identity function. Then f is (1, 2)?-rω-homeomorphism but it is not

(1, 2)?-rωc-homeomorphism, since f is not (1, 2)?-rω-irresolute.

Remark 5.18. The following diagram summarizes the above discussions.
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(1, 2)?-rω-Continuous and (1, 2)?-rω-Irresolute Functions

(1, 2)?-ω-homeomorphism → (1, 2)?-g-homeomorphism

↑ ↘

(1, 2)?-homeomorphism → (1, 2)?-rω-homeomorphism

↑

(1, 2)?-rωc-homeomorphism

Theorem 5.19. Let f : X → Y and g : Y → Z be (1, 2)?-rωc-homeomorphism, then their composition g ◦ f : X → Z is

also (1, 2)?-rωc-homeomorphism.

Proof. Let U be a (1, 2)?-rω-open set in Z. Since g is (1, 2)?-rω-irresolute, g−1(U) is (1, 2)?-rω-open in Y. Since f is

(1, 2)?-rω-irresolute, f−1(g−1(U)) = (g ◦ f)−1(U) is (1, 2)?-rω-open set in X. Therefore g ◦ f is (1, 2)?-rω-irresolute. Also for

a (1, 2)?-rω-open set G in X, we have (g ◦ f)(G) = g(f(G)) = g(W), where W = f(G). By hypothesis, f(G) is (1, 2)?-rω-open

in Y and so again by hypothesis, g(f(G)) is a (1, 2)?-rω-open set in Z. That is (g ◦ f)(G) is a (1, 2)?-rω-open set in Z and

therefore (g ◦ f)−1 is (1, 2)?-rω-irresolute. Also g ◦ f is a bijection. Hence g ◦ f is (1, 2)?-rωc-homeomorphism.
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