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Abstract: The product XxY of measure spaces has as its measurable sub sets, the o-algebra generated by the products Ax B
measurable sub sets of X and Y. Fubini’s Theorem introduced by Guido Fubini in 1907 is a result which gives conditions
under which it is possible to commute a double integral. It implies that two repeated integrals of a function of two
variables are equal if the function is integrable. Tonelli’s Theorem is a successor of the Fubini’s Theorem. The conclusion
of Tonelli’s theorem is identical to that of Fubini’s theorem, but the assumption that |f| has a finite integral is replaced
by the assumption that f is non-negative.
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1. Basics and Main Results

Definition 1.1. Let (X, A, u) and (Y,B,v) be any two measure spaces. If A C X and B CY then Ax B is called a rectangle
of XxY. If A€ A and B € B then AXB is called a measurable rectangle of XxY.

Theorem 1.2. Let R be the class of measurable rectangles of Z = X XY . For any Ax B € R, Define A\(Ax B) = u(A)v(B),

then R is a semi-algebra and A is a measure on R.
Proof.
(1) Let Ax BERand C x D€ R then (Ax B)N(CxD)=(ANC)x (BND)=(AxB)N(C x D) eR.

(2) (Ax B)Y = A° x B U (A x BY) U (A x B) = (A x B)¢ is a finite union of members of R. Proves that R is

semi-algebra.
(3) A is obviously non-negative and A(¢) = A(¢ X ¢) = pu(¢)v(¢) = 0.0 =0.
(4) Let (En) be any sequence of disjoint measurable rectangles and suppose | J E, = E is also a measurable rectangle.
1

Let B, = A, X By, E = Ax B where A and A,, are measurable subsets of X and B and B,, are measurable subsets of Y.
Consider any s € A and y € B, then (s,y) € Ax B=F =JE, = (s,y) € E; for some i = (s,y) € A; x B; for some
1

I:>y€BiWhenseAijBCU{Bi/seAi}.
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Suppose z C U{B;/s € A;},thenz € Biwhens € A; = (s,2) € AixB; = (s,2) € E; = (s,2) e JE, =E=AxB=sc A
1
and z € B, shows that U{B;/s € A;} C B;. Therefore

B =U{B;/s € A;} forany s€ A (1)
Let u € A; for some i and B; # ¢ for some i. Take v € B;, this gives that (u,v) € A; x B; = F; = (u,v) e JE, = E =
1
Ax B=uc€ A, shows if u ¢ A then
Either u ¢ A; orif u € A; thenB; = ¢ (2)
From (1) and (2) we get v(B)Ca = > v(Bi)Ca,, by Monotone convergence theorem we have
i=1
[ oBCadn= [ o(BICa =Y [o(BICAdn
i=1 i=1
= v(B)u(A) = Y v(Bi)u(4)
i=1
= MAx B) =Y AAi x B)) = A(E) = Y _ \(E))
i=1 i=1
Which proves that A is a measure on R. O

Definition 1.3. Let (X, A, u) and (Y, B,v) be any measure spaces, Z = X XY, R be the class of measurable rectangles of
Z,  be defined on R by w(A x B) = u(A)v(B). Then R is a semi algebra on Z and 7 is a measure on R. Let a be the
algebra generated by R and \ be the unique extension of ™ to a measure on a. Let (Z,@, ) be the outer measure extension of
(Z,a,)). Then (Z,a,)) is called the Product space of (X, A, ) and (Y, B,v). The measure X is called the Product measure
of w and v and is denoted by p X v.

Note 1.4. (1) It is obvious that (Z,@,\) is an extension of (Z,R,m). Hence if A x B € R then

(b xv)(Ax B)=n(Ax B) [Because pxv is an extension of

= u(A)v(B) [By definition of ]

(2) If u and v both are finite then u X v is also finite.

(3) If u and v are o-finite then u X v is also o-finite.

Remark 1.5. If F be the any family of subsets of X and A= U{F/F € F}, B=nN{F/F € F} then C4 =sup{Cr/F € F}
and Cp = inf{Cr/F € F}

Definition 1.6. Let E C X XY and x € X then E, = {y € Y/(x,y) € E} is called the Cross-Section of E by z. Ify €Y
Then E, = {z € X/(z,y) € E} is called the Cross Section of E by y.

Note 1.7. Let E and E, be any sub sets of X XY and z € X

(1) UEa)s = U(Fas)

o

(2) (NEa)s = (V(Fae)

o

(3) (E%)e = (Ex)°

(4) Ci,(y) = ce(zy)
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Theorem 1.8. Let R Be the class of measurable rectangles, E € Ry,s and x € X, then E. is measurable.

Proof.

Case 1 : Let F € R, Then E = A x B, where A is a measurable sub set of X and B is a measurable sub set of Y.
Suppose x ¢ A. If E;, # ¢ theny € E, = (z,y) € E = Ax B = x € A which is a contradiction, Hence E, = ¢.
Let © € A consider any y € E,. Then (z,y) € E = AXx B = y € B = E, C B, On the other hand if z € B then

, ifx ¢ A
(x,2) € AxB=F = z € B, = B C E;. Hence B = E,. Thus we see that E, = ¢ £ . Hence E, is
B, ifz € A.

measurable.

Case 2 : Let £ € R, then E = |J E, when E, are members of R. Therefore E, = <U En) = U(Fnz), by Case 1 Eny
1 1 1

T

oo
are measurable for every n. It can imply that U FE,.. is measurable i.e. E, is measurable.
1

Case 3: Let F € Rys5. Then E = F,, where F,, € R,, therefore E; = (ﬂ Fn) = ((Fre), By Case 2 F,, is measurable
1 1 1

T

oo
for every m = () Fne is measurable, which means that E, is measurable. O
1

Note 1.9. Let R be the semi algebra of measurable rectangles of Z = X XY and a be the algebra generated by R then

Rs = a..

Proof. Let {c,} be any sequence of members of a,. Suppose n = 2 Let c1,c2 € a = c1 = |J Si and ¢ = |J T;j where
=1

1=

(eenTy) = U

1 =1

Siand Tj € Rfor1 <i<mand 1< j < n. Thenc1002—clﬂ<UTj> =
j=1

1Cs
3
R
D
3
=N
N——
|

J

U [U (T; N SZ)] = U US:nTy) = U U Sij, where S;; = S; NT;. R is closed for intersection hence S;; € R. Thus

j=1 Li=1 j=1i=1 i=1j=1
¢1 Neg is a finite union of members of R. Hence ¢1 N ¢z € a,. By induction it follows that (Cy, € ao. It follows that
1

Re = ao. O

Theorem 1.10. Let E € Ro; and (p x v)(E) < oo, for z € X define g(x) = v(E;). Then g is a non negative measurable
function on X and [, gdp = (u x v)(E).

Proof.
Case 1 : Suppose £ € R. Let E = A x B, where A is a measurable sub set of X and B is a measurable sub set of Y, Let
¢, ifx ¢ A
z € X then FE, = . Therefore
B, if x € A.
0, ifx ¢ A
g(z) = v(E:) = = v(B)Ca(z) = g = v(B)Ca = g is a non negative simple function. And f, gdp =
v(B), if z € A.

S 0(B)Caadu = v(B)u(A) = (1 x v)(A x B) = (1 x v)(E).
Case 2 : Suppose E € R,s, then E is a countable union of members of R. Since every countable union of semi algebra
can be written as a countable disjoint union of members of the given semi algebra, It follows that E is a countable disjoint

union of members of R. Let E = |J E,, where E,, is a disjoint sequence of members of R. This gives that
1

m=(UEO =|J(Ens) = v(Bs) =D v(En.) Vo € X. 3)

1 1

For a natural number n, define g, on X by gn(z) = v(Fns) * € X. By Case 1 g, is a non negative measurable and

/ gdp = (1 x v)(En) (@)
X
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From (3) we get g(z) = > gn(x) V2o € X = g =3 gn. By Monotone Convergence Theorem we get [, gdpu = > [ gndp =
1 1 n=1

5 ux o)(B) = ux0) ([ B ) = G x 0)(B) [From ()]

Case 3 : Assume that £ € R,s5, Then E = F%Fn where F,, € R, since R, is closed for finite intersections, we can
assume that F,, D F,4+1 for n = 1,2,.... Then lloy Caratheodory’s Extension Theorem we can find A € a, 3 E C A and
(pxv)(A) < (kL xv)(E)+1[e =1]. Define D,, = AN F,, thus D, € R,. Define h,(z) = v(Dns) for z € X. By Case 2 the

function h,, is non negative measurable and

/X Bndp = (1 x v)(Dh) (5)
nlin;o(Dn):ﬁDn:ﬁ(Aan):Am (ﬁFn) =ANE=E= (Dn)|E (6)

(11X 0)(Da) < (1 x 0)(A) < (% V)(E) +1 < o0

= (X 6)(Da) = (1 x 0)(E) = (1 x v)(E) = lim (4 x v)(Dy) (7)

From (6) we have (Dps) 4 Ex = v(Dng) = v(Ey) = g(x) = lim v(Dpy) = lim hp(z) = hn — g. As (Dyg) is a decreasing
n—oo n— oo

sequence it is clear that (h,) is a decreasing sequence. Thus 0 < h,, < h; V n [From (6)]

hi1 is integrable, hence by Dominated Convergence Theorem we get

[t = Jim [ hodi= Jim (e o)D) [From (5)]
— (uxv)(E) [From (7)]

O
Lemma 1.11. Let E be a measurable null set with (u x v)(E) = 0. Then for almost all z, E, is measurable and v(E;) = 0.

Proof. We can find F' € a,s and E C F such that (u X v)(F) = (uxv)(FE) [For € > 0 there exist A € ays such that £ C A
and p*(A) = p*(E)] = (1 x v)(E) = 0. Since a is the algebra generated by R we have aos = Ros = F € Ros. Hence F; is
measurable and g defined by g(z) = v(F;) is non negative measurable and [ gdp = (u X v)(F) = [gdu=0= g =0 a..

= v(Fy) = 0 for almost all x. But E; C F;, hence E, is measurable and v(E;) = 0 for almost all x. O

Proposition 1.12. Let E be any measurable set of finite measure with (u X v)(F) < co. Then E, is measurable for almost
all . If g s a non negative function such that g(x) = v(E;) whenever E, is measurable then g is measurable (In fact

Integrable) and [ gdp = (u X v)(E).

Proof. Let F € Ros such that E C F and (u X v)(E) = (u x v)(F). Define G = F — E. Then G is measurable and
(X v)(G) = (uxv)(F) — (ux v)(E) = 0. By the above Lemma G, is measurable and v(G5) = 0 for almost all x. Then
from G = F — E we get G, = F — E; = 0v(G,) = v(Fy) — v(Ey) = v(Fy) = v(E,) for almost all x. Let h be defined by
h(z) = v(F,) then h is non negative measurable and [ hdpu = (u X v)(F). But g(z) = v(E.) = v(Fz) = h(z) for almost all
X.

= g = h a.e. Hence g is measurable and [g= [h = (u x v)(F) = (p X 0)(E) = [gdp = (n x v)(E). O

Theorem 1.13 (Fubinis Theorem). Let (X, A, u) and (Y, B,v) be two complete measure spaces and Z = X x Y. Suppose

f be any integrable function on Z then
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(1) For almost all x € X, the function f. defined on Y by f(y) = f(z,y) is integrable on Y.

(1’) For almost all y € Y, the function f, defined on X by fy(z) = f(z,y) is integrable on X.

(2) [ fdv is integrable on X.
(2°) [ fdp is integrable on Y.

(3) [ [y fdvdp = [, fd(pxv) = [, [y fdpdv.

Proof.  Because of symmetry it is enough to prove (1), (2) and first part of (3).

First suppose that f is non negative.

Case 1 : Let f = Cg where E be any measurable set of finite measure, i.e. (1 x v)(E) < oo, this gives fo = (Cg)s = Crz =
[y fedv = [, Crpdv = v(E,)

Let g(z) = v(E.), by the proceeding theorem g is non negative integrable and [ gdpu = (u x v)(E). But g(z) = v(Ez) =
Sy fedv = [ gdp = [ (fy fodv)dp = [ (Jy fo)dp = (u x 0)(E) = [, Cod(p x v) = [, fa(ys x v)

g is integrable implies that g(z) is finite for almost all x = fY fzdv is finite for almost all x = f, is integrable for almost all
X.

Further g is integrable means fY fdv is integrable.

Case 2 : Since integral is a linear operator, it follows from Case 1 that the result holds for all non negative simple functions
which vanish outside set of finite measure.

Case 3 : Let f be any non negative integrable function. Let (¢,) be an increasing sequence of non negative simple
functions such that each ¢, vanish outside a set of finite measure and (¢,) 1 f. Then this gives (¢pnz) T f» and by M.C.T.

we get

[ gt = i [ (@udexo) (8)

& /Yfzdv: lim [ (¢nz)dv 9)

n—oo Y

Let g, = fY (¢n)dv. Then g, is non negative and measurable and

/Xgndu=/x(/y ¢ndv) dp. (10)

lim g, (2) =limy oo [y (¢ne)dv = [, fedv [From (9)] ie. gn T [, fedv = h (say). By M.C. T. we get

[ = [ ( / fdv> dn

= lim [ (gn)dp = lim /X/Y(qﬁm)dvdu [From (10)]

n—o0 J 5 n—roo

= lim [ (¢ne)d(p x v) [By Case 2]

n—oo z

/Z (Fd(u x v) By (8]

= [ Jy fdvdp = [, fd(uav) = [, [y fdudv. -

Theorem 1.14 (Tonelli’s Theorem). Let (X, A, u) and (Y, B,v) be two o-finite measure spaces and f be any non negative

measurable function on Z = X xY. Then

(1) For almost all x € X, the function fo defined on Y by f(y) = f(z,y) is non negative measurable

(1’) For almost all y € Y, the function f, defined on X by fy(x) = f(z,y)is non negative measurable.
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(2) [y fdv is non negative measurable on X.

(2°) [ fdp is non negative measurable on Y.

(3) fX (fy fd’U)d/.L = fZ fd(/.t X U) = fy (fX fd/.L)d’L}

Proof. Because of symmetry it is enough to prove (1), (2)and First part of (3).

Case 1: suppose f = Cg where E is a measurable set with (1 x v)(E) < co. Then for almost all z € X, E, is measurable.
Let g(x) = v(E%), whenever E, is measurable and g(z) = 0 otherwise. Then g is a non negative measurable function and
Jx 9dp = (u x v)(E). Since E, is measurable for almost all x and f, = (Cz), = Cg,. It follows that f, is non negative
measurable for all x. Further f,, fodv = [, Cr,dv =v(E:) = [, fzdv = g(z) for almost all x.

= [, fdv is also non negative measurable and [, ([, fdv)du = [y gdp = (p x v)(E) = [, Crd(u x v) = [, fd(p x v).
Case 2 : Since integral is a linear operator, therefore the theorem holds for all non negative simple functions which vanish
outside the set of finite measure.

Case 3 : Let f be any non negative measurable function. Since p and v are o-finite we see that p X v is also o—finite hence
there exists an increasing sequence (¢») of non negative simple functions such that ¢, 1 f and each ¢, vanishes outside a

set of finite measure. By M.C. T. we get

[ s = im [ @ o) (11)

As ¢p, T f it follows 0 < ¢y T f2 again by M.C.T. we obtain

/fzdv: lim (nz)dv (12)
Y

n— oo Y

Define gn(z) = [, (¢na)dv for £ € X. Then (g,) is an increasing sequence of non negative measurable functions and

lim gn(z) = lim [ (¢ne)dv [From (12)]

n—r00 n—o0o Jy-

= lim [ (fn)dv=h say

n—o0o Jy-

Then g, (z) + h. By M.C.T. [ hdp = [, ([, fedv)dp = nl;rl;o Jx (gn(x))dp = nl;ngo Jx (fy dndv)dp = nILH;O Sy (@n)(p xv) =
[, fd(u x v) [From (11)]. This proves the theorem. O
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