International Journal of Mathematics And its Applications

Concept of Quadratic Equation of Rectangle to Relation all Mathematics Method

Research Article

Mr.Deshmukh Sachin Sandipan ${ }^{1 *}$
1 Corps of Signal (Indian Army), Maharashtra, India.

Abstract

In this research paper, the equation of rectangle explained in the form of quadratic equation. In this research paper, the main quadratic equation of rectangle is $x^{2}-B(\square P Q R S) x+A(\square P Q R S)=0$, which is outcome of 'Basic theorem of perimeter relation of square-rectangle'. If the value of a is not equal to $1(a \neq 1)$, then the quadratic equation of rectangle is $a x^{2}-B(\square P Q R S) x+a \cdot A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)=0 \quad\left[a x^{2}-b x+c=0\right]$ and if the value of \mathbf{a} is $1(a=1)$, then quadratic equation of rectangle is $x^{2}-B(\square P Q R S) x+A(\square P Q R S)=0 \quad\left[x^{2}-b x+d=0\right]$. In this Research Paper Three methods of quadratic equation of rectangle are explained i.e. (i) Factorization method of rectangle (ii) Completing square of method of rectangle (iii) Formula method of rectangle. We are trying to give a new concept "Relation All Mathematics" to the world. I am sure that this concept will be helpful in Agricultural, Engineering, Mathematical world etc.

Keywords: Rectangle, Sidemeasurement, Relation, Formula, Quadratic equation.
(c) JS Publication.

1. Basic Concept

1.1. \quad Side measurement(B)

If sides of any geometrical figure are in right angle with each other, then those sides or considering one of the parallel and equal sides after adding them, the addition is the side measurement. Side measurement indicated with letter 'B'. Side measurement is a one of the most important concept and maximum base of the 'Relation All Mathematics' depends upon this concept

1.2. Important Points of Square-Rectangle Relation

I) For explanation of square and rectangle relation following variables are used
a) Area
-A
b) Perimeter -P
c) Side measurement $-B$
II) For explanation of square and rectangle relation following letters are used
a) Area of square ABCD

- $A(\square A B C D)$
b) Perimeter of square ABCD
$-P(\square A B C D)$

[^0]c) Side measurement of square ABCD
d) Area of rectangle PQRS
e) Perimeter of rectangle PQRS
f) Side measurement of rectangle PQRS
$-B(\square A B C D)$
$-A(\square P Q R S)$
$-P(\square P Q R S)$
$-B(\square P Q R S)$

1.3. Explanation of Quadratic Equation of Rectangle

Condition I : $a=1$

when $a=1$, then quadratic equation of rectangle explain as,
$x^{2}-B(\square P Q R S) x+A(\square P Q R S)=0$. i.e. $x^{2}-b x+d=0$, here $a=1, b=B(\square P Q R S)$ and $d=A(\square P Q R S)$ which is constant.

Condition II : $a \neq 1$

when $a \neq 1$, then quadratic equation of rectangle explain as,
$a x^{2}-B(\square P Q R S) x+a . A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)=0$. i.e. $a x^{2}-b x+c=0$, here $a \neq 1, b=B(\square P Q R S)$ and $c=a . c^{\prime}=a . A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)$ which is constant .

$$
a x^{2}-b x+a \cdot c^{\prime}=0
$$

2. Concept of Quadratic Equation of Rectangle

Quadratic equation of rectangle : Quadratic equation of rectangle is defind as, An equation that employs the variable of rectangle l_{1} or b_{1} having the general form $a x^{2}-b x+c=0$. In this equation multiplication of a and c (a.c') is area and b is side measurement of rectangle also a is never equal to zero and the variable is squared which will not a quire higher power.

Variable of rectangle quadratic equation(\mathbf{x}) : Length $\left(l_{1}\right)$ and width $\left(b_{1}\right)$ explain quadratic equation of rectangle, so it is called variable of quadratic equation of rectangle. But when quadratic equation is explained with variable length $\left(l_{1}\right)$ then factors of that equation is in the form of width $\left(b_{1}\right)$ and vise varsa. Variable of quadratic equation of rectangle is two i.e. l_{1} and b_{1}. Assume x instead of variables l_{1} and b_{1}. Now quadratic equation of rectangle written as, $x^{2}-B(\square P Q R S) x+$ $A(\square P Q R S)=0$.

2.1. Basic proof of quadratic equation method in quadratic equation of rectangle

Known information: In $\square A B C D$ and $\square P Q R S$,
$A(\square A B C D)=A(\square P Q R S) l^{2}=l_{1} \times b_{1}\left(\right.$ here $\left.l_{1}>l\right)$

Figure 1. Basic proof of quadratic equation of rectangle

To prove : $l_{1}^{2}-B(\square P Q R S) l_{1}+A(\square P Q R S)=0$

Proof : In $\square A B C D$ and $\square P Q R S, P(\square P Q R S)=P(\square A B C D) \times \frac{1}{2}\left[\frac{\left(n^{2}+1\right)}{n}\right]$ (Basic theorem of perimeter relation of square and rectangle)

$$
\begin{aligned}
P(\square P Q R S) & =\frac{1}{2}(4 l) \times\left[\frac{l_{1}^{2}+l^{2}}{l . l_{1}}\right] \cdots\left[\frac{\left(n^{2}+1\right)}{n}\right]=\left[\frac{l_{1}^{2}+l^{2}}{l . l_{1}}\right]=\left[\frac{\left.b_{1}^{2}+l^{2}\right)}{l . b_{1}}\right] \\
P(\square P Q R S) & =2\left[\frac{l_{1}^{2}+l^{2}}{l_{1}}\right] \\
\frac{P(\square P Q R S)}{2} l_{1} & =l_{1}^{2}+\left(l_{1} \times b_{1}\right) \ldots l^{2}=l_{1} \times b_{1} \\
\frac{P(\square P Q R S)}{2} l_{1} l_{1} & =l_{1}^{2}+A(\square P Q R S) \\
l_{1}^{2}-\frac{P(\square P Q R S)}{2} l_{1}+A(\square P Q R S) & =0 \text { but, } \\
\frac{P(\square P Q R S)}{2} & =B(\square P Q R S) \\
l_{1}^{2}-\left(l_{1}+b_{1}\right) l_{1}+l_{1} \cdot b_{1} & =0 \\
l_{1}^{2}-B(\square P Q R S) l_{1}+A(\square P Q R S) & =0
\end{aligned}
$$

This is basic proof of quadratic equation of Rectangle.
When area and side measurement of Rectangle are given then with the help of Quadratic equation of rectangle, we can find length and width of the Rectangle. Here $l_{1}^{2}-B(\square P Q R S) l_{1}+A(\square P Q R S)=0$ and $b_{1}^{2}-B(\square P Q R S) b_{1}+A(\square P Q R S)=0$ are two types of explanation which give basic proof of quadratic equation of Rectangle.

I) Concept of Factorization method of rectangle

Roots of quadratic equation of rectangle by factorization method of rectangle is length $\left(l_{1}\right)$ and width $\left(b_{1}\right)$ of that rectangle.

2.2. Basic proof of Factorization method of rectangle

I) Concept of factorization method of Rectangle in first quadrant

Known information In $\square P Q R S, A(\square P Q R S) l^{2}=l_{1} \times b_{1}$ (here, $l_{1}>l$). Side measurement of $\square P Q R S=B(\square P Q R S)$ $a=1, b=B(\square P Q R S)=\left(l_{1}+b_{1}\right), d=A(\square P Q R S)=l_{1} . b_{1}$

Figure 2. Factorization method of Rectangle in first quadrant

To prove : Factors of Rectangle $=\left\{l_{1}, b_{1}\right\}$
Proof : In first quadrant of $\square P Q R S, x^{2}-B(\square P Q R S) x+A(\square P Q R S)=0$. Basic proof of quadratic equation of rectangle

$$
\begin{aligned}
x^{2}-\left(l_{1}+b_{1}\right) x+l_{1} \cdot b_{1} & =0 \\
x^{2}-\left(b_{1}+l_{1}\right) x+l_{1} \cdot b_{1} & =0 \\
x^{2}-b_{1} x-l_{1} x+l_{1} \cdot b_{1} & =0 \\
x\left(x-b_{1}\right)-l_{1}\left(x-b_{1}\right) & =0 \\
\left(x-l_{1}\right)\left(x-b_{1}\right) & =0 \\
x-l_{1}=0, x-b_{1} & =0 \\
x=l_{1}, \quad x & =b_{1}
\end{aligned}
$$

Factors of Rectangle $=\left(l_{1}, b_{1}\right)$. In this concept factorization method of Rectangle is used to solve quadratic equation of Rectangle.This method clears, when area and side measurement of Rectangle are given and to find length and width of Rectangle in first quadrant.

In short:

i) Concept of factorization method of Rectangle in first quadrant

Side measurement of Rectangle
$-\quad\left(l_{1}+b_{1}\right)=B(\square P Q R S)$
Area of Rectangle $\quad-\quad l_{1} \cdot b_{1}=A(\square P Q R S)$
Basic formula of factorization method of Rectangle in first quadrant
$-x^{2}-B(\square P Q R S) x+A(\square P Q R S)=0$
Factors of Rectangle

- $\left(l_{1}, b_{1}\right)$
ii) Concept of factorization method of Rectangle in second quadrant

Side measurement of Rectangle

- $\left(b_{1}-l_{1}\right)=B(\square P Q R S)$

Area of Rectangle
$-\quad-\left(l_{1} \cdot b_{1}\right)=A(\square P Q R S)$
Basic formula of factorization method of Rectangle

- $\quad x^{2}-B(\square P Q R S) x-A(\square P Q R S)=0$

Factors of Rectangle

- $\left\{-l_{1}, b_{1}\right\}$
$x^{2}-\left(b_{1}-l_{1}\right) x-l_{1} \cdot b_{1}=0$
iii) Concept of factorization method of Rectangle in third quadrant

Side measurement of Rectangle
Area of Rectangle
Basic formula of factorization method of Rectangle Factors of Rectangle
$-\quad-\left(l_{1}+b_{1}\right)=B(\square P Q R S)$

- $\quad\left(l_{1} \cdot b_{1}\right)=A(\square P Q R S)$
$-x^{2}-B(\square P Q R S) x+A(\square P Q R S)=0$
$-\left\{-l_{1} .-b_{1}\right\}$
$x^{2}+\left(l_{1}+b_{1}\right) x+l_{1} \cdot b_{1}=0$
iv) Concept of factorization method of Rectangle in forth quadrant

Side measurement of Rectangle
Area of Rectangle
Basic formula of factorization method of Rectangle
Factors of Rectangle

- $\left(l_{1}-b_{1}\right)=B(\square P Q R S)$
$-\quad-\left(l_{1} \cdot b_{1}\right)=A(\square P Q R S)$
$-x^{2}-B(\square P Q R S) x+A(\square P Q R S)=0$
- $\left\{l_{1} .-b_{1}\right\}$
$x^{2}-\left(l_{1}-b_{1}\right) x-l_{1} \cdot b_{1}=0$

2.3. Coefficient relation of rectangle

$x^{2}-b x+d=0$ is basic proof of quadratic equation of rectangle. Inside it coefficient of x^{2} is 1 . That mean area of rectangle is $A(\square P Q R S)$ which is indicated with letter ' d 'and side measurement $B(\square P Q R S)$ which is indicated with letter ' b '. At this time that rectangle length l_{1} and width b_{1} respectively. If we change the length and width of rectangle in ratio 1:1, then coefficient of x^{2} i.e. a is created and multiplication of $a^{2} \& \mathrm{c}$ is the area i.e. 'd'. Now the new coefficient relation of factorization method of rectangle is explained below.

i) Relation : Proof of Coefficient relation of rectangle

Known information:

In $\square P Q R S, a=1$ and quadratic equation of rectangle is, $x^{2}-B(\square P Q R S) x+A(\square P Q R S)=0$. In this equation length and width of rectangle is l_{1} and b_{1}. But, when $\square P Q R S$ is converted in the form of $\square P Q^{\prime} R^{\prime} S^{\prime}$ where $a \neq 1$, then length
and width of that rectangle is l_{1} / a and b_{1} / a. With the help of this equation, length and width of rectangle change in equal ratio, then changes occurred in their area are explained in this coefficient relation of rectangle

Figure 3. Coefficient relation of rectangle

To prove : $\frac{A(\square P Q R S)}{A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)}=a^{2}$
Proof : In rectangle $\square P Q R S$,

$$
\begin{equation*}
A(\square P Q R S)=l_{1} \cdot b_{1} \tag{1}
\end{equation*}
$$

In rectangle $\square P Q^{\prime} R^{\prime} S^{\prime}$,

$$
\begin{align*}
& A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)=\frac{l_{1}}{a} \cdot \frac{b_{1}}{a} \tag{2}\\
& \frac{A(\square P Q R S)}{A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)}=\frac{l_{1} b_{1}}{\left[\frac{l_{1}}{a} \cdot \frac{b_{1}}{a}\right]} \text { from equation (1) and (2) } \\
& \frac{A(\square P Q R S)}{A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)}=a^{2}
\end{align*}
$$

This formula clears if the change in length and width happens in equal ratio and Side measurement of rectangle in equation no changed then we can find change in area with the help of this formula .

ii) Concept of coefficient relation in quadratic equation of rectangle

Coefficient relation of Rectangle, cleared that $A(\square P Q R S)=a^{2} \cdot A\left(\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)=d\right.$. So now quadratic equation Rectangle explained as, $a \cdot x^{2}-B(\square P Q R S) x+a \cdot A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)=0$. Inside this equation, coefficient of $x^{2}=a$, coefficient of $x=b$, and constant $=$ c. i.e. When quadratic equation of rectangle explained then its explanation given in the form of, $a x^{2}-b x+a . c^{\prime}=0$. Part of ' \mathbf{a} ' in quadratic equation of rectangle - Inside $a x^{2}-b x+a . c^{\prime}=0$, a is "Area coefficient of rectangle" which is has coefficient of x^{2}.

Area coefficient of rectangle: Area coefficient of rectangle is defined as, a real number which indicate that length and width of rectangle is divided in how many equal parts in equal ratio.
Part of ' \mathbf{b} ' in quadratic equation of rectangle - In $a x^{2}-b x+a . c^{\prime}=0, \mathrm{~b}$ is coefficient of x and its value b is $B(\square P Q R S)$ i.e. Side measurement.

Part of ' \mathbf{c} ' in quadratic equation of rectangle - Inside $a x^{2}-b x+a . c^{\prime}=0$, a.c' is constant of the quadratic equation of Rectangle. Here $a^{2} . c^{\prime}=A(\square P Q R S)=d$. Area of Rectangle is made up from multiplication of coefficient of x^{2} and constant of equation .i.e. $a . c^{\prime}=c$.

In this quadratic equation $\mathrm{a}=1$, then constant is indicated area of Rectangle $A(\square P Q R S)$, at that time length and width of Rectangle is l_{1} and b_{1}. But if $a \square 1$ then length and width of Rectangle is b / a and h / a. Here, $A(\square P Q R S)=l_{1} . b_{1}=a^{2} . c=$ $a^{2} x A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)=d$.
$x^{2}-b x+d=0$ is main proof of quadratic equation rectangle. At this time 1 is a coefficient of x^{2}. i.e. area and Side measurement of rectangle is d i.e. $A(\square P Q R S)$ and b i.e. $B(\square P Q R S)$. In this condition length and width of rectangle is l_{1} and b_{1}. Now this length and width incrigeous and decrigeous then coefficient of x^{2} is a and divided by c to a. Now become quadratic equation of rectangle is a $x^{2}-b x+c=0$, here $a \neq 1, b=B(\square P Q R S)$ and $c=a . c^{\prime}$ is constant.

Think it over : If Area of rectangle is $c[A(\square P Q R S)]$ and side measurement $b[B(\square P Q R S)]$ at that time value of a is 1 . As,

$$
\begin{aligned}
A(\square P Q R S) & =a^{2} \times c^{\prime} \\
& =a^{2} \times A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right) \\
& =a \times a \times A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right) \\
& =a \times c \text { but, } a=1 \\
& =d c=d \quad(a=1) \\
& =A(\square P Q R S)=l_{1} \cdot b_{1}
\end{aligned}
$$

iii) Proof of coefficient relation of factorization method in quadratic equation of rectangle

Known information : Quadratic equation of rectangle is $a x^{2}-b x+c=0 . a \neq 1, b=B(\square P Q R S), c=$ constant
To prove : $a x^{2}-b x+c=0$
Proof : In rectangle $\square P Q R S, x^{2}-b x+d=0$ Concept of quadratic equation of rectangle

$$
\begin{aligned}
x^{2}-B(\square P Q R S) x+A(\square P Q R S) & =0 \\
A(\square P Q R S) & =A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right) \cdot a^{2} \quad \text { Proof of Coefficient relation of rectangle } \\
x^{2}-B(\square P Q R S) x+A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right) \cdot a^{2} & =0 \ldots a \neq 1 \\
x^{2}-b x+c^{\prime} \cdot a^{2} & =0 \\
a x^{2}-b x+c^{\prime} \cdot a & =0 \\
a x^{2}-b x+c & =0
\end{aligned}
$$

Hence, we are proof that coefficient relation of factorization method in quadratic equation of rectangle. In this proof explained that when coefficient of x^{2} is ' a ' then a is cleared that length and width of rectangle is l_{1} / a and b_{1} / a. At that time area of rectangle $A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)$ is $l_{1} \cdot b_{1} / a^{2}$.

II) Concept of completing square method of rectangle

If critical to find length and width with factorization method of rectangle. At that time we can easy to find length and width with the help of completing square method of rectangle. Now we are study about completing square method of rectangle.

2.4. Basic proof of completing square method in quadratic equation of rectangle

Known information : In $\square P Q R S$,
Side measurement of $\square P Q R S=B(\square P Q R S)$.
Area of $\square P Q R S=A(\square P Q R S)$,
$A=1, b=B(\square P Q R S)=\left(l_{1}+b_{1}\right), d=A(\square P Q R S)=l_{1} \cdot b_{1}$

Figure 4. Completing square method in quadratic equation of rectangle

To prove : $\left[x-\frac{B(\square P Q R S)}{2}\right]^{2}=\frac{[B(\square P Q R S) 2-4 A(\square P Q R S)]}{4}$
Proof : $x^{2}-B(\square P Q R S) x+A(\square P Q R S)=0$. Basic proof of quadratic equation method of rectangle

$$
\begin{equation*}
x^{2}-B(\square P Q R S) x=-A(\square P Q R S) \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
\text { Third term } & =\left[\frac{1}{2} x \text { coefficient of } x\right]^{2} \\
& =\left[\frac{1}{2} x-B(\square P Q R S)\right]^{2} \\
& =\frac{[B(\square P Q R S)]^{2}}{4}
\end{aligned}
$$

Add the $\frac{[B(\square P Q R S)]^{2}}{4}$ in both sides of equation (3),

$$
\begin{aligned}
x^{2}-B(\square P Q R S) x+\frac{[B(\square P Q R S)]^{2}}{4} & =\frac{[B(\square P Q R S)]^{2}}{4}-A(\square P Q R S) \\
{\left[x-\frac{B(\square P Q R S)}{2}\right]^{2} } & =\frac{[B(\square P Q R S)]^{2}-4 A(\square P Q R S)}{4} .
\end{aligned}
$$

Hence we are proof Basic proof of completing square method in quadratic equation of rectangle.
Now with the help of this proof we are try to understand length and width in each quadrant when we are know the area and Side measurement of rectangle.

In this equation, value of a is 1 , that's mean area of rectangle is d . Now value of a is $a \neq 1$, then quadratic equation reference is a $x^{2}-b x+c=0$, here $a \neq 1, b=B(\square P Q R S)$ and $c=a . c^{\prime}$ is constant. So Basic proof of completing square method of rectangle explain as below.

$$
\begin{aligned}
{\left[x-\frac{B(\square P Q R S)}{2}\right]^{2} } & =\frac{[B(\square P Q R S)]^{2}-4 A(\square P Q R S)}{4} \\
A(\square P Q R S) & =A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right) \cdot a^{2} . \text { Proof of Coefficient relation of rectangle } \\
{\left[x-\frac{B(\square P Q R S)}{2}\right]^{2} } & =\frac{[B(\square P Q R S)]^{2}-4 \cdot a^{2} \cdot A\left(P Q^{\prime} R^{\prime} S^{\prime}\right)}{4}
\end{aligned}
$$

Now we are find coefficient relation in completing square method in quadratic equation of rectangle.

2.5. Proof of quadratic equation of Seg-rectangle

In a quadratic equation of Rectangle, if the width of Seg- area Rectangle is zero then length is equal to side-measurement of Rectangle.

Known information : In $\square P Q-R S, b=0$
$A(\square P Q-R S)=0$ and $B(\square P Q-R S)=2 l$

Figure 5. Quadratic equation of Seg-rectangle

To prove : $\quad x^{2}-B(\square P Q-R S) x=0$ is zero rectangle equation
Proof : In $\square P Q-R S$,

$$
\left.\left.\begin{array}{rl}
x^{2}-B(\square P Q-R S) x+A(\square P Q R S) & =0 . \text { Basic proof of factorization method of rectangle } \\
x^{2}-\left(l_{1}+b_{1}\right) x+0 & =0 \\
x^{2}-(2 l) x & =0 . \text { Given } \\
x(x-2 l) & =0 \\
x-2 l & =0, x
\end{array}\right)=0 \text {. } \quad \begin{array}{rl}
x & =2 l, x
\end{array}\right)=0
$$

Hence we have proof that, quadratic equation of Seg-rectangle. In this equation, width of rectangle is zero i.e length of rectangle is $2 l$. Here equation is gives support to seg-rectangle theorem. Hence this equation is called quadratic equation of seg-rectangle. So that $x^{2}-B(\square P Q-R S) x=0$ is zero rectangle quadratic equation

III) Concept of formula method of rectangle

Formula method of rectangle is a one of a great concept, to find length and width of rectangle. Area and side measurement of rectangle known then with the help of that equation we can be find length and width of rectangle. So we are proof formula method of rectangle. This method through length and width explained as below

2.6. Proof of formula method of rectangle

Known information : In, $\square P Q R S$, Side measurement of $\square P Q R S=B(\square P Q R S)$, Area of $\square P Q R S=A(\square P Q R S), a=1$, $b=B(\square P Q R S), d=A(\square P Q R S)$

Figure 6. Formula method of rectangle

To prove : $\quad x=\frac{B(\square P Q R S) \pm \sqrt{B(\square P Q R S)^{2}-4 A(\square P Q R S)}}{2 a}$
Proof : In $\square P Q R S$,

$$
\begin{array}{r}
a x^{2}-b x+c=0 \\
a x^{2}-B(\square P Q R S) x+a \cdot A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)=0 \\
a x^{2}-B(\square P Q R S) x=-a \cdot A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right) \tag{4}
\end{array}
$$

Divided both sides of equation (4) by a $\ldots(a \neq 1)$

$$
\begin{align*}
& x^{2}-\frac{A(P Q R S)}{a} x=-\frac{a \cdot A\left(P Q^{\prime} R^{\prime} S^{\prime}\right)}{a} \\
& x^{2}-\frac{A(P Q R S)}{a} x=-A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right) \tag{5}
\end{align*}
$$

$$
\begin{aligned}
\text { Third term } & =\left[\frac{1}{2} \mathrm{x} \text { coefficient } \mathrm{x}\right]^{2} \\
& =\left[\frac{1}{2} x-\frac{B(\square P Q R S)}{a}\right]^{2} \\
& =\frac{B(P Q R S)^{2}}{4 a^{2}}
\end{aligned}
$$

Both sides of equation (4) added by $\frac{B(\square P Q R S)^{2}}{4 a^{2}}$

$$
\begin{aligned}
x^{2}-\frac{B(\square P Q R S)}{a} x+\frac{B(\square P Q R S)^{2}}{4 a^{2}} & =\frac{B(\square P Q R S)^{2}}{4 a^{2}}-A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right) \\
x^{2}-2 \frac{B(\square P Q R S)}{2 a} x+\frac{B(\square P Q R S)^{2}}{4 a^{2}} & =\frac{B(\square P Q R S)^{2}}{4 a^{2}}-\frac{4 a^{2} \cdot A\left(P Q^{\prime} R^{\prime} S^{\prime}\right)}{4 a^{2}} \\
{\left[x-\frac{B(\square P Q R S)}{2 a}\right]^{2} } & =\frac{B(\square P Q R S)^{2}-4 a^{2} \cdot A\left(P Q^{\prime} R^{\prime} S^{\prime}\right)}{4 a^{2}} \\
{\left[x-\frac{B(\square P Q R S)}{2 a}\right] } & = \pm \frac{\sqrt{B(\square P Q R S)^{2}-4 a^{2} \cdot A\left(P Q^{\prime} R^{\prime} S^{\prime}\right)}}{2 a} \\
\ldots A(\square P Q R S) & =a^{2} \cdot A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)=d \\
x & =\frac{B(\square P Q R S)}{2 a} \pm \frac{\sqrt{B(\square P Q R S)^{2}-4 . A(\square P Q R S)}}{2 a} \\
x & =\frac{B(\square P Q R S) \pm \sqrt{B(\square P Q R S)^{2}-4 \cdot A(\square P Q R S)}}{2 a}
\end{aligned}
$$

Hence we are proof that formula method of rectangle. Length and width of rectangle outcomes form quadratic equation of rectangle which explain as bellow

$$
\begin{aligned}
& l_{1}=\frac{B(P Q R S)+\sqrt{B(P Q R S)^{2}-4 A(P Q R S)}}{2 a} \\
& b_{1}=\frac{B(P Q R S)-\sqrt{B(P Q R S)^{2}-4 A(P Q R S)}}{2 a}
\end{aligned}
$$

This method explain that, we are know area and side measurement of rectangle then we can be find length and width of rectangle with the help of this quadratic equation. But here value of a is 1 , that's means area of rectangle is $c=(\square P Q R S)$. But when $a \neq 1$ then formula method explained as below.

$$
\begin{aligned}
x & =\frac{B(\square P Q R S) \pm \sqrt{B(\square P Q R S)^{2}-4 . A(\square P Q R S)}}{2 a} \\
\frac{A(\square P Q R S)}{A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right)} & =a^{2} \\
A(\square P Q R S) & =a^{2} \times A\left(\square P Q^{\prime} R^{\prime} S^{\prime}\right) \\
x & =\frac{B(\square P Q R S) \pm \sqrt{B(\square P Q R S)^{2}-4 . a^{2} \cdot A\left(P Q^{\prime} R^{\prime} S^{\prime}\right)}}{2 a}
\end{aligned}
$$

This formula is used to find length and width of rectangle so that this formula is also known as proof of coefficient relation in formula method of rectangle. As formula method of rectangle outcomes length and width is bellow.

$$
\begin{aligned}
& l_{1}=\frac{B(P Q R S)+\sqrt{B(P Q R S)^{2}-4 A(P Q R S)}}{2 a} \\
& b_{1}=\frac{B(P Q R S)-\sqrt{B(P Q R S)^{2}-4 A(P Q R S)}}{2 a}
\end{aligned}
$$

3. Conclusion

Quadratic equation of rectangle (Relation All Mathematics) this research article conclude that relation of area and Side measurement of rectangle with the form of quadratic equation.

Acknowledgement

The present invention is published by with support of Corps of Signals (Indian Army). Also the author would like to thank the anonymous referee(s) for their careful checking of the details, valuable suggestions and comments that improved this research paper.

References

[1] Deshmukh Sachin Sandipan, Area and perimeter relation of square and rectangle(Relation All Mathematics), IOSR Journal of Mathematics, 10(6 Ver. VI)(2014), 1-7.
[2] Deshmukh Sachin Sandipan, Area and sidemeasurement relation of two right angled triagnel (Relation All Mathematics), IOSR Journal of Mathematics, 11(2 Ver. II)(2015), 5-13.
[3] Deshmukh Sachin Sandipan, Volume mensuration relation of two cuboids (Relation All Mathematics), International Journal of Mathematics Trends and Technology, 19(2)(2015), 112-120.
[4] Deshmukh Sachin Sandipan, Surface area mensuration relation of two cuboids (Relation All Mathematics), International Journal of Mathematics Trends and Technology, 23(1)(2015), 6-19.
[5] Deshmukh Sachin Sandipan, Concept of quadratic equation of right angled triangle to relation all mathematics method), IJMR, 7(1)(2015), 75-90
[6] Deshmukh Sachin Sandipan, The great method of Relation all Mathematics, KavitaSagar Publication, Jaysingpur (2015).

[^0]: * E-mail: siingam@yahoo.com

