

International Journal of Mathematics And its Applications

Tietze's Extension Theorem for Intuitionistic Fuzzy ζ -Basically Disconnected Spaces in Katetov-Tong's Sense

Research Article

S.Sharmila^{1*} and I.Arockiarani¹

1 Department of Mathematics, Nirmala College for women, Coimbatore, Tamilnadu, India.

Abstract: In this paper we initiate the concept of ζ-basically disconnectedness in intuitionistic fuzzy topological spaces. We also apply these notions of ζ-basically disconnectedness to analyse and prove Tietze extension theorem.
MSC: 54A40, 03E72.

Keywords: Intuitionistic fuzzy ζ space, Intuitionistic fuzzy ζ-basically disconnected space, Intuitionistic fuzzy real line, Intuitionistic fuzzy unit interval, Lower (Upper) intuitionistic fuzzy ζ-continuous function.
(C) JS Publication.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [14]. Fuzzy basically disconnected spaces was discussed and studied in [12]. Bruce Hutton [7] constructed an interesting L-fuzzy topological space called L-fuzzy unit interval which plays the same role in fuzzy topology. Using the concept of L-fuzzy unit interval, Tomasz Kubiaz [10, 11] extended the Urysohn lemma and Tietze extension theorem for L-fuzzy normal spaces. Atanassov [1] generalised intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [5] introduced the notion of an intuitionistic fuzzy topological spaces. In this paper we introduce and study the concept of an intuitionistic fuzzy ζ -basically disconnected space. An approach to Tietze's extension theorem for intuitionistic fuzzy ζ -basically disconnected space has been established based on Kotetov and Tong [8, 9, 13].

2. Preliminaries

Definition 2.1 ([5]). An intuitionistic fuzzy set (IFS, in short) A in X is an object having the form $A = \{x, \mu_A(x), v_A(x)/x \in X\}$ where the functions $\mu_A : X \to I$ and $v_A : X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $v_A(x)$) of each element $x \in X$ to the set A on a nonempty set X and $0 \le \mu_A(x) + v_A(x) \le 1$ for each $x \in X$. Obviously every fuzzy set A on a nonempty set X is an IFS's A and B be in the form $A = \{x, \mu_A(x), 1 - \mu_A(x)/x \in X\}$.

Definition 2.2 ([5]). Let X be a nonempty set and the IFS's A and B be in the form $A = \{x, \mu_A(x), v_A(x)/x \in X\}$, $B = \{x, \mu_B(x), v_B(x)/x \in X\}$ and let $A = \{A_j : j \in J\}$ be an arbitrary family of IFS's in X. Then we define

^{*} E-mail: sharmi.skumar@gmail.com

- (i) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\upsilon_A(x) \geq \upsilon_B(x)$ for all $x \in X$.
- (ii) A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- (iii) $\overline{A} = \{x, v_A(x), \mu_A(x) | x \in X\}$. \overline{A} is the complement of A.
- (*iv*) $A \cap B = \{x, \mu_A(x) \cap \mu_B(x), \upsilon_A(x) \cup \upsilon_B(x) | x \in X\}.$
- (v) $A \cup B = \{x, \mu_A(x) \cup \mu_B(x), v_A(x) \cap v_B(x) | x \in X\}.$
- (vi) $1_{\sim} = \{ \langle x, 1, 0 \rangle \, x \in X \}$ and $0_{\sim} = \{ \langle x, 0, 1 \rangle \, x \in X \}.$

Definition 2.3 ([5]). An intuitionistic fuzzy topology (IFT, in short) on a nonempty set X is a family τ of an intuitionistic fuzzy set (IFS, in short) in X satisfying the following axioms:

- (*i*) $0_{\sim}, 1_{\sim} \in \tau$.
- (ii) $A_1 \cap A_2 \in \tau$ for any $A_1, A_2 \in \tau$.
- (iii) $\cup A_j \in \tau$ for any $A_j : j \in J \subseteq \tau$.

In this paper we denote intuitionistic fuzzy topological space (IFTS, in short) by (X, τ) , (Y, κ) or X, Y. Each IFS which belongs to τ is called an intuitionistic fuzzy open set (IFOS, in short) in X. The complement \overline{A} of an IFOS A in X is called an intuitionistic fuzzy closed set (IFCS, in short). An IFS X is called intuitionistic fuzzy clopen (IF clopen) iff it is both intuitionistic fuzzy open and intuitionistic fuzzy closed.

Definition 2.4 ([5]). Let (X, τ) be an IFTS and $A = \{x, \mu_A(x), v_A(x)\}$ be an IFS in X. Then the fuzzy interior and closure of A are denoted by

- (i) $cl(A) = \bigcap \{ K: K \text{ is an IFCS in } X \text{ and } A \subseteq K \}.$
- (ii) $int(A) = \bigcup \{ G: G \text{ is an IFOS in } X \text{ and } G \subseteq A \}.$

Note that, for any IFS A in (X, τ) , we have $cl(\overline{A}) = \overline{int(A)}$ and $int(\overline{A}) = \overline{cl(A)}$.

Definition 2.5 ([6]). Let a and b be two real numbers in [0,1] satisfying the inequality $a + b \le 1$. Then the pair $\langle a, b \rangle$ is called an intuitionistic fuzzy pair. Let $\langle a_1, b_1 \rangle$, $\langle a_2, b_2 \rangle$ be two intuitionistic fuzzy pairs. Then

- $(i) < a_1, b_1 \ge \le < a_2, b_2 > if and only if a_1 \le a_2 and b_1 \ge b_2.$
- $(ii) < a_1, b_1 > = < a_2, b_2 > if and only if <math>a_1 = a_2$ and $b_1 = b_2$.
- (iii) If $\{\langle a_i, b_i \rangle : i \in J\}$ is a family of intuitionistic fuzzy pairs, then $\cup \langle a_i, b_i \rangle = \langle \cup a_i, \cap b_i \rangle$ and $\cap \langle a_i, b_i \rangle = \langle \cap a_i, \cup b_i \rangle$.
- (iv) The complement of an intuitionistic fuzzy pair $\langle a, b \rangle$ is the intuitionistic fuzzy pair defined by $\overline{\langle a, b \rangle} = \langle b, a \rangle$
- (v) $1^{\sim} = <1, 0 > and 0^{\sim} = <0, 1 >.$

Definition 2.6 ([4]). Let X be a nonempty set and $A \subset X$. The characteristic function of A is denoted and defined by $\chi_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}$. **Definition 2.7** ([2]). Let (X, τ) be a fuzzy topological space and be a fuzzy set in X. Then λ is called fuzzy G_{δ} if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ where each $\lambda_i \in T$. The complement of fuzzy G_{δ} is F_{σ} .

Definition 2.8 ([3]). A fuzzy bitopological space (X, τ_1, τ_2) is said to be pairwise fuzzy basically disconnected if τ_1 -closure of each τ_2 -fuzzy open, τ_2 -fuzzy F_{σ} is τ_2 -fuzzy open and τ_2 -closure of each τ_1 -fuzzy open, τ_1 -fuzzy F_{σ} is τ_1 -fuzzy open.

Definition 2.9 ([5]). An IFTS X is called fuzzy compact if and only if every fuzzy open cover has a finite subcover.

3. An Intuitionistic Fuzzy ζ -basically Disconnected Spaces

Definition 3.1. Let (X, τ) be an intuitionistic fuzzy noncompact space. Let Ψ be a collection of all intuitionistic fuzzy sets which are both intuitionistic fuzzy closed set and intuitionistic fuzzy compact set in X. Let $U^+ = \{A \in \Psi : A \cap U \neq 0_{\sim}, U \in \tau\}$ and $V^- = \{A \in \Psi : A \cap V = 0_{\sim} : V \text{ is an intuitionistic fuzzy compact set in } X\}$. Then the collection $\zeta = \{A : \overline{A} \in U^+\} \cup \{B : \overline{B} \in V^-\}$ is said to be intuitionistic fuzzy ζ -structure on X and the pair (X, ζ) is said to be an intuitionistic fuzzy ζ -space.

Notation 3.2. Each member of an intuitionistic fuzzy ζ -structure is an intuitionistic fuzzy ζ -open set. The complement of an intuitionistic fuzzy ζ -open set is an intuitionistic fuzzy ζ -closed set.

Example 3.3. Let $X = \{a, b\}$ be a nonempty set. Let $G_1 = \langle x, (0.4, 0.4), (0.4, 0.4) \rangle$ and $G_2 = \langle x, (0.5, 0.5), (0.4, 0.4) \rangle$ be IFS of X. Then the family $\tau = \{0_{\sim}, 1_{!}, G_{1}, G_{2}\}$ be IFT on X. Thus (X, τ) be an intuitionistic fuzzy noncompact space. Now, $\Psi = \{0_{\sim}, 1_{\sim}, \overline{G_1}, \overline{G_2}\}$ is the collection of all IFS which are both intuitionistic fuzzy closed set and intuitionistic fuzzy compact set in X. Consider $U^+ = \{\overline{G_1}, \overline{G_2}, 1_{\sim}\}$ and $V^- = \{\overline{0_{\sim}}, \overline{G_1}, \overline{G_2}, 1_{\sim}\}$. Then $\zeta = \{0_{\sim}, 1_{\sim}, \overline{G_1}, \overline{G_2}\}$ is an intuitionistic fuzzy ζ -structure. Thus (X, ζ) is an intuitionistic fuzzy ζ -space.

Definition 3.4. Let (X, ζ) be an intuitionistic ζ -fuzzy space. For an IFS A on X, the intuitionistic fuzzy ζ -closure of A and the intuitionistic fuzzy ζ -interior of A are defined by $IF\zeta cl(A) = \cap\{B : B = \langle x, \mu_B, v_B \rangle$ is an $IF\zeta CS$ in X and $A \subseteq B\}$, $IF\zeta int(A) = \cup\{B : B = \langle x, \mu_B, v_B \rangle$ is an $IF\zeta OS$ in X and $B \subseteq A\}$.

Remark 3.5. Let (X, ζ) be an intuitionistic fuzzy ζ -space. Then for any IFS A in X,

- (i) $IF\zeta int(A) \subseteq A \subseteq IF\zeta cl(A)$
- (ii) $IF\zeta cl(\overline{A}) = \overline{IF\zeta int(A)}, IFint(\overline{A}) = \overline{IF\zeta cl(A)}.$

Definition 3.6. Let (X,ζ) be an intuitionistic fuzzy ζ -space. An IFS A is said to be an intuitionistic fuzzy ζG_{δ} set (in short, $IF\zeta G_{\delta}S$) if $A = \bigcap_{i=1}^{\infty} A_i$, where each $A_i \in \zeta$. The complement of intuitionistic fuzzy ζG_{δ} set is said to be an intuitionistic fuzzy ζF_{δ} set (in short, $IF\zeta F_{\delta}S$) set.

Notation 3.7. Let (X, ζ) be an intuitionistic fuzzy ζ -space.

- (i) An intuitionistic fuzzy ζ open F_{δ} (in short, $IF\zeta OF_{\delta}$) set is an IFS which is both $IF\zeta OS$ and $IF\zeta F_{\delta}$.
- (ii) An intuitionistic fuzzy ζ closed G_{δ} (in short, $IF\zeta CG_{\delta}$) set is an IFS which is both $IF\zeta CS$ and $IF\zeta G_{\delta}$.
- (iii) An intuitionistic fuzzy ζ closed open $G_{\delta}F_{\sigma}$ (in short, $IF\zeta COGF$) set is an intuitionistic fuzzy set which is both $IF\zeta OF_{\sigma}$ and $IF\zeta CG_{\sigma}$.

Definition 3.8. Let (X, ζ) be an intuitionistic fuzzy ζ -space. Then (X, τ) is said to be an intuitionistic fuzzy ζ -basically disconnected space, if the intuitionistic fuzzy ζ closure of every $IF\zeta OF_{\sigma}$ set is an $IF\zeta OS$.

Example 3.9. In the above example 3.3, (X, ζ) is intuitionistic fuzzy ζ -basically disconnected space.

Theorem 3.10. Let (X,ζ) be an intuitionistic fuzzy ζ -space. Then the following statements are equivalent.

- (i) (X, ζ) is an intuitionistic fuzzy ζ -basically disconnected space.
- (ii) For each $IF\zeta CG_{\delta}$ set A, we have $IF\zeta int(A)$ is an $IF\zeta CS$.
- (iii) For each $IF\zeta OF_{\sigma}$ set A, we have $IF\zeta cl(IF\zeta int(\overline{A})) = \overline{IF\zeta cl(A)}$.

(iv) For an $IF\zeta OF_{\sigma}$ set A and for any IFS B with $IF\zeta cl(A) = \overline{B}$, we have $IF\zeta cl(B) = \overline{IF\zeta cl(A)}$.

Proof. $(i) \Rightarrow (ii)$. Let A be an $IF\zeta CG_{\delta}$ set. Then \overline{A} is an $IF\zeta OF_{\sigma}$ set. By assumption (i) $IF\zeta Cl(\overline{A})$ is an $IF\zeta OS$. Now, $IF\zeta cl(\overline{A}) = \overline{IF\zeta int(A)}$. Hence $IF\zeta int(A)$ is an $IF\zeta CS$.

 $(ii) \Rightarrow (iii)$. Let A be an $IF\zeta OF_{\sigma}$ set. Then \overline{A} is an $IF\zeta CG_{\delta}$ set. By assumption (ii) $IF\zeta \operatorname{int}(\overline{A})$ is an $IF\zeta CS$. Consider $IF\zeta cl(IF\zeta \operatorname{int}(\overline{A})) = IF\zeta \operatorname{int}(\overline{A}) = \overline{IF\zeta cl(A)}$.

 $(iii) \Rightarrow (iv)$. Let A be an $IF\zeta OF_{\sigma}$ set and for any IFS B such that $IF\zeta cl(A) = \overline{B}$. By (iii), $IF\zeta cl(IF\zeta int(\overline{A})) = \overline{IF\zeta cl(A)} = IF\zeta int(\overline{A})$. IF $\zeta int(\overline{A})$. That is, $IF\zeta cl(B) = IF\zeta int(\overline{A})$.

 $(iv) \Rightarrow (i)$. Let A be any $IF\zeta OF_{\sigma}$ set. Let $\overline{IF\zeta cl(A)} = B$. By (iv), it follows that $IF\zeta cl(B) = I\overline{F\zeta cl(A)}$. That is, $I\overline{F\zeta cl(A)}$ is an $IF\zeta CS$. This implies that $IF\zeta cl(A)$ is an $IF\zeta OS$. Hence (X,ζ) is intuitionistic fuzzy ζ -basically disconnected space.

Theorem 3.11. Let (X, ζ) be an intuitionistic fuzzy ζ space. Then (X, ζ) is intuitionistic fuzzy ζ -basically disconnected space if and only if for each $IF\zeta OF_{\sigma}$ set A and $IF\zeta CG_{\delta}$ set B such that $A \subseteq B$, $IF\zeta cl(A) \subseteq IF\zeta int(B)$.

Proof. Let A be an $IF\zeta OF_{\sigma}$ set and B be $IF\zeta CG_{\delta}$ set such that $A \subseteq B$. Then by (ii) of Theorem 3.10, $IF\zeta int(B)$ is an $IF\zeta CS$. Also, since A is an $IF\zeta OF_{\sigma}$ set, $IF\zeta cl(A) \subseteq IF\zeta int(B)$.

Conversely, Let B be any $IF\zeta CG_{\delta}$ set. Then $IF\zeta int(B)$ is an $IF\zeta OS$ and $IF\zeta int(B) \subseteq B$. By assumption, $IF\zeta cl(IF\zeta int(B)) \subseteq IF\zeta int(B)$. Also we know that $IF\zeta cl(IF\zeta int(B)) \subseteq IF\zeta int(B)$. This implies that $IF\zeta cl(IF\zeta int(B)) =$ $IF\zeta int(B)$. Therefore, $IF\zeta int(B)$ is an $IF\zeta CS$. Hence by (ii) of Theorem 3.10, it follows that (X, ζ) is intuitionistic fuzzy ζ -basically disconnected space.

Remark 3.12. Let (X, ζ) be an intuitionistic fuzzy ζ -basically disconnected space. Let $\{A_i, \overline{B_i}/i \in N\}$ be collection such that A_i 's are $IF\zeta OF_{\sigma}$ and B_i 's are $IF\zeta CG_{\sigma}$ sets. If $A_i \subseteq A \subseteq B_j$ and $A_i \subseteq A \subseteq B_j$ for all $i, j \in N$, then there exists an $IF\zeta COGF$ set C such that $IF\zeta cl(A_i) \subseteq C \subseteq IF\zeta int(B_j)$ for all $i, j \in N$.

Proof. By Theorem 3.11, $IF\zeta cl(A_i) \subseteq IF\zeta cl(A) \cap IF\zeta int(B) \subseteq IF\zeta int(B_j)$ for all $i, j \in N$. Letting $C = IF\zeta cl(A) \cap IF\zeta int(B)$ in the above, we have C is an $IF\zeta COGF$ set satisfying the required conditions.

Theorem 3.13. Let (X, ζ) be an intuitionistic fuzzy ζ -basically disconnected space. Let $\{A_q\}_{q \in Q}$ and $\{B_q\}_{q \in Q}$ be monotone increasing collections of $IF\zeta OF_{\sigma}$ an sets and $IF\zeta CG_{\delta}$ of (X, τ) . Suppose that $A_{q1} \subseteq B_{q2}$ whenever $q_1 < q_2$ (Q is the set of all rational numbers). Then there exists a monotone increasing collection $\{C_q\}_{q \in Q}$ of an $IF\zeta COGF$ sets of (X, τ) such that $IF\zeta cl(A_{q1}) \subseteq C_{q2}$ and $C_{q1} \subseteq IF\zeta int(B_{q2})$ whenever $q_1 < q_2$.

Proof. Let us arrange all rational numbers into a sequence $\{q_n\}$ (without repetitions). For every $n \ge 2$, we shall define inductively a collection $\{C_{qi}/1 \le i < n\} \subset \Omega^X$ such that $IF\zeta cl(A_q) \subseteq C_{qi}$, $C_{qi} \subseteq IF\zeta int(B_q)$ if $q_i < q$, for all i < n. By Theorem 3.11 the countable collections $\{IF\zeta cl(A_q)\}$ and $\{IF\zeta int(B_q)\}$ satisfy $IF\zeta cl(A_{q1}) \subseteq IF\zeta int(B_{q2})$ if $q_1 < q_2$. By Remark 3.12, there exists an $IF\zeta COGF$ set D_1 such that $IF\zeta cl(A_{q1}) \subseteq D_1 \subseteq IF\zeta int(B_{q2})$. Letting $C_{q1} = D_1$, we get (S_2) . Assume that IFSs C_{qi} , are already defined for i < n and satisfy (S_n) . Define E = $\cup \{C_{qi}/i < n, q_i < q_n\} \cup A_{qn} \text{ and } F = \cap \{C_{qj}/j < n, q_j < q_n\} \cup B_{qn}. \text{ Then } IF\zeta cl(C_{qi}) \subseteq IF\zeta cl(E) \subseteq IF\zeta int(C_{qj})$ and $IF\zeta cl(C_{qi}) \subseteq IF\zeta int(F) \subseteq IF\zeta int(C_{qj})$ whenever $q_i < q_n < q_j(i, j < n)$, as well as $A_q \subseteq IF\zeta cl(E) \subseteq B'_q$ and $A_q \subseteq IF\zeta$ int $(F) \subseteq B'_q$ whenever $q < q_n < q'$. This shows that the countable collections $\{C_{qi}/i < n, q_i < q_n\} \cup A_q/q < q_n\}$ and $\{C_{qj}/j < n, q_j < q_n\} \cup \{B_q/q > q_n\}$ together with E and F fulfil the conditions of Remark 3.12. Hence, there exists an $IF\zeta COGF$ set D_n such that if $IF\zeta cl(D_n) \subseteq B_q$, $q_n < q$, $A_q \subseteq IF\zeta int(D_n)$, $q < q_n$, $IF\zeta cl(C_{qi}) \subseteq IF\zeta int(D_n)$ if $q_i < q_n$, $IF\zeta cl(D_n) \subseteq IF\zeta int(C_{qi})$ if $q_n < q_j$ where $1 \le i, j \le n-1$. Letting $C_{qn} = D_n$ we obtain IFSs $C_{q1}, C_{q2}, \ldots C_{qn}$ that satisfy (S_{n+1}) . Therefore, the collection $\{C_{qi}/i = 1, 2, ...\}$ has the required property.

Tietze's Extension Theorem for an Intuitionistic Fuzzy Basically 4. Disconnected Space

Notation 4.1. The family of all IFSs in \Re is denoted by ζ_{\Re} .

Definition 4.2. An intuitionistic fuzzy real line is the set of all monotone decreasing IFS $A \in \zeta_{\mathfrak{R}}$ satisfying $\cup \{A(t) : t \in \mathcal{S}\}$ \Re = 1, and \cap { $A(t) : t \in \Re$ } = 0, after the identification of an IFSs $A, B \in \Re_I(I)$ if and only if A(t-) = B(t-) and A(t+) = B(t+) for all $t \in \mathfrak{R}$ where $A(t-) = \cap \{A(s) : s < t\}$ and $A(t+) = \cup \{A(s) : s > t\}$. The intuitionistic fuzzy unit interval I(I) is a subset of $\Re(I)$ such that $[A] \in I(I)$ if the membership and nonmembership of an IFS line $\Re(I)A \in \zeta_R$ are $defined \ by \ \mu_A(t) = \begin{cases} 1, \ t < 0; \\ 0, \ t > 1. \end{cases} (I) \ subset view [II] \ C \ (z) \$

are given by $L_t[A] = \overline{A(t-)}$ and $R_t[A] = A(t+)$ respectively.

Definition 4.3. Let (X,ζ) be intuitionistic fuzzy ζ -space. A function $f: X \to \Re(I)$ is said to be lower (resp. upper) intuitionistic fuzzy ζ -continuous function if $f^{-1}(\Re_t)(f^{-1}(L_t))$ is an $IF\zeta OF_{\sigma}$ set, for each $t \in \Re$.

Notation 4.4. Let X be any nonempty set and $A \in \zeta^X$. Then for $x \in X$, $\langle \mu_A(x), \upsilon_A(x) \rangle$ is denoted by A^{\sim} .

Definition 4.5. Let X be any nonempty set. An intuitionistic fuzzy characteristic function of an IFS $A \in \zeta^X$ is a map $\psi_A: X \to I(I)$ is defined by $\psi_A(x) = A^{\sim}$, for each $x \in X$, $t \in \Re$.

Let (X, τ) be intuitionistic fuzzy ζ space and let A be an IFS in X. Let $f : X \to \Re(I)$ be such that

 $f(x)(t) = \begin{cases} 1^{\sim}, t < 0 \\ A^{\sim}, 0 \le t \le 1 & \text{for all } x \in X \text{ and } t \in \Re. \text{ Then } f \text{ is an lower (resp.upper) intuitionistic fuzzy } \zeta - \text{continuous} \\ 0^{\sim}, t > 1 \\ \text{function if and only if } A \text{ is } IF\zeta OF_{\sigma} \text{ set.} \end{cases}$

 $Proof. \quad f^{-1}(\Re_t) = \begin{cases} 1^{\sim}, t < 0 \\ A^{\sim}, 0 \le t \le 1 \end{cases} \text{ implies that f is an lower intuitionistic fuzzy } \zeta - \text{continuous function if and only if A} \\ 0^{\sim}, t > 1 \end{cases}$ is an $IF\zeta OF_{\sigma}$ set. $f^{-1}(\overline{L_t}) = \begin{cases} 1^{\sim}, t < 0 \\ A^{\sim}, 0 \le t \le 1 \end{cases} \text{ implies that f is an upper intuitionistic fuzzy } \zeta - \text{continuous function if and only if A is an} \\ 0^{\sim}, t > 1 \end{cases}$

 $IF\zeta CG_{\delta}$ set . Hence the proof is complete.

Remark 4.7. Let (X,ζ) be intuitionistic fuzzy ζ -space. Let ψ_A be an intuitionistic fuzzy characteristic function of an IFS A in X. Then ψ_A is a lower (resp. upper) intuitionistic fuzzy ζ continuous function if and only if A is an $IF\zeta OF_{\sigma}$ set.

Definition 4.8. Let (X, ζ) be intuitionistic fuzzy ζ -space. A function $f : X \to \Re(I)$ is said to be a strongly intuitionistic fuzzy ζ -continuous function if $f^{-1}(\Re_t)$ is an $IF\zeta OF_{\sigma}$ and $f^{-1}(\overline{L_t})$ is both $IF\zeta OF_s$ igma and $IF\zeta CG_{\delta}$ for each $t \in \Re$.

Notation 4.9. The collection of all strongly intuitionistic fuzzy ζ -continuous functions in an intuitionistic fuzzy ζ space (X, ζ) with values in $I(I)\zeta_s$.

Theorem 4.10 (Intuitionistic Fuzzy ζ -insertion Theorem). Let (X, ζ) be an intuitionistic fuzzy ζ -space. Then the following statements are equivalent.

- (i) (X,ζ) is an intuitionistic fuzzy ζ -basically disconnected space.
- (ii) If $g, h : X \to R(I)$, g is lower intuitionistic fuzzy ζ -continuous function, h is upper intuitionistic fuzzy ζ -continuous function and $g \subseteq$, then there exists an $f \in \zeta_s$ such that $g \subseteq f \subseteq h$.
- (iii) If A and B are $IF\zeta OF_{\sigma}$ sets such that $B \subseteq A$, then there exists strongly intuitionistic fuzzy ζ -continuous function $f: X \to \Re(I)$ such that $B \subseteq f^{-1}(\overline{L_1}) \subseteq f^{-1}(R_0) \subseteq A$.

Proof. (i) \Rightarrow (ii) Define $A_r = h^{-1}(L_r)$ and $B_r = g^{-1}(\overline{R_r})$, for all $r \in Q$ (Q is the set of all rationals). Clearly, $\{A_r\}_{r \in Q}$ and $\{B_r\}_{r \in Q}$ are monotone increasing families of an B sets and $IF\zeta CG_{\delta}$ sets of (X, ζ) . Moreover $A_r \subseteq B_s$ if r < s. By Theorem 3.13, there exists a monotone increasing family $\{C_r\}_{r \in Q}$ of an $IF\zeta COGF$ sets of such (X, ζ) that $IF\zeta cl(A_r) \subseteq C_s$ and $C_r \subseteq IF\zeta int(B_s)$ whenever r < s $(r, s \in Q)$. Letting $V_t = \bigcap_{r < t} \overline{C_r}$ for $t \in \Re$, we define a monotone decreasing family $\{V_t/t \in R\} \subseteq \zeta_s$. Moreover we have $IF\zeta cl(V_t) \subseteq IF\zeta int(Vs)$ whenever s < t. We have,

$$\bigcup_{t \in R} V_t = \bigcup_{t \in R} \bigcap_{r < t} \overline{C_r} \supseteq \bigcup_{t \in R} \bigcap_{r < t} \overline{B_r} = \bigcup_{t \in R} \bigcap_{r < t} g^{-1}(R_r)$$
$$= \bigcup_{t \in R} g^{-1}(\overline{L_t}) = g^{-1}(\bigcup_{t \in R} \overline{L_t}) = 1_{\sim}$$

Similarly, $\bigcap_{t\in R} V_t = 0_{\sim}$. Now define a function $f: X \to \Re(I)$ possessing required conditions. Let f(x)(t) = Vt(x), for all $x \in X$ and $t \in \Re$. By the above discussion, it follows that f is well defined. To prove f is a strongly intuitionistic fuzzy ζ -continuous function. Observe that $\bigcup_{s>t} V_S = \bigcup_{s>t} IF\zeta$ int (V_S) and $\bigcap_{s<t} V_S = \bigcap_{s<t} IF\zeta cl(V_S)$. Then $f^{-1}(R_t) = \bigcup_{s>t} V_S = \bigcup_{s>t} IF\zeta$ int (V_S) is an $IF\zeta COGF$ and $f^{-1}(\overline{L_t}) = \bigcap_{s<t} V_S = \bigcap_{s<t} IF\zeta cl(V_s)$ is an $IF\zeta COGF$ set. Therefore, f is strongly intuitionistic fuzzy ζ -continuous function. To conclude the proof it remains to show that $g \subseteq f \subseteq h$. That is $g^{-1}(\overline{L_t}) \subseteq f^{-1}(\overline{L_t}) \subseteq h^{-1}(\overline{L_t})$ and $g^{-1}(R_t) \subseteq f^{-1}(R_t) \subseteq h^{-1}(R_t)$ for each $t \in \Re$. We have,

$$g^{-1}(\overline{L_t}) = \bigcap_{s < t} g^{-1}(\overline{L_s}) = \bigcap_{s < t} \bigcap_{r < s} g^{-1}(R_r)$$
$$= \bigcap_{s < t} \bigcap_{r < s} \overline{B_r} \subseteq \bigcap_{s < t} \bigcap_{r < s} \overline{C_r} = \bigcap_{s < t} V_s = f^{-1}(\overline{L_t})$$

And

$$f^{-1}(\overline{L_t}) = \bigcap_{s < t} V_s = \bigcap_{s < t} \bigcap_{r < s} \overline{C_r} \subseteq \bigcap_{s < t} \bigcap_{r < s} \overline{A_r}$$
$$= \bigcap_{s < t} \bigcap_{r < s} h^{-1}(\overline{L_r}) = \bigcap_{s < t} h^{-1}(\overline{L_s}) = h^{-1}(\overline{L_t})$$

Similarly,

$$g^{-1}(R_t) = \bigcup_{s>t} g^{-1}(R_s) = \bigcup_{s
$$= \bigcup_{s>t} \bigcup_{r>s} \overline{B_r} \subseteq \bigcup_{s>t} \bigcap_{rt} V_s = f^{-1}(R_t)$$$$

And

$$f^{-1}(R_t) = \bigcup_{s>t} V_s = \bigcup_{s>t} \bigcap_{rt} \bigcup_{r>s} \overline{A_r}$$
$$= \bigcup_{s>t} \bigcup_{r>s} h^{-1}(\overline{L_r}) = \bigcup_{s,t} h^{-1}(R_s) = h^{-1}(R_t)$$

Hence the condition (ii) is proved.

 $(ii) \Rightarrow (iii)$ Let \overline{A} be an $IF\zeta OF_{\sigma}$ set and B be an $IF\zeta CG_{\delta}$ set such that $B \subseteq A$. Then $\psi_B \subseteq \psi_A$, where ψ_A, ψ_B are lower and upper intuitionistic fuzzy ζ -continuous functions respectively. By (ii), there exists a strongly intuitionistic fuzzy ζ -continuous function $f: X \to I(I)$ such that $\psi_B \subseteq f \subseteq \psi_A$. Clearly $f(x) \in I(I)$ for all $x \in X$ and $B = \psi_B^{-1}(\overline{L_1}) \subseteq$ $f^{-1}(\overline{L_1}) \subseteq f^{-1}(R_0) \subseteq \psi A^{-1}(R_0) = A$. Therefore, $B \subseteq f^{-1}(\overline{L_1}) \subseteq f^{-1}(R_0) \subseteq \psi A^{-1}(R_0) = A$.

 $(iii) \Rightarrow (i)$. Since $f^{-1}(\overline{L_1})$ and $f^{-1}(R_0)$ are $IF\zeta COGF$ sets and by Theorem 3.11, (X, τ) is an intuitionistic fuzzy ζ basically disconnected space.

Notation 4.11. Let X be any nonempty set. Let $A \subset X$. Then an IFS ψ_A^* is of the form $\langle x, \psi_A(x), 1 - \psi_A(x) \rangle$.

Theorem 4.12 (Tietze's Extension Theorem). Let (X, ζ) is an intuitionistic fuzzy ζ -basically disconnected space. Let $A \subset X$ such that ψ_A^* is an $IF\zeta OF_{\sigma}$ set in X. Let $f : (A, \zeta/A) \to I(I)$ be a strongly intuitionistic fuzzy ζ -continuous function. Then f has strongly intuitionistic fuzzy ζ -continuous extension over (X, τ) .

Proof. Let $g, h: X \to I(I)$ be such that g = f = h on A and $g(x) = 0_{\sim}, h(x) = 1_{\sim}$ if $x \notin A$. For every $t \in \Re$, we have,

$$g^{-1}(R_t) = \begin{cases} B_t \cap \psi_A^*, t \ge 0\\ 1_{\sim}, t < 0 \end{cases}$$

where B_t is an $IF\zeta COGF$ set such that $B_t/A = f^{-1}(R_t)$ and

$$h^{-1}(L_t) = \begin{cases} c_t \cap \psi_A^*, t \le 1\\ 1_{\sim}, t > 1 \end{cases}$$

Where C_t is an $IF\zeta COGF$ set such that $C_t/A = f^{-1}(L_t)$. Thus g is lower intuitionistic fuzzy ζ -continuous function and h is upper intuitionistic fuzzy ζ -continuous function with $g \subseteq h$. By Theorem 4.10, there is a strongly fuzzy ζ -continuous function $F: X \to I(I)$ such that $g \subseteq F \subseteq h$. Hence $F \equiv f$ on A.

References

- [1] K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1)(1986), 87-96.
- [2] G.Balasubramanian, Maximal fuzzy topologies, Kybernetika (Prague), 31(5)(1995), 459-464.
- [3] G.Balasubramanian and V.Chandrasekar, On pairwise fuzzy basically disconnected spaces, East Asian Math. J., 18(2002), 85-93.
- [4] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [5] D.Coker, An introduction to Intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1)(1997), 81-89.
- [6] D.Coker and M.Demirci, On intuitionistic fuzzy points, NIFS, 1(2)(1995), 79-84

[8] M.Katetov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85-91.

^[7] B.Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl., 50(1975), 74-79.

- [9] M.Katetov, Correction to On real-valued functions in topological spaces, Fund. Math., 40(1953), 203-205.
- [10] T.Kubiak, L.fuzzy normal spaces and Tietze extension theorem, J. Math. Annal. Appl., 25(1987), 141-153.
- [11] T.Kubiak, Extending continuous L-real functions, Math. Japon., 31(6)(1986), 875-887.
- [12] G.Thangaraj and G.Balasubramanian, On fuzzy basically disconnected spaces, J. Fuzzy Math., 9(2001), 103-110.
- [13] H.Tong, Some characterizations of normal and perfectly normal spaces, Duke Math. J., 19(1952), 289-292.
- [14] L.A.Zadeh, Fuzzy Sets, Information and Control, 9(1965), 338-353.