ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Some Relations on Hikami's Mock Theta Functions

Research Article

Ananta kr. Bora¹*

1 Concept Jr. College, Nagaon, Itachali, Assam, India.

Abstract: In this paper we obtain relations connecting Hikami's mock theta functions, partial mock theta functions and infinite products analogous to the identities of Ramanujan.

Keywords: Mock theta functions, partial mock theta functions.

© JS Publication.

1. Introduction

Ramanujan's last mathematical creation was his mock theta functions which he discovered during the last years of his life. Ramanujan gave a list of seventeen mock theta functions and lebelled them as third, fifth and seven orders without giving any reason for his classification. A mock theta function is a function f(q) defined by a q-series, convergent for |q| < 1 which satisfies the following two conditions:

- (1) For every root of unity ξ there is a θ function $\theta_{\xi}(q)$ such that the difference $f(q) \theta_{\xi}(q)$ is bounded as $q \to \xi$ radially.
- (2) There is no single θ -function which works for all ξ i.e. for every θ function $\theta(q)$ there is some root of unity ξ for which $f(q) \theta(q)$ is unbounded as $q \to \xi$ radially.

For mock theta function $\overline{\psi}_1(q)$,

$$\overline{\psi}_1(q) = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(-q;q)_{2n}} \tag{1}$$

the partial mock theta function will be defined and denoted as

$$\overline{\psi}_{1,N}(q) = \sum_{n=0}^{N} \frac{q^{n^2}}{(-q;q)_{2n}}$$
 (2)

Hikami [15] introduced Mock theta functions of order two as:

$$D_5(q) = \sum_{n=0}^{\infty} \frac{q^n (-q; q)_n}{(q; q^2)_{n+1}}$$
(3)

Hikami [14] introduced Mock theta functions of order four and eight as:

$$D_5(q) = \sum_{n=0}^{\infty} \frac{q^n (-q^2; q^2)_n}{(q^{n+1}; q)_{n+1}}$$
(4)

 $^{^*}$ E-mail: anantakrbora.bora610@gmail.com

$$I_{12}(q) = \sum_{n=0}^{\infty} \frac{q^{2n}(-q; q^2)_n}{(q^{n+1}; q)_{n+1}}$$
 (5)

$$I_{13}(q) = \sum_{n=0}^{\infty} \frac{q^n (-q; q^2)_n}{(q^{n+1}; q)_{n+1}}$$
(6)

 $D_6(q)$ is of order four, $I_{12}(q)$ and $I_{13}(q)$ are of order eight. Hikami's partial mock theta functions are

$$D_{5,m}(q) = \sum_{n=0}^{m} \frac{q^n (-q;q)_n}{(q;q^2)_{n+1}}$$
(7)

$$D_{6,m}(q) = \sum_{n=0}^{m} \frac{q^n (-q^2; q^2)_n}{(q^{n+1}; q)_{n+1}}$$
(8)

$$I_{12,m}(q) = \sum_{n=0}^{m} \frac{q^{2n}(-q;q^2)_n}{(q^{n+1};q)_{n+1}}$$
(9)

$$I_{13,m}(q) = \sum_{n=0}^{m} \frac{q^n (-q; q^2)_n}{(q^{n+1}; q)_{n+1}}$$
(10)

The following q-notations have been used for $|q^k| < 1$

$$(a; q^k)_n = \prod_{j=0}^{n-1} (1 - aq^{kj}); n \ge 1$$

$$(a; q^k)_0 = 1$$

$$(a; q^k)_\infty = \prod_{j=0}^\infty (1 - aq^{kj})$$

$$(a)_n = (a; q)_n$$

$$(a_1, a_2, \dots, a_m; q^k)_n = (a_1, q^k)_n (a_2; q^k)_n \dots (a_m; q^k)_n.$$

Ramanujan, in chapter 16 of his second notebook defined theta functions as follows [6, 20]:

$$\chi(q) = \sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}} = \frac{(q^2, q^2)_{\infty}}{(q; q^2)_{\infty}}$$
(11)

An identity due to Euler is [9]

$$\sum_{n=0}^{\infty} \frac{q^{(n+1)^2}}{(q;q^2)_{n+1}} = (-x;q)_{\infty}$$
(12)

The special cases of the above identity are

$$L(q) = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(q^2; q^2)_n} = \frac{(q^2, q^2, q^4; q^4)_{\infty}}{(q; q)_{\infty}}$$
(13)

$$T(q) = \sum_{n=0}^{\infty} \frac{q^{n(n+1)}}{(q^2; q^2)_n} = \frac{(q, q^3, q^4; q^4)_{\infty}}{(q; q)_{\infty}}$$
(14)

Jackson [17] discovered the following identity

$$U(q) = \sum_{n=0}^{\infty} \frac{q^{2n^2}}{(q;q)_{2n}} = \frac{(-q^3, -q^5, q^8; q^8)_{\infty}}{(q^2; q^2)_{\infty}}$$
(15)

This identity was independently discovered by slater [21] who also discovered its companion identity

$$V(q) = \sum_{n=0}^{\infty} \frac{q^{2n(n+1)}}{(q;q)_{2n+1}} = \frac{(-q, -q^7, q^8; q^8)_{\infty}}{(q^2; q^2)_{\infty}}$$
(16)

The famous Roger's Ramanujan identities are

$$M(q) = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(q;q)_n} = \frac{1}{(q,q^4;q^5)_{\infty}}$$
(17)

$$N(q) = \sum_{n=0}^{\infty} \frac{q^{n(n+1)}}{(q;q)_n} = \frac{1}{(q^2, q^3; q^5)_{\infty}}$$
(18)

The identity analogous to the Rogers-Ramanujan Identity is the so-called Gollnitz-Gordon identity given by [10, 11]

$$E(q) = \sum_{n=0}^{\infty} \frac{(-q; q^2)_n q^{n^2}}{(q^2; q^2)_n} = \frac{1}{(q; q^8)_{\infty} (q^4; q^8)_{\infty} (q^7; q^8)_{\infty}}$$
(19)

$$\eta(q) = \sum_{n=0}^{\infty} \frac{(-q; q^2)_n q^{n^2 + 2n}}{(q^2; q^2)_n} = \frac{1}{(q^3, q^4, q^5; q^8)_{\infty}}$$
(20)

Hahn defined the septic analogues of the Roger's-Ramanujan functions as [13, 14]

$$X(q) = \sum_{n=0}^{\infty} \frac{q^{2n^2}}{(q^2; q^2)_n (-q; q)_{2n}} = \frac{(q^3, q^4, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}}$$
(21)

$$Y(q) = \sum_{n=0}^{\infty} \frac{q^{2n(n+1)}}{(q^2; q^2)_n (-q; q)_{2n+1}} = \frac{(q^2, q^5, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}}$$
(22)

$$Z(q) = \sum_{n=0}^{\infty} \frac{q^{2n(n+1)}}{(q^2; q^2)_n (-q; q)_{2n+1}} = \frac{(q, q^6, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}}$$
(23)

The nonic analogous of Rogers-Ramanujan functions are [5].

$$O(q) = \sum_{n=0}^{\infty} \frac{(q;q)_{3n} q^{3n^2}}{(q^3;q^3)_n (q^3;q^3)_{2n}} = \frac{(q^4, q^5, q^9; q^9)_{\infty}}{(q^3;q^3)_{\infty}}$$
(24)

$$Q(q) = \sum_{n=0}^{\infty} \frac{(q;q)_{3n} (1 - q^{3n+2}) q^{3n(n+1)}}{(q^3;q^3)_n (q^3;q^3)_{2n+1}} = \frac{(q^7, q^7, q^9; q^9)_{\infty}}{(q^3;q^3)_{\infty}}$$
(25)

$$W(q) = \sum_{n=0}^{\infty} \frac{(q;q)_{3n+2} q^{3n(n+1)}}{(q^3;q^3)_n (q^3;q^3)_{2n+1}} = \frac{(q,q^8,q^9;q^9)_{\infty}}{(q^3;q^3)_{\infty}}$$
(26)

2. Methodology

We shall make use of the following known identity of Srivastava [22]:

$$\sum_{m=0}^{\infty} \delta_m \sum_{r=0}^{m} \alpha_r = \left(\sum_{r=0}^{\infty} \alpha_r\right) \left(\sum_{m=0}^{\infty} \delta_m\right) - \sum_{r=0}^{\infty} \alpha_{r+1} \sum_{m=0}^{r} \delta_m$$
(27)

3. Result

(A) Taking $\delta_m = q^{\frac{m(m+1)}{2}}$ in (27) and by (11) we have

$$\frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}} \sum_{r=0}^{\infty} \alpha_r = \sum_{m=0}^{\infty} q^{\frac{m(m+1)}{2}} \sum_{r=0}^{m} \alpha_r + \sum_{r=0}^{\infty} \alpha_{r+1} \chi_m(q)$$
(28)

(I) Taking $\alpha_r = \frac{q^r(-q;q)_r}{(q;q^2)_{r+1}}$ in (28) and making use of (3) and (7) we get

$$\frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}} D_5(q) = \sum_{m=0}^{\infty} q^{\frac{m(m+1)}{2}} D_{5,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q; q)_{r+1}}{(q; q^2)_{r+2}} \chi_m(q)$$

(II) Taking $\alpha_r = \frac{q^r(-q^2;q^2)_r}{(q^{r+1;q})_{r+1}}$ in (28) and making use of (4) and (8) we get

$$\frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}} D_6(q) = \sum_{m=0}^{\infty} q^{\frac{m(m+1)}{2}} D_{6,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q^2; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} \chi_m(q)$$
(29)

(III) Taking $\alpha_r = \frac{q^{2r}(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (28) and making use of (5) and (9) we get

$$\frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}} I_{12}(q) = \sum_{m=0}^{\infty} q^{\frac{m(m+1)}{2}} I_{12,m}(q) + \sum_{r=0}^{\infty} \frac{q^{2(r+1)}(-q; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} \chi_m(q)$$
(30)

(IV) Taking $\alpha_r = \frac{q^r(-q;q^2)_r}{(q^{r+1;q})_{r+1}}$ in (28) and making use of (6) and (10) we get

$$\frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}} I_{13}(q) = \sum_{m=0}^{\infty} q^{\frac{m(m+1)}{2}} I_{13,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} \chi_m(q)$$
(31)

(B) Taking $\delta_m = \frac{q^{m^2}}{(q^2; q^2)_m}$ in (27) and by (13) we get

$$\frac{(q^2, q^2, q^4; q^4)_{\infty}}{(q; q)_{\infty}} \sum_{r=0}^{\infty} \alpha_r = \sum_{m=0}^{\infty} \frac{q^{m^2}}{(q^2; q^2)_m} \sum_{r=0}^{m} \alpha_r + \sum_{r=0}^{\infty} \alpha_{r+1} L_m(q)$$
(32)

(i) Taking $\alpha_r = \frac{q^r(-q;q)_r}{(q;q^2)r+1}$ in (32) and using (3) and (7) we get

$$\frac{(q^2, q^2, q^4; q^4)_{\infty}}{(q; q)_{\infty}} D_5(q) = \sum_{m=0}^{\infty} \frac{q^{m^2}}{(q^2; q^2)_m} D_{5,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q; q)_{r+1}}{(q; q^2)_{r+2}} L_m(q)$$
(33)

(ii) Taking $\alpha_r = \frac{q^r(-q^2;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (32) and using (4) and (8) we get

$$\frac{(q^2, q^2, q^4; q^4)_{\infty}}{(q; q)_{\infty}} D_6(q) = \sum_{m=0}^{\infty} \frac{q^{m^2}}{(q^2; q^2)_m} D_{6,m}(q) + \sum_{r=0}^{\infty} \frac{q^{(r+1)}(-q^2; q^2)_{r+1}}{(q^{(r+2)}; q)_{r+2}} L_m(q)$$
(34)

(iii) Taking $\alpha_r = \frac{q^r(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (32) and using (5) and (9) we get

$$\frac{(q^2, q^2, q^4; q^4)_{\infty}}{(q; q)_{\infty}} I_{12}(q) = \sum_{m=0}^{\infty} \frac{q^{m^2}}{(q^2; q^2)_m} I_{12,m}(q) + \sum_{r=0}^{\infty} \frac{q^{(r+1)}(-q; q^2)_{r+1}}{(q^{(r+2)}; q)_{r+2}} L_m(q)$$
(35)

(iv) Taking $\alpha_r = \frac{q^r(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (6) and using (10) we get

$$\frac{(q^2, q^2, q^4; q^4)_{\infty}}{(q; q)_{\infty}} I_{13}(q) = \sum_{m=0}^{\infty} \frac{q^{m^2}}{(q^2; q^2)_m} I_{13,m}(q) + \sum_{r=0}^{\infty} \frac{q^{(r+1)}(-q; q^2)_{r+1}}{(q^{(r+2)}; q)_{r+2}} L_m(q)$$
(36)

(C) Taking $\delta_m = \frac{q^{m(m+1)}}{(q^2; q^2)_m}$ in (27) and by (14) we get

$$\frac{(q, q^3, q^4; q^4)_{\infty}}{(q; q)_{\infty}} \sum_{r=0}^{\infty} \alpha_r = \sum_{m=0}^{\infty} \frac{q^{m(m+1)}}{(q^2; q^2)_m} \sum_{r=0}^m \alpha_r + \sum_{r=0}^{\infty} \alpha_{r+1} T_m(q)$$
(37)

(I) Taking $\alpha_r = \frac{q^r(-q;q)_r}{(q;q^2)r+1}$ in (37) and making use of (3) and (7) we get

$$\frac{(q, q^3, q^4; q^4)_{\infty}}{(q; q)_{\infty}} D_5(q) = \sum_{m=0}^{\infty} \frac{q^{m(m+1)}}{(q^2; q^2)_m} D_{5,m}(q) + \sum_{r=0}^{\infty} \frac{q^{(r+1)}(-q; q)_{r+1}}{(q; q^2)_{r+2}} T_m(q)$$
(38)

(II) Taking $\alpha_r = \frac{q^r(-q^2;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (37) and making use (4) and (8) we get

$$\frac{(q, q^3, q^4; q^4)_{\infty}}{(q; q)_{\infty}} D_6(q) = \sum_{m=0}^{\infty} \frac{q^{m(m+1)}}{(q^2; q^2)_m} D_{6,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q^2; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} T_m(q)$$
(39)

(III) Taking $\alpha_r = \frac{q^{2r}(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (37) and making use of (5) and (9) we get

$$\frac{(q, q^3, q^4; q^4)_{\infty}}{(q; q)_{\infty}} I_{12}(q) = \sum_{m=0}^{\infty} \frac{q^{m(m+1)}}{(q^2; q^2)_m} I_{12,m}(q) + \sum_{r=0}^{\infty} \frac{q^{2(r+1)}(-q; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} T_m(q)$$
(40)

(IV) Taking $\alpha_r = \frac{q^r(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (37) and making me of (6) and (10) we get

$$\frac{(q,q^3,q^4;q^4)_{\infty}}{(q;q)_{\infty}}I_{13}(q) = \sum_{m=0}^{\infty} \frac{q^{m(m+1)}}{(q^2;q^2)_m}I_{13,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q;q^2)_{r+1}}{(q^{r+2};q)_{r+2}}T_m(q)$$
(41)

(D) Taking $\delta_m = \frac{q^{m^2}}{(q;q)_m}$ in (27) and by (17) we get

$$\frac{1}{(q, q^4; q^5)_{\infty}} \sum_{r=0}^{\infty} \alpha_r = \sum_{m=0}^{\infty} \frac{q^{m^2}}{(q; q)_m} \sum_{r=0}^m \alpha_r + \sum_{r=0}^{\infty} \alpha_{r+1} M_m(q)$$
(42)

(i) Taking $\alpha_r = \frac{q^r(-q;q)_r}{(q;q^2)_{r+1}}$ in (42) and using (3) and (7) we get

$$\frac{1}{(q,q^4;q^5)_{\infty}}D_5(q) = \sum_{m=0}^{\infty} \frac{q^{m^2}}{(q;q)_m}D_{5,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q;q)_{r+1}}{(q;q^2)_{r+2}}M_m(q)$$
(43)

(ii) Taking $\alpha_r = \frac{q^r(-q^2;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (42) and using (4) and (8) we get

$$\frac{1}{(q,q^4;q^5)_{\infty}}D_6(q) = \sum_{m=0}^{\infty} \frac{q^{m^2}}{(q;q)_m}D_{6,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q;q)_{r+1}}{(q^{r+2};q)_{r+2}}M_m(q)$$
(44)

(iii) Taking $\alpha_r = \frac{q^{2r}(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (42) and using (5) and (9) we get

$$\frac{1}{(q,q^4;q^5)_{\infty}}I_{12}(q) = \sum_{m=0}^{\infty} \frac{q^{m^2}}{(q;q)_m}I_{12,m}(q) + \sum_{r=0}^{\infty} \frac{q^{2(r+1)}(-q;q^2)_{r+1}}{(q^{r+2};q)_{r+2}}M_m(q)$$
(45)

(iv) Taking $\alpha_r = \frac{q^r(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (42) and using (6) and (10) we get

$$\frac{1}{(q,q^4;q^5)_{\infty}}I_{13}(q) = \sum_{m=0}^{\infty} \frac{q^{m^2}}{(q;q)_m}I_{13,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q;q^2)_{r+1}}{(q^{r+2};q)_{r+2}}M_m(q)$$
(46)

(E) Taking $\delta_m = \frac{q^{m(m+1)}}{(q;q)_m}$ in (27) and by (18) we have

$$\frac{1}{(q^2, q^3; q^5)_{\infty}} \sum_{r=0}^{\infty} \alpha_r = \sum_{m=0}^{\infty} \frac{q^{m(m+1)}}{(q; q)_m} \sum_{r=0}^{m} \alpha_r + \sum_{r=0}^{\infty} \alpha_{r+1} N_m(q)$$
(47)

(I) Taking $\alpha_r = \frac{q^r(-q;q)_r}{(q;q^2)_{r+1}}$ in (47) and making use of (3) and (7) we have

$$\frac{1}{(q^2, q^3; q^5)_{\infty}} D_5(q) = \sum_{m=0}^{\infty} \frac{q^{m(m+1)}}{(q; q)_m} D_{5,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q; q)_{r+1}}{(q; q^2)_{r+2}} N_m(q)$$
(48)

(II) Taking $\alpha_r = \frac{q^r(-q^2;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (47) and making use of (4) and (8) we have

$$\frac{1}{(q^2, q^3; q^5)_{\infty}} D_6(q) = \sum_{m=0}^{\infty} \frac{q^{m(m+1)}}{(q; q)_m} D_{6,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q^2; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} N_m(q)$$
(49)

(III) Taking $\alpha_r = \frac{q^{2r}(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (47) and making use of (5) and (9) we get

$$\frac{1}{(q^2, q^3; q^5)_{\infty}} I_{12}(q) = \sum_{m=0}^{\infty} \frac{q^{m(m+1)}}{(q; q)_m} I_{12,m}(q) + \sum_{r=0}^{\infty} \frac{q^{2(r+1)}(-q; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} N_m(q)$$
(50)

(IV) Taking $\alpha_r = \frac{q^r(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (47) and making use of (6) and (10) we get

$$\frac{1}{(q^2, q^3; q^5)_{\infty}} I_{13}(q) = \sum_{m=0}^{\infty} \frac{q^{m(m+1)}}{(q; q)_m} I_{13,m}(q) + \sum_{r=0}^{\infty} \frac{q^{(r+1)}(-q; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} N_m(q)$$
(51)

(F) Taking $\delta_m=\frac{q^{2m^2}}{(q^2;q^2)_m(-q;q)_{2m}}$ in (27) and by (21) we get

$$\frac{(q^3, q^4, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} \sum_{r=0}^{\infty} \alpha_r = \sum_{m=0}^{\infty} \frac{q^{2m^2}}{(q^2; q^2)_m (-q; q)_{2m}} \sum_{r=0}^m \alpha_r + \sum_{r=0}^{\infty} \alpha_{r+1} \chi_m(q)$$
(52)

(i) Taking $\alpha_r = \frac{q^r(-q;q)_r}{(q;q^2)_{r+1}}$ in (52) and using (5) and (7) we get

$$\frac{(q^3, q^4, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} D_5(q) = \sum_{m=0}^{\infty} \frac{q^{2m^2}}{(q^2; q^2)_m (-q; q)_{2m}} D_{5,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1} (-q; q)_{r+1}}{(q; q^2)_{r+2}} X_m(q)$$
(53)

(ii) Taking $\alpha_r = \frac{q^r(-q^2;q^2)_r}{(q^{r+1}q)_{r+1}}$ in (52) and using (4) and (8) we get

$$\frac{(q^3, q^4, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} D_6(q) = \sum_{m=0}^{\infty} \frac{q^{2m^2}}{(q^2; q^2)_m (-q; q)_{2m}} D_{6,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1} (-q^2; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} X_m(q)$$
(54)

(iii) Taking $\alpha_r = \frac{q^{2r}(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (52) and using (5) and (9) we get

$$\frac{(q^3, q^4, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} I_{12}(q) = \sum_{m=0}^{\infty} \frac{q^{2m^2}}{(q^2; q^2)_m (-q; q)_{2m}} I_{12,m}(q) + \sum_{r=0}^{\infty} \frac{q^{2(r+1)}(-q; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} X_m(q)$$
(55)

(iv) Taking $\alpha_r = \frac{q^r(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (52) and using (6) and (10) we get

$$\frac{(q^3, q^4, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} I_{13}(q) = \sum_{m=0}^{\infty} \frac{q^{2m^2}}{(q^2; q^2)_m (-q; q)_{2m}} I_{13,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} X_m(q)$$
(56)

(G) Taking $\delta_m = \frac{q^{2m(m+1)}}{(q^2;q^2)_m(-q;q)_{2m}}$ in (27) and by (22) and (??) we get

$$\frac{(q^2, q^5, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} \sum_{r=0}^{\infty} \alpha_r = \sum_{m=0}^{\infty} \frac{q^{2m(m+1)}}{(q^2; q^2)_m (-q; q)_{2m}} \sum_{r=0}^{\infty} \alpha_r + \sum_{r=0}^{\infty} \alpha_{r+1} Y_m(q)$$
(57)

(I) Taking $\alpha_r = \frac{q^r(-q;q)_r}{(q;q^2)_{r+1}}$ in (57) and using (3) and (7) we get

$$\frac{(q^2, q^5, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} D_5(q) = \sum_{m=0}^{\infty} \frac{q^{2m(m+1)}}{(q^2; q^2)_m (-q; q)_{2m}} D_{5,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q; q)_{r+1}}{(q; q^2)_{r+2}} Y_m(q)$$
(58)

(II) Taking $\alpha_r = \frac{q^r(-q^2;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (57) and by (4) and (8) we get

$$\frac{(q^2, q^5, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} D_6(q) = \sum_{m=0}^{\infty} \frac{q^{2m(m+1)}}{(q^2; q^2)_m (-q; q)_{2m}} D_{6,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q^2; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} Y_m(q)$$
(59)

(III) Taking $\alpha_r = \frac{q^{2r}(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (57) and using (5) and (9) we get

$$\frac{(q^2, q^5, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} I_{12}(q) = \sum_{m=0}^{\infty} \frac{q^{2m(m+1)}}{(q^2; q^2)_m (-q; q)_{2m}} I_{12,m}(q) + \sum_{r=0}^{\infty} \frac{q^{2(r+1)}(-q; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} Y_m(q)$$

$$(60)$$

(IV) Taking $\alpha_r = \frac{q^r(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (57) and using (6) and (10) we get

$$\frac{(q^2, q^5, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} I_{13}(q) = \sum_{m=0}^{\infty} \frac{q^{2m(m+1)}}{(q^2; q^2)_m (-q; q)_{2m}} I_{13,m}(q) + \sum_{r=0}^{\infty} \frac{q^{2(r+1)}(-q; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} Y_m(q)$$
(61)

(H) Taking $\delta_m=\frac{q^{2m(m+1)}}{(q^2;q^2)_m(-q;q)_{2m+1}}$ in (27) and using (23) we get

$$\frac{(q, q^6, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} \sum_{r=0}^{\infty} \alpha_r = \sum_{m=0}^{\infty} \frac{q^{2m(m+1)}}{(q^2; q^2)_m (-q; q)_{2m+1}} \sum_{r=0}^m \alpha_r + \sum_{r=0}^{\infty} \alpha_{r+1} Z_m(q)$$
(62)

(I) Taking $\alpha_r = \frac{q^r(-q;q)_r}{(q;q^2)_{r+1}}$ in (62) and using (3), (7) we get

$$\frac{(q,q^6,q^7;q^7)_{\infty}}{(q^2;q^2)_{\infty}}D_5(q) = \sum_{m=0}^{\infty} \frac{q^{2m(m+1)}}{(q^2;q^2)_m(-q;q)_{2m+1}}D_{5,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q;q)_{r+1}}{(q;q^2)_{r+2}}Z_m(q)$$
(63)

(II) Taking $\alpha_r = \frac{q^r(-q^2;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (62) and using (4), (8) we get

$$\frac{(q, q^6, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} D_6(q) = \sum_{m=0}^{\infty} \frac{q^{2m(m+1)}}{(q^2; q^2)_m(-q; q)_{2m+1}} D_{6,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q^2; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} Z_m(q)$$
(64)

(III) Taking $\alpha_r = \frac{q^{2r}(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (62) and using (5), (9) we get

$$\frac{(q, q^6, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} I_{12}(q) = \sum_{m=0}^{\infty} \frac{q^{2m(m+1)}}{(q^2; q^2)_m(-q; q)_{2m+1}} I_{12,m}(q) + \sum_{r=0}^{\infty} \frac{q^{2(r+1)}(-q; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} Z_m(q)$$
(65)

(IV) Taking $\alpha_r = \frac{q^r(-q;q^2)_r}{(q^{r+1};q)_{r+1}}$ in (62) and using (6), (10) we get

$$\frac{(q, q^6, q^7; q^7)_{\infty}}{(q^2; q^2)_{\infty}} I_{13}(q) = \sum_{m=0}^{\infty} \frac{q^{2m(m+1)}}{(q^2; q^2)_m (-q; q)_{2m+1}} I_{13,m}(q) + \sum_{r=0}^{\infty} \frac{q^{r+1}(-q; q^2)_{r+1}}{(q^{r+2}; q)_{r+2}} Z_m(q)$$
(66)

In the same way by assuming $\delta_m = \frac{(-q;q^2)_m q^{m^2}}{(q^2;q^2)_m}, \quad \frac{q^{m^2+2m}(-q;q^2)_m}{(q^2;q^2)_m}, \quad \frac{q^{2m^2}}{(q;q)_{2m}}, \quad \frac{q^{2m(m+1)}}{(q;q)_{2m+1}}, \quad \frac{q^{3m^2}(q;q)_{3m}}{(q^3;q^3)_m(q^3;q^3)_{2m}}, \quad \frac{(q;q)_{3m}(1-q^{3m+2})q^{3m(m+1)}}{(q^3;q^3)_m(q^3;q^3)_{2m+1}} \quad \text{and} \quad \frac{q^{3m(m+1)}(q;q)_{3m+1}}{(q^3;q^3)_m(q^3;q^3)_{2m+1}} = \frac{q^{3m^2}(q;q)_{3m}}{(q^3;q^3)_m(q^3;q^3)_{2m+1}}$

we can obtain relation connecting $D_5(q)$, $D_6(q)$, $I_{12}(q)$ and $I_{13}(q)$ and the infinite products E(q), $\eta(q)$, U(q), V(q), Q(q), and W(q) respectively.

References

- [1] R.P.Agarwal, Certain basic hypergeometric identities associated with mock theta functions, Quart. Jour. Math., 20(1969), 121-128.
- [2] G.E.Andrews, q-orthogonal polynomials, Rogers-Ramanujan identities and mock theta functions, Proceeding of the steklov Institute of Mathematics, 176(1)(2012), 21-32.
- [3] G.E.Andrews, Ramanujan's lost notebook-1: Partial(-) functions, Adv. Math., 41(1981), 137-170.
- [4] G.E.Andrews and D.Hickerson, Ramanujan's lost notebook-III: The sixth order mock theta functions, Adv. Math, 89(1991), 60-105.
- [5] W.N.Bailey, Some identities in combinatory analysis, Proc. London Math. Soc., 49(1947), 421-435.
- [6] B.C.Berndt, Ramanujan's notebooks Part III, Springer, New York, (1991).
- [7] Y.S.Chol, Tenth order mock theta functions in Ramanujan's lost notebook, Invent. Math., 136(1991), 497-596.
- [8] R.Y.Denis, S.N.Singh and S.P.Singh, On certain relation connecting mock theta functions, Italian Jour. Pure and Appl. Math., 19(2006), 55-60.
- [9] L.Euler, Introduction in Analysin Infinitorum, Marcum-Michaelem Bousuet, Lausanne, (1748).
- [10] H.Gollinitz, Partition mit Differenzenbedingunger, J. Reine Angew Math., 225(1967), 154-190.
- [11] B.Gordon, Some continued fractions of Rogers-Ramanujan type, Duke Math. Jour., 32(1965), 741-448.
- [12] B.Gordon and R.J.Mc Intosh, Some eight order mock theta functions, Jour. London Math soc., 62(2000), 321-365.
- [13] H.Hahn, Septic Analogues of the Rogers-Ramanujan functions, Acta Arith, 110(2003), 381-399.
- [14] H.Hahn, Einstein series, analogues of the Rogers-Ramanujan functions and partition, Ph. D. Thesis University of Illinois at Urbana Champaign, (2004).
- [15] Hikami Kazuhiro, Mock (false) theta functions as quantum invariants, Regular and chaotic Dynamics, 10(2005), 509-530.
- [16] Hikami Kazuhiro, Transormation formula of the 2nd order mock theta functions, Lett,. Math. Phy., 75(2006), 93-98.
- [17] F.H.Jackson, Examples of a generalization of Euler's transormation for power series, Messenger of Math, 57(1928), 169-187.
- [18] R.J.Mc.Intosh, Second order mock theta functions, Canad. Math. Bull, 50(2)(2007), 284-290.
- [19] S.Ramanujan, Proof of certain identities in combinatory, Proc. comb. Philos. Soc., 19(1919), 214-216.
- [20] S.Ramanujan, Ramanujan Notebooks (Vol I and Vol II), Tata Institute of Fundamental Research, Bombay, (1957).
- [21] L.J.Rogers, Second memoir on the expansion of certain infinite products, proc. London. Math. Soc., 25(1894), 318-343.
- [22] L.J.Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math Soc, 54(2)(1952), 147-167.
- [23] A.K.Srivastava, On partial sums of mock theta functions of order three, Proc. Indian Aca. Sci(Math. Sci), 107(1)(1997), 1-12.
- [24] G.N.Watson, The final problem: an account of the mock theta functions, Jour. London Math. Soc., 11(1936), 55-80.