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1. Introduction

The investigation of stability problems for functional equations is related to the famous Ulam problem [34] (in 1940),
concerning the stability of group homomorphisms, which was first solved by D. H. Hyers [14], in 1941. This stability
problem was further generalized by several authors [2, 11, 29, 31, 33]. We cite also other pertinent research works [1, 3—
8, 10, 13, 15, 21, 23, 28, 32]. The general solution and the generalized Hyers-Ulam stability for the quadratic- additive

type functional equation

fletay)+af(@—y)=f(z—ay)+af(z+y) (1)

for any positive integer a with a # —1,0, 1 was discussed by K.W. Jun and H.M. Kim [18]. Also, A. Najati and M.B.Moghimi

[26] investigated the generalized Hyers-Ulam-Rassias stability for the quadratic additive functional equation of the form

fQRr+y)+fQRr—y)=2f(x+y) +2f (x—y)+2f (22) - 4f (). )
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Infact, M.E. Gordji et. al., [12] discussed the generalized Hyers- Ulam stability of the additive - quadratic functional equation

fRr+y)+fQ2z—y) = flz+y)+ fl@ —y) +2/(2z) — 2f(x) ®3)

in fuzzy Banach spaces. The general solution and generalized Ulam - Hyers stability of a mixed type additive quadratic(AQ)-

functional equation

g(x +y) +g(z —y) = 29(x) + 9(y) + 9(—y) (4)

was investigated by M. Arunkumar and J.M. Rassias [6]. Also, the general solution in vector space and generalized Ulam -

Hyers stability of mixed type additive quadratic functional equation

fRrtyd2)=2f(—xFyF2)-2f(FyF2) + f(Fy£2) +3f(z) - f(—=) (5)

in Random Normed Space was discussed by S. Murthy et.al., [25]. Several other mixed type additive - quadratic functional
equations were introduced and investigated in [9, 16, 17, 19, 20, 22, 27, 35].
In this paper, the authors establish the general solution and generalized Ulam - Hyers stability of an additive quadratic

functional equation

fle4+2y+32)+ flx —2y+32) + f(x + 2y — 32) + f(x — 2y — 32)

=4f(x) +8[f(v) + f(=v)] + 18[f(2) + f(—2)] (6)

in Banach spaces, using the Hyers direct and fixed point methods.
In Section 2, the general solution of the functional equation (6) is given.
In Sections 3 and 4, the generalized Ulam - Hyers stability of the functional equation (6) using direct method and fixed

point method is proved, respectively.

2. General Solution of the Functional Equation(6)

In this section, the general solution of the functional equation (6) is given. Through out this section, let us assume X and

Y be vector spaces.

Lemma 2.1. An odd function f : X — Y satisfies the additive functional equation

flx+y) = flz)+ f(y) (7)

for all z,y € X, if and only if f : X — Y satisfies the functional equation (6) for all x,y,z € X.

Proof. Let f: X — Y satisfy the functional equation (7). Setting z = y = 0 in (7), we get f(0) = 0. Replacing y by z
and y by 2z in (7), we obtain

f(2z) =2f(x) and f(3z) =3f(z) (8)

for all x € X. In general for any positive integer a, we have f(az) = af(z).

Replacing y by y + z in (7) and using (7), we get

fle+y+2)=f@)+f(y) + f(z) )
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for all z,y,z € X. Again replacing (z,y, z) by (z,2y,32) in (9) and using (8), we obtain
flz+2y+32) = fz) +2f(y) +3f(2) (10)

for all z,y,z € X. Setting y by —y in (10), we have

flz—2y+32) = f(z) + 2f(—y) + 3/ (2) (11)
for all z,y,2z € X. Again setting z by —z in (10), we get

flz+2y —32) = f(z) +2f(y) + 3f(—2) (12)
for all z,y,z € X. Putting (y, z) by (—y, —z) in (10), we obtain

flz =2y =32) = f(x) +2f(—y) +3f(==2) (13)
for all z,y,z € X. Adding (10), (11), (12) and (13), we arrive

fle4+2y+32)+ f(x —2y + 32) + f(x + 2y — 32) + f(z — 2y — 32)

=4f(z) +4f(y) +4f(—y) + 6(2) + 6f(—=2) (14)
for all z,y,z € X. Adding 4f(y) + 12f(z) on both sides of (14), we have

fl@+2y+32) + f(z — 2y +32) + f(2 + 2y — 32) + fz — 2y — 32) + 4f(y) + 12f(2)

= 4f(x) +4f (y) + 4f (—y) + 6f(2) + 6f(—2) + 4f () + 12f(2) (15)
for all z,y,z € X. It follows from (15) that

flx+2y+32)+ f(x —2y+32) + f(x + 2y — 32) + f(x — 2y — 3z)

=4f(x) +4f(y) +4f(—y) +6f(2) + 6f(—2) +4f(y) + 12f(2) — 4f(y) — 12f(2) (16)

for all z,y,z € X. Using oddness of f in (16), we have demonstrated our result.
Conversely, let f: X — Y satisfy the functional equation (6). Setting z =y = z = 0 in (6), we get f(0) = 0. Using oddness
of f in (6), we have

fle+2y+32)+ f(x —2y+32) + f(x + 2y — 32) + f(x — 2y — 32) = 4f(x) (17)
for all x,y, z € X. Replacing (y, z) by (%,0) in (17), we get
fle+y) + fle—y) =2f(z) (18)

for all z,y € X. By Theorem 2.1 of [4], our result is demonstrated. ]
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Lemma 2.2. An even function f: X — Y satisfies the quadratic functional equation

fle+y)+f(z—y) =2f(x) +2f(y) (19)

for all z,y € X, if and only if f : X — Y salisfies the functional equation (6) for all z,y,z € X.
Proof. Let f: X — Y satisfy the functional equation (19). Setting (z,y) by (0,0) in (7), we obtain f(0) = 0. Replacing
y by z and y by 2z in (7), we get
f(2z) =4f(z) and [f(3z)=9f(x) (20)
for all z € X. In general for any positive integer a, we have
flaz) = a® f(z) (21)
for all x € X. Replacing y by 2y + 3z in (19), we get
flx+2y+32) + f(x — 2y — 32) = 2f(x) + 2f(2y + 32) (22)
for all z,y,z € X. Again replacing y by —2y + 3z in (19), we obtain
fle—2y+32)+ flx +2y — 32) =2f(z) + 2f(—2y + 3z) (23)

for all z,y,z € X. Adding (22) and (23), we arrive

fle4+2y+32)+ flx —2y+32) + f(x + 2y — 32) + f(x — 2y — 32)

=4f(z)+2f(2y +32) + 2f(—2y + 3z) (24)
for all z,y,2 € X. Using (19) in (24) and using evenness of f, we have

fz+2y+32) + f(z — 2y +32) + f(z + 2y — 32) + f(z — 2y — 32)

=4f(x) +2[2f(2y) +2f(3z) — f(2y — 32)] + 2[2f(—2y) + 2 (32) — f(—2y — 32)]

=4f(x) + 16[f(v) + f(=y)] + 72f(2) — 2[f(2y — 32) + f(2y + 32)]

=4f(x) +32f(y) + 72f (2) — 2[2f(2y) + 2 (32)]

=4f(x) +32f(y) + 72f(2) — 16f(y) — 36 (2)]

=4f(z) + 16 (y) + 32f(2)

= 4f(z) +8[f(y) + f(=y)] + 18[f(2) + f(—=2)] (25)
for all z,y,z € X.

Conversely, assume f : X — Y satisfies the functional equation (6). Setting (z,y, z) by (0,0,0) in (6), we obtain f(0) = 0.

Replacing z by 0 and using evenness of f in (6), we have
[ +2y) + f(z — 2y) = 2f(x) + 8f(y) (26)
for all z,y € X. Setting = by 0 in (26) and using evenness of f, we get
f(y) =4f(y) (27)

for all y € X. Replacing y by % in (26) and using (27), we arrive (19) as desired. O
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3. Stability Results: Hyers Direct Method

In this section, the generalized Ulam - Hyers stability of functional equation (6), using the Hyers direct method, is provided.

Now, let us consider X and Y to be a normed space and a Banach space, respectively. Define a mapping Df : X — Y by

Df(z,y,2) = f(x + 2y + 32) + f(x — 2y + 32) + f(z + 2y — 32) + f(z — 2y — 32)

—4f (@) = 8[f(y) + f(—=y)] = 18[f(2) + f(=2)]

for all z,y,z € X.
Theorem 3.1. Let j € {—1,1} and o, 3 : X* — [0,00) be a function such that

njy nj nj
lim a(6 z,6 vy,6 z)

n—o0o 6nJ

=0

forall z,y,z € X. Let fo : X — Y be an odd function satisfying the inequality

IDfa(@,y,2)|| < (2,9, 2)

for all z,y,z € X. Then there exists a unique additive mapping A : X — Y which satisfies (6) and

o)~ A@I < = 3 2O
k

6kJ
—1-J
2
where B(6™x) and A(x) are defined by the following two formulas

B(6" z) = 20(6" 2, 6" 1,6 x) + (6" 2,0,6™ 1)

respectively, for all z € X.

Proof.  Assume j = 1. Replacing (z,y, z) by (z,z,z) in (29) and using oddness of fq, we get
[[fa(62) + fa(22) = fa(4z) — 4fa(2)]| < o (2,7, 7)
for all z € X. Again replacing (z,y, z) by (z,0,z) in (29) and using oddness of f,, we obtain
12fa(4x) = 2fa(22) — 4fa(2)|| < a(2,0,2)

for all z € X. It follows from (33) and (34) and the triangle inequality that

12fa(62) = 12fa(2)[| < 2[fa(62) + fa(22) = fa(4z) — 4fa(@)]| + (|20 (42) = 2fa(22) — 4fa(z)|

<2«(z,z,z)+ a(z,0,z)

for all z € X. Divide the above inequality by 12, we obtain

O )| < 5P

(29)

(33)

(35)

(36)
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where

B(z) = 2a(z,z,z) + a(x,0, )

for all x € X. Now, replacing = by 6z and dividing by 6 in (36), we get

fa(6%z) _ fa(62)| _ B(6z)
— <
‘ 62 6 ||~ 126 (87)
for all z € X. From (36) and (37), we obtain
fa(62) fa(62) fa(6®x) _ fa(62)
‘T‘f‘l(m) ST L@ Te ~ T
1 B(6x)
<
< 5 [p+ 2562 (39)
for all x € X. Proceeding further and using induction on a positive integer n, we get
fa62) o] < LS B(6") (30)
6 “ - 12 6"
k=0
oo k
_ 16k
- 12 6+
k=0

for all z € X. In order to prove the convergence of the sequence

(22}

first replace x by 6™z and then divide by 6™ in (39), for any m,n > 0, and thus we deduce

fa(6™ - 6™x)

Gn - fa(6mx)

fa(6™ " x)  fa(6™x)
6(n+m) Gm

=5 |

<

SiimW%)

—0 as m — oo

for all x € X. Hence the sequence {fa (g)n z) } is a Cauchy sequence. Since Y is complete, there exists a mapping A: X — Y

such that

A(z) = lim %nx), VzeX.

n— oo

Letting n — oo in (39), we see that (30) holds for all x € X. Claim that A satisfies (6). In fact, replacing (z,y, z) by

(6"z,6"y,6"z) and dividing by 6™ in (29), we obtain

1

1
on Dfa(an,6"y,6"z)H < 67(1(6":576"31,6"2)

for all z,y,z € X. Letting n — oo in the above inequality and using the definition of A, we see that

DA(z,y,z) =0.
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Hence A satisfies (6) for all z,y,z € X. To show A is unique, let B be another additive mapping satisfying (6) and (30),

then

[A(z) = B(x)|| = 6% |A(6") — B(6"z)|

6% {IlA(6"z) — fa(6"2) + [ fa(6"2) — B(6"2)|}
< 1 <= (65 )

- (k+n)
6k:0 6lk+n

—0 as n— o

for all z € X. Hence A = B is unique.

For 7 = —1, we can prove a similar stability result. This completes the proof of the theorem. O
The following Corollary is an immediate consequence of Theorem 3.1 concerning the stability of (6).

Corollary 3.2. Let A and s be nonnegative real numbers. Let an odd function f, : X — Y satisfy the inequality

As
1D (g, )] < A2+ lyll* + 11211} s<1 or s>1; (40)
a b b —
Alll*[lyl1°[121]* 3s<1 or 3s>1;

A=l 120 + {1l + [yl + 1213}, 8s <1 or 35> 1

for all x,y,z € X. Then there exists a unique additive function A : X — Y such that

3\
T()?
Rl
1fo@) - A@) < Sl (a1)
5AlJal|*
- 6

forallz € X.

Now we provide an example to illustrate that the functional equation (6) is not stable for s = 1 in Condition (i7) of Corollary

3.2.

Example 3.3. Let ¢ : R — R be a function defined by

o(z) = ux, if |z] <1

W, otherwise

where p > 0 is a constant, and define a function f, : R — R by

fa(z) = i $(6"z) forall xR

n=0 6"
Then fq satisfies the functional inequality
|Dfa(z,y,2)| < 720 (Jz] + |y| + [2]) (42)

for all x,y,z € R. Then there is no an additive mapping A : R — R and a constant 8 > 0 such that

|fa(z) — A(x)| < Bz forall zeR. (43)
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Proof. Now

Ime)\<Z‘¢|6n Zg_l— :6?”‘

Therefore we see that f, is bounded. We are now going to prove that f, satisfies (42).
If x =y = z = 0 then (42) is trivial. If |z| + |y| 4+ |z| > 1 then the left hand side of (42) is less than 72x. Now suppose that

0 < |z| + |y| + |2] < 1. Then there exists a positive integer k such that

<zl +yl + 2] < (44)

1
6k — 6k—1’

so that 6°7 12| < 1, 6°7!y| < 1,6 7|2| < 1 and consequently

6" (x4 2y +32),6" (& — 2y + 32),6" (x4 2y — 32),6° (& — 2y — 32),

6"~ (2),6° 7" (—2),6" (), 6" (=), 6" (2),6" " (=2) € (-1, 1).
Therefore for each n =0,1,...,k — 1, we have

6" (x + 2y + 32),6" (z — 2y + 32),6™ (z + 2y — 32),6" (v — 2y — 32),

6"(x),6"(—2),6"(y),6"(~y),6"(2),6"(—2) € (—1,1).
and

o (6"(x+2y+32)+ ¢ (6™ (x— 2y +32)) + ¢ (6" (x + 2y — 32)) + ¢ (6™ (z — 2y — 32))

—4¢(6"x) — 8[p(6"y) + ¢(—6"y)] — 18[p(6"2) + ¢(—6"2)] =0

forn =0,1,...,k — 1. From the definition of f, and (44), we obtain that

‘Dfa(m,y,z)’

-3 Gin‘¢(6”(x+2y+ 32)) + 6 (6" (x — 2y + 32)) + 6 (6™ (x + 2y — 32)) + & (6" (x — 2y — 32))

—4¢(6"x) — 8[¢(6"y) + #(—6"y)] — 18[¢(6"2) + ¢(*6”Z)]‘

=1

n=k

¢ (6™ (x4 2y +32)) + ¢ (6" (x — 2y + 32)) + ¢ (6" (x + 2y — 32)) + ¢ (6™ (z — 2y — 32))

— 46(6"2) — 8[9(6™y) + B(~6"y)] — 18[4(6"2) + B(~6"2)]|

1 6
7600 =60 1 x o x o < T2 (|a] + [y] 4+ |2]) -

INA
NgE
2|~

3
Il
B

Thus f, satisfies (42) for all z,y,z € R with 0 < |z| + |y| + |z| < 1.

We claim that the additive functional equation (6) is not stable for s = 1 in condition (i7) of Corollary 3.2. Suppose on the
contrary that there exists an additive mapping A : R — R and a constant 8 > 0 satisfying (43). Since f, is bounded and
continuous for all z € R, A is bounded on any open interval containing the origin and continuous at the origin. In view of

Theorem 3.1, A must have the form A(z) = cz for any x in R. Thus we obtain that

[fa(2)] < (B + lc]) |- (45)
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But we can choose a positive integer m with mu > 8+ |¢|.

If z € (0, z=r ), then 6"z € (0,1) for all n = 0,1,...,m — 1. For this z, we get

fulr) =3 OO > S EOD s (4 kel
n=0 n=0

which contradicts (45). Therefore the additive functional equation (6) is not stable in the sense of Ulam, Hyers and Rassias
if s = 1, assumed in the inequality (40). O
A counter example to illustrate the non stability in Condition (ii¢) of Corollary 3.2:

Example 3.4. Let s be such that 0 < s < % Then there is a function f, : R — R and a constant A > 0 satisfying

s s 1-2s
IDfa(z,y,2)| < Az|3 |y|3 [2] 3 (46)
for all z,y,z € R and
o —A
z#0 ||
for every additive mapping A : R — R.
Proof. If we take
zln|z|, if x#0,
fa (z) =
0, if x=0.
Then from the relation (47), it follows that
e @ =A@ 1)~ Am)
z#£0 || neN ]
n#0
— sup |nln|n| —n A(1)]
neN |n|
n#0
=sup |ln|n|]—A(1)] = .
neN
n#0

We have to prove (46) is true.
Case (i): If z,y,z >0 than x + 22432 > 0,2 — 22+ 32 > 0,

x+2z—32> 0,2 — 2z — 3z > 0 and therefore (46) becomes,

[ful@ + 2y +32) + falw — 2y +32) + fulw + 2y — 32) + fulz — 2y — 32)
—Afa(x) = 8[faly) + fa(=y)] — 18[fa(2) + fa(—=2)I|.
=|(x+2y+32z)In|z+2y+3z|+ (zr — 2y + 32) In|z — 2y + 32| + (z + 2y — 3z) In |z + 2y — 32|

+(z—2y—3z)In|z — 2y — 3z| —4zln|z| — 8[yIn|y| —yIn| —y|] — 18[zIn|z| — zIn| — z|]|.
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Set x = u,y = v,z = w it follows that

|fa(® 4+ 2y +32) + fa(z — 2y + 32) + fa(@ + 2y — 32) + fa(x — 2y — 32)
—4fa(z) = 8[fa(y) + fa(=y)] = 18[fa(2) + fa(=2)]|
=l(x+2y+3z)In|z+2y+3z|+ (r — 2y + 32) In|z — 2y + 32| + (z + 2y — 3z) In |z + 2y — 32|
+(x—2y—32)In|z —2y — 3z| —4zln|z| — 8[yIn|y| —yIn| —y|] — 18[zIn|z| — zIn| — 2[]|.
=|(u+2v+3w)In|u+ 2v + 3w| + (v — 2v + 3w) In |u — 2v + 3w| + (v + 2v — 3w) In |u + 2v — 3w|
+(u—2v—3w)ln|u —2v—3w| —4uln|u| — 8[vIn|v] —vIn| —v|] — 18[wln |w| —wln| — w|]|.
[fa(u+ 204 3w) + fo(u — 2v + 3w) + fa(u+ 2v — 3w) + fa(u — 20 — 3w)
—4fa(w) = 8[fa(0) + fal—0)] — 18[fa(w) + fu(—w)]].

s s 1-2s s s 1-2s
< Alul® |3 fw| 75 = Aa[® |y|3 |27

Case (it): Ifx,y,z <0 than z+2z2+32 > 0,2 —2z2+ 3z >0,

x+2z—32> 0,2 — 22— 3z > 0 and therefore (46) becomes,

[fa(z + 2y 4 32) + fa(z — 2y 4 32) + fa(z + 2y — 32) + fa(z — 2y — 32)
—4fa(®) = 8[faly) + fa(—y)] — 18[fa(2) + fa(=2)]l.
=[x +2y+3z)In|x+2y+3z|+ (r — 2y + 32) In|z — 2y + 32| + (x + 2y — 3z) In |z + 2y — 32|

+(x—2y—32)Injz — 2y — 32| —4zln|z| — 8[yIn|y| —yIn| —y|] — 18[zIn|z| — zIn| — 2[]|.
Set © = —u,y = —v, z = —w it follows that

|fa(@ + 2y +32) + fa(z — 2y + 32) + fa(z + 2y — 32) + fa(z — 2y — 32)
—4fa(x) = 8[fa(y) + fa(=y)] = 18[fa(z) + fa(=2)]]
=z +2y+32)In|z+2y+3z|+ (r — 2y + 32) In|z — 2y + 32| + (x + 2y — 32) In |z + 2y — 32
+(z—2y—3z)In|z — 2y — 3z| —4zIn|z| — 8[yIn|y| —yIn| —y|] — 18[zIn|z| — zIn| — z[]|.
=|(—u—2v—-3w)In| —u—2v —3w|+ (—u+ 2v — 3w) In| — u + 2v — 3w|
+(—u—2v+3w)ln| —u—2v+3w| + (—u+2v + 3w)In| — u + 2v + 3w|
+4uln| —u| —8[—vin| —v|+vin|v|]] — 18[—wln| — w| + wln |wl]| .
[fa(—u —2v — 3w) + fa(—u+ 2v — 3w) + fo(—u — 20+ 3w) + fo(—u+ 2v + 3w)
—4fa(=u) = 8fa(=0) + fa(0)] — 18[fa(—w) + fu(w)]].

s s 1-2s s s 1-2s
SA —uls [—os [—w[ 3 = A3 [y[5 |2z 7.

Case (iii): If x>0,y <0,z <0 than z+ 22+ 32 <0,z —22+ 32 <0,

z+2z—32 <0,z — 22— 3z <0 and therefore (46) becomes,

[fa(z + 2y 4+ 32) + fa(z — 2y + 32) + fa(z + 2y — 32) + fa(z — 2y — 32)
—4fa(x) = 8[fa(y) + fa(=y)] = 18[fa(2) + fa(=2)I|.
=|(z+2y+32)In|x+2y+ 32|+ (x — 2y + 32) In|z — 2y + 32| + (z + 2y — 32) In |x + 2y — 32|

+(z—2y—32z)In|z — 2y — 3z| —4zIn|z| — 8[yIn|y| —yIn| —y|] — 18[zIn|z| — zIn| — z[]|.
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Set x = u,y = —v,z = —w it follows that

|fa(@ + 2y + 32) + fa(z — 2y + 32) + fa(z + 2y — 32) + fa(z — 2y — 32)
—Afa(x) = 8[fa(y) + fa(—y)] = 18[fa(2) + fa(=2)]|
=z +2y+3z)In|z+2y+3z|+ (xr — 2y + 32) In|z — 2y + 32| + (z + 2y — 3z) In |z + 2y — 32|
+(x—2y—32z)Injz — 2y — 3z| —4zln|z| — 8[yIn|y| —yIn| —y|] — 18[zIn|z| — zIn| — z[]| .
=|(u—2v—3w)In|u—2v — 3w|+ (u+ 2v — 3w) In|u + 2v — 3w| + (v — 2v + 3w) In |u — 2v 4 3w|
+(u+2v+3w)ln|u+2v+3w| —4uln|u| — 8[—vin| —v|+vin|v|]] — 1§[—wln| — w| + wln |wl]] .
|fa(u —2v —3w) + fa(u+2v — 3w) + fa(u — 2v + 3w) + fa(u + 2v + 3w)
—4fa(u) = 8[fa(=v) + fa(v)] = 18[fa(-w) + fa(w)]] .

s s 1—2s s s 1—2s
SAul3 [ =os [—w] 3 =Xzl [y]3 [2[ 3

Case (iv): Ifx <0,y >0,z>0than x +22+4 32 <0,z — 22+ 32 < 0,

z+2z—32 <0,z — 2z — 3z <0 and therefore (46) becomes,

[fa(z + 2y 4 32) + fa(z — 2y 4 32) + fa(z + 2y — 32) + fa(z — 2y — 32)
—4fa(x) = 8[fa(y) + fa(—y)] — 18[fa(2) + fa(=2)]l.
=z +2y+32z)In|x+2y+3z|+ (r — 2y + 32) In|z — 2y + 32| + (x + 2y — 3z) In |z + 2y — 3%

+(x—2y—32)Injz — 2y — 32| —4zln|z| — 8[yIn|y| —yIn| —y|] — 18[zIn|z| — zIn| — 2[]|.
Set x = —u,y = v,z = w it follows that

|fa(x + 2y + 32) + fa(x — 2y + 32) + fa(z + 2y — 32) + fao(z — 2y — 32)
—4fa() = 8[fa(y) + fa(=y)] = 18[fa(2) + fa(=2)]|
=[x +2y+32z)In|x + 2y + 32|+ (r — 2y + 32) In|z — 2y + 32| + (z + 2y — 3z) In |z + 2y — 3%
+(x -2y —32)Injz — 2y — 3z| —4zln|z| — 8[yIn|y| —yIn| —y|] — 18[zIn|z| — zIn| — 2[]|.
=|(—u+2v+3w)In| —u+2v+ 3w|+ (—u — 2v + 3w) In| — u — 2v + 3w|
+(—u+2v—3w)n| —u+2v—3w|+ (—u—2v — 3w)In| — u — 2v — 3w|
+4uln|u| — 8[vIn|v] —vIn| —v|] — 18wln jw| —wln| — w|]|.
[fa(—u +2v 4+ 3w) + fa(—u — 2v + 3w) + fa(—u + 20 — 3w) + fo(—u — 2v — 3w)
—4fa(—u) = 8[fa(v) + fa(=v)] = 18[fa(w) + fa(-w)]|.
<A = uf¥ JolF ] = Al I 1o

Case (v): If =y =2z =0in (46) then it is trivial. O

Now we will provide an example to illustrate that the functional equation (6) is not stable for s = % in Condition (iv) of

Corollary 3.2.

Example 3.5. Let ¢ : R — R be a function defined by

o) = | if lz| < 5

£, otherwise
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where p > 0 is a constant, and define a function f, : R — R by

fa(z) = i ¢(6") for all x €R.

Then fo satisfies the functional inequality
IDfa(,,2)| < 243 (Jel 3113 1215 + o] + [yl + I21) . (48)
for all x,y,z € R. Then there is no an additive mapping A : R — R and a constant 8 > 0 such that
|fa(z) — A(z)| < Bz forall x€R. (49)

Proof. Now

Therefore we see that f, is bounded. We are now going to prove that f, satisfies (48).
1
If ¢ = y = z = 0 then (48) is trivial. If |x\%|y|%|z|% + || + |yl + |2 > 6 then the left hand side of (48) is less than 24u.

1
Now suppose that 0 < \m|% |y|% \z|% + |z| + |yl + 2] < 5 Then there exists a positive integer k such that

1

o = 215 |y]5[2]3 + 2] + [y] + |2] <

1
T (50)

so that 6k71|x|%|y|%|z|% <16 Mzl <%, 6"yl < 1,67 "z] < & and consequently

6" (x4 2y +32),6" " (x — 2y + 32),6° (x4 2y — 32),6° 1 (x — 2y — 32),

67 (0), 6 (<), 67 (), 6 (-0, 6,6 () € (g )

Therefore for each n =0,1,...,k — 1, we have

6" (z + 2y + 32),6™ (z — 2y + 32),6" (x + 2y — 32),6" (x — 2y — 32),
" (2),0"(=2),6"().6" (~9),6"(2).0" (~2) € ()

and

¢ (6" (z + 2y +32)) + ¢ (6" (x — 2y + 32)) + ¢ (6" (z + 2y — 32)) + ¢ (6" (x — 2y — 32))

—4¢(6"z) — 8[¢(6"y) + ¢(—6"y)] — 18[¢(6"2) + ¢(—6"2)] =0

forn =0,1,...,k — 1. From the definition of f, and (50), we obtain that

‘Dfa(x,y,z)‘

L6 (67 (@ + 29+ 32)) + 6 (6™ (x — 2y + 32)) + 6 (6" (2 + 2y — 32)) + & (6" (« — 2y — 32))

— 46(6"2) — 8[9(6™y) + $(—6")] — 18[6(6"2) + $(~6"2)]|

=1
=2 |

P (6"(x+2y+32))+¢(6"(x—2y+32)) + ¢ (6"(x + 2y — 32)) + ¢ (6" (z — 2y — 32))

6"2) — 89(6™) + 9(~6"y)] — 189(6"2) + 9(—6"2)]|

1 1,1
< 24y (|:r|3 lyl3]2]3 + |z| + |y| + IZI) .
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Thus f, satisfies (48) for all z,y,z € R with 0 < |m|%|y\%\z\% + || + [y + |2] < %-

We claim that the additive functional equation (6) is not stable for s = % in condition (iv) of Corollary 3.2. Suppose on the
contrary that there exists an additive mapping A : R — R and a constant 8 > 0 satisfying (49). Since f, is bounded and
continuous for all z € R, A is bounded on any open interval containing the origin and continuous at the origin. In view of

Theorem 3.1, A must have the form A(z) = cz for any x in R. Thus we obtain that

[fa(x)] < (B +c]) |z]. (51)

But we can choose a positive integer m with mu > 8+ |¢|.

Ifv e (0 #), then 6"x € (0,%) foralln =0,1,...,m — 1. For this =, we get

» gm—1

fotw) = 32 O > SO s (8 lel)
n=0 n=0

which contradicts (51). Therefore the additive functional equation (6) is not stable in the sense of Ulam, Hyers and Rassias

if s = %7 assumed in the inequality (40). O

Theorem 3.6. Let j € {—1,1} and o, 3 : X* — [0,00) be a function such that

nj nj nj
i o (6™x,6™y, 6™ 2)

n— oo 367

=0 (52)

forallz,y,z € X. Let fo: X =Y be an even function satisfying the inequality

IDfo(z,y,2)|| < (2,9, 2) (53)

for all z,y,z € X. Then there exists a unique quadratic mapping Q : X — Y which satisfies (6) and

a2 - Q) < oy > 2O (54)

where (6" z) and Q(z) are defined by the two relations:
B(6"2) = 20(6" 2,6z, 6" 2) + (6" 2,0,6" 2) (55)

Q(z) = lim w (56)

nooo  36MJ

respectively, for all x € X.

Proof.  Assume j = 1. Replacing (z,y, 2) by (z,z,z) in (53) and using evenness of f,, we get

1fa(62) + fa(22) + fo(42) — 56f4(2)|| < a (2, z, z) (57)
for all z € X. Again replacing (z,y, z) by (z,0,z) in (53) and using evenness of f;, we obtain

12fq(42) +2f4(22) — 404 (2)|| < o (2,0, 7) (58)
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for all z € X. It follows form (57) and (58) that

12f4(62) = 72f4(x)|| < 2|[f4(62) + fa(22) + fq(42) — 56 f4 ()|
+ 11274 (42) + 2f4(22) — 40f4(z)]

<2a(z,z,z)+ a(z,0,x) (59)

for all x € X. Dividing the above inequality by 72, we arrive

fq(62) B(x)
_ < 2
2 )| < B (60)
where
B(z) = 20 (z,2,2) + o (x,0,7)
for all x € X. The rest of the proof is similar to that one of Theorem 3.1. O
The following Corollary is an immediate consequence of Theorem 3.6 concerning the stability of (6).
Corollary 3.7. Let A and s be nonnegative real numbers. Let an even function f, : X — 'Y satisfy the inequality
A
MIlll* + Nyll* + [1211°} 5<2 or s>2;
1D fq(,y,2)Il < (61)
Al 11211 35<2 or 3s>2;
Al HylP 2l + {Hl=l1* + Tyl + (2P}, 8s <2 or 3s>2;
for all x,y,z € X. Then there exists a unique quadratic function Q : X — Y such that
3A
700 .
AN
|36 — 65|’
Ifa(@) = Q@) < § " N|ja||* (62)
|36 — 63s]’
5[
|36 — 637]

forallz € X.

Now we provide an example to illustrate that the functional equation (6) is not stable for s = 2 in Condition (é¢) of Corollary

3.7.

Example 3.8. Let ¢ : R — R be a function defined by

pa?, if |z <2

a(z) =

w, otherwise

where p > 0 is a constant, and define a function f; : R — R by

fqlz) = i 9(6"z) forall x€R.



John M. Rassias, M.Arunkumar and P.Agilan

Then f, satisfies the functional inequality

DA < (225 (af 1 4127 (63)

for all x,y,z € R. Then there is no a quadratic mapping @ : R — R and a constant § > 0 such that
|fa(2) = Q)| < Blzf* forall z€R. (64)

Proof. Now
|9(6")| _ o~ p _ 36u
|fa(z |—Z |36n _236"_ 35
Therefore we see that f; is bounded. We are going to prove that f, satisfies (63).

If £ =y = z = 0 then (63) is trivial. If |z|> + |y|> + |2|> > 35 then the left hand side of (63) is less than (12236) " Now

suppose that 0 < |z|* + |y|> + |2|> < &. Then there exists a positive integer k such that

1 2 2 1
Wf‘ﬂ + [yl” + 2] <W’

so that 6" z|> < 6" y|? < 2, 65712 < 35 and consequently

367 36’

6" 1z + 2y +32),6" (. — 2y + 32),6F (@ + 2y — 32),6"(z — 2y — 32),

-1 -1 -1 -1 -1 —1 11
6 )64 (). 6 (), 64 ), 62,6 (-2 € (g ).

Therefore for each n =0,1,...,k — 1, we have

6" (x + 2y + 32),6"(z — 2y + 32),6™ (z + 2y — 32),6" (v — 2y — 32),

6" (2),6" (—), 6" (1), 6" (), 6" (), 6" (~2) € (%é) ,
and

(6" (x+2y+32))+ (6" (x—2y+32)) + ¢ (6"(x + 2y — 32)) + ¢ (6" (z — 2y — 32))

—4¢(6"x) — 8[p(6"y) + #(—6"y)] — 18[¢(6"2) + ¢(—6"2)] =0
forn =0,1,...,k — 1. From the definition of f; and (65), we obtain that

Do)

e}

1
:Zﬁd)

n=0

—4¢(6"x) — 8[¢(6"y) + ¢(—6"y)] — 18[$(6"2) + ¢(*6"Z)])

(6"(z+2y+32)+ (6" (x — 2y + 32)) + ¢ (6" (x + 2y — 32)) + ¢ (6™ (z — 2y — 32))

= Z 36n)¢ (6" (@ +2y +32)) + ¢ (6" (z — 2y +32)) + ¢ (6" (v + 2y — 32)) + ¢ (6" (x — 2y — 32))

— 46(6"x) — 8[0(6™y) + ¢(~6"y)] — 18[6(6"2) + 6(—6"2)]

> 1 36 12p % 362 2 2 2
— — < _— .
§::6 600 = 60 1% oo x35_< - >(|x|+|y|+|2|)
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Thus f, satisfies (63) for all z,y,z € R with 0 < |z|> + |y|* + [2|* < 2.

We claim that the additive functional equation (6) is not stable for s = 2 in condition (i¢) of Corollary 3.2. Suppose on the
contrary that there exists an additive mapping @ : R — R and a constant 8 > 0 satisfying (64). Since f, is bounded and
continuous for all z € R, @ is bounded on any open interval containing the origin and continuous at the origin. In view of

Theorem 3.1, Q must have the form Q(x) = ca® for any x in R. Thus we obtain that
|fa(@)] < (B + [e]) ™. (66)

But we can choose a positive integer m with my > g+ |c|.

Ifx e (0, 6,,”%1), then 6™z € (0, é) for alln =0,1,...,m — 1. For this z, we get

n 2

= a(6"r) _ = p(6Mz)
fq(z) = ZO o > ZO MsT =muz® > (B + |c]) 2%,

which contradicts (66). Therefore the additive functional equation (6) is not stable in the sense of Ulam, Hyers and Rassias

if s = 2, assumed in the inequality (40). O
A counter example to illustrate the non stability in Condition (#i¢) of Corollary 3.7:

Example 3.9. Let s be such that 0 < s < % Then there is a function fq : R — R and a constant A > 0 satisfying

2—2s

|Dfo(x,y,2)| < Na|3 |yl |2 5 (67)
forall z,y,z € R and
wp @ = Q@ _ 5)
@#0 |z|

for every quadratic mapping Q : R — R.

Proof. If we take
22|z, if x#0,
fo(z) =
0, if ==0,

then from the relation (68), it follows that

up e @) = Q@)

@#0 || neN
n#0

IV
w
=1

ko]

n#0

— sup [lnjn|— Q(1)] = oo,
n#0

We have to prove that (67) is true.

Case (i): If z,y,z >0 than x + 22+ 32 > 0,z — 2z + 3z > 0,

z+2z—32> 0,2 — 2z — 3z > 0 and therefore (46) becomes,

|fa(z + 2y + 32) + fo(z — 2y + 32) + fo(x + 2y — 32) + fo(z — 2y — 32)
—4fq(z) = 8[fe(y) + fa(—y)] — 18[fq(2) + fa(—=2)]|.
= |(:B+2y—|—32)21n\a:+2y+3z|+(w—2y+3z)21n|x—2y+3z\ + (x4 2y — 32)* In |z + 2y — 32|

+(x -2y —32)°In|z — 2y — 32| — 42’ In|z| — 8[y° In|y| + ¥* In| — y|] — 18[z%In|z| + 2°In| — z|]’ .
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Set x = u,y = v,z = w it follows that

|fa(z + 2y + 32) + folz — 2y + 32) + fo(z + 2y — 32) + fo(z — 2y — 32)
—A4fq(x) = 8[fa(y) + fa(=y)] = 18[fa(2) + fa(=2)]|
= |(u+ 2v + 3w)? In|u + 20 + 3w| + (u — 20 + 3w)? In|u — 20 + 3w| + (u + 20 — 3w)? In |u + 2v — 3w|
+(u—2v —3w)*In|u — 2v — 3w| — 4u’ In |u| — 8[v° In[v| + v* In| — v|] — 18[w” In |w| + w’ In| — w|]| .
| fa(u+2v + 3w) + fq(u — 20 + 3w) + fo(u + 2v — 3w) + f(u — 2v — 3w)
—4fq(u) = 8[fq(v) + fo(—v)] = 18[fg(w) + fo(-w)]|.

s s 2-2s s s 2-2s
S Al [uf3 fw| 3 = Az y]3 [2] 3.

Case (it): I x,y,z <0 than z+ 22+ 32> 0,2 — 22+ 3z > 0,

z+2z—32> 0,z — 2z — 3z > 0 and therefore (46) becomes,

|fa(x + 2y + 32) + fo(w — 2y + 32) + fo(x + 2y — 32) + fo(z — 2y — 32)
—4fq(@) = 8[fa(y) + fa(=y)] = 18[fq(2) + fo(=2)]]-
= |(z+2y—|—3z)zln\x+2y+3z|+(x—2y+3z)21n|x—2y—|—3z\+(x—|—2y—3z)21n|x+2y—3z|

+(x — 2y — 32)° In |z — 2y — 32| — 42” In|z| — 8[y° In|y| + y° In| — y|] — 18[z° In|z| + 2°In| — 2[]| -
Set x = —u,y = —v,z = —w it follows that

|fa(z + 2y +32) + fo(z — 2y + 32) + fo(z + 2y — 32) + fo(x — 2y — 32)
—4fq(x) = 8[fa(y) + fa(=9)] = 18[f4(2) + fa(=2)]]
= |(—u—2v—3w)*In| — u — 2v — 3w| + (—u + 2v — 3w)’ In| — u + 2v — 3uw|
+(—u — 2v+ 3w)’ In| — u — 20 + 3w| + (—u + 2v + 3w)* In | — u + 2v + 3w|
+4u® In| — u| — 8[v” In| — v| + v” In |v]] — 18[w’ In| — w| + w” In |w]]| .
[fo(—u —2v — 3w) + fo(—u ~+ 2v — 3w) + fy(—u — 2v + 3w) + fe(—u+ 2v + 3w)
—4fq(—u) = 8[fo(—v) + fo(v)] = 18[fq(—w) + fa(w)]].

s s 2-2s s s 2-2s
SA =3 [—ol3 [—w[ 3 = Aa]s y[® 2] 7.

Case (iti): If x>0,y <0,z <0 than z+ 22+ 32 < 0,2 — 22+ 32 <0,

x4+ 2z —32 <0,z — 2z — 3z < 0 and therefore (46) becomes,

|fa(z + 2y + 32) + fo(w — 2y + 32) + fo(x + 2y — 32) + fo(z — 2y — 32)
—4fq(®) = 8[fa(y) + fa(=y)] = 18[fq(2) + fo(=2)]]-
= |(z+2y—|—3z)zln\x+2y+3z|+(x—2y+3z)21n|x—2y—|—3z\+(x—|—2y—3z)21n|x+2y—3z|

+(x — 2y — 32)°In |z — 2y — 32| — 42” In|z| — 8[y° In|y| + y° In| — y|] — 18[z° In|z| + 2°In| — 2[]| -
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Set x = u,y = —v,z = —w it follows that

|fa(z + 2y + 32) + fo(z — 2y + 32) + fo(z + 2y — 32) + fo(z — 2y — 32)
—4fq(x) = 8[fa(y) + fa(=y)] = 18[fq(2) + fa(=2)|
= |(u—2v—3w)*In|u — 2v — 3w| + (u + 2v — 3w)? In |u + 2v — 3w| + (u — 20 + 3w)” In |u — 2v + 3w|
+(u+2v + 3w)?In |u + 2v + 3w| — 4u® In |u| — 8[v° In| — v| +v* In [v]] — 18[w? In | — w| + w’ In w]]| .
| fa(u — 2v — 3w) + fq(u+ 20 — 3w) + fo(u — 2v + 3w) + fo(u+ 2v + 3w)
—4fq(u) = 8[fa(=v) + fo(v)] = 18[fq(—w) + fo(w)]].

s s 2-2s El s 2-2s
SAfuf3 | =03 [—w| 3 = Azl [y[3 |2[ 3.

Case (iv): Ifx <0,y >0,z>0than x +22+432< 0,2z — 22+ 32 < 0,

z+2z—32 <0,z — 2z — 3z <0 and therefore (46) becomes,

|fa(@ + 2y +32) + fo(z — 2y +32) + fa(x + 2y — 32) + fo(z — 2y — 32)
—4fq(x) = 8[fe(y) + fa(—y)] — 18[fq(2) + fa(=2)]|.
= |(m+2y+3z)21n\m+2y+3z|+(w—2y+32)21n|m—2y+3z\+(m+2y—3z)2ln|x+2y—3z|

+(x -2y —32)°In|z — 2y — 32| — 42’ In|z| — 8[y° In|y| + ¥* In| — y|] — 18[z*In|z| + 2°In| — z|]’ .
Set x = —u,y = v,z = w it follows that

|fa(z + 2y + 32) + folz — 2y + 32) + fo(z + 2y — 32) + fo(z — 2y — 32)
—4fq(x) = 8[fa(¥) + fa(=y)] = 18[fq(2) + fa(=2)]|
= |(—u+2v+3w)’In| — u+2v + 3w| + (—u — 2v + 3w)? In| — u — 2v + 3w|
+(—u+2v — 3w)?In| — u + 20 — 3w| + (—u — 20 — 3w)’ In| — u — 2v — 3w
+4u” In Ju| — 8[v* In |v] + v* In| — v[] — 18[w? In |w| + w’ In | — w]]|.
=|fo(—u+ 20+ 3w) + fo(—u — 2v + 3w) + fo(—u + 2v — 3w) + fo(—u — 2v — 3w)
—4fq(=u) = 8[f4(v) + fa(=v)] = 18[fq(w) + fo(—w)]|.

s s 2-2s s s 2-2s
SA = ul® v w[ B = Alz[3 [yl [z 3.

Case (v): If x =y =z =0 in (46) then it is trivial. O

Now we provide an example to illustrate that the functional equation (6) is not stable for s = % in Condition (i) of

Corollary 3.7.

Example 3.10. Let ¢ : R — R be a function defined by

o(z) = pa’, if x| < 2,

2 -
=, otherwise

where p > 0 is a constant, and define a function f; : R — R by

fqlz) = i 9(6"z) forall x€R.
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Then f, satisfies the functional inequality

1440 p

2 2 2
2 (el I3 1213 + Jal + Iyl + 121)

|qu(x,y,z)| S

for all x,y,z € R. Then there doesn’t exist a quadratic mapping @ : R — R and a constant 8 > 0 such that

|fa(z) — Q)| < Blaf? for all x €R.

Proof. Now
— lp(6"2)| _ o~p o 1 2u
i< SR = 52 g = 2

Therefore we see that f; is bounded. We are going to prove that f, satisfies (69).

(69)

(70)

1
Ifz=y=2z=0, then (69) is trivial. If |23 |y|3|2|3 + |z|> + |y|*> + |2 > 35 then the left hand side of (48) is less than

1
1420 2 Now suppose that 0 < \x|% |y|% \z|% + |z + |yI* + |2]° < 3% Then there exists a positive integer k such that

1

2 2 2 2 2 2
Bl 1212 4+ laf? + Iyl 4+ 1ol < sy

1
sorre <1

so that 6k71|x|%|y|%|z|% < 36"zl < 3, 657y < £,6" 2] < L and consequently

6" Nz + 2y +32),6" 1 (z — 2y + 32),6F (@ + 2y — 32),6"(z — 2y — 32),

-1 1
6 ), 67 (0,610, 6 (-9, 62,6 (-2 € (g )
Therefore for each n =0,1,...,k — 1, we have

6" (x + 2y + 32),6"(z — 2y + 32),6™ (z + 2y — 32),6" (v — 2y — 32),

" (2),6"(=2),6"().6"(-9),6"(2).0"(~2) € ()
and

(6" (x+2y+32))+ (6" (x—2y+32)) + ¢ (6"(x + 2y — 32)) + ¢ (6" (z — 2y — 32))

—49(6"z) — 8[p(6"y) + ¢(—6"y)] — 18[¢(6"2) + ¢(—6"2)] =0

forn =0,1,...,k — 1. From the definition of f; and (71), we obtain that

|Dfa(w,,2)
— io?’é" (6" (x + 2y +32)) + 6 (6"(x — 2y +32)) + & (6" (¢ + 2y — 32)) + & (6" (x — 2y — 32))
—4¢(6"z) — 8[¢(6"y) + ¢(—6"y)] — 18[¢(6"2) + ¢(*6nz)])
= wk S| (67 25 4+32)) 4 6 (67 (@ — 2+ 32)) + 6 (6" (@ + 29— 32)) + 6 (6" (& — 29 — 32))

— 46(6"x) — 8[0(6™y) + ¢(~6"y)] — 18[6(6"2) + 6(—6"2)]

o~ L 120p 1200 1 36 1440 p (1ol =17 + ol + l? + 1=7)
< _— = ——— X — x — < 3 3 5 .
_;36" 3 3 3¢ <35 S 55 (BPWIELEE + el +lyl” + 2]
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Thus f, satisfies (69) for all z,y,z € R with 0 < |:c|%|y|%|z|% + lz> + |y)* + |2° < 2.
We claim that the additive functional equation (6) is not stable for s = 2 in condition (iv) of Corollary 3.2. Suppose on the
contrary that there exists an additive mapping @ : R — R and a constant 8 > 0 satisfying (70). Since fq is bounded and

continuous for all z € R, @ is bounded on any open interval containing the origin and continuous at the origin. In view of

Theorem 3.1, A must have the form Q(z) = cz? for any = in R. Thus we obtain that

[fa(@)] < (B + lel) | (72)

But we can choose a positive integer m with mu > 8+ |¢|.

If v e (07 6,,,%1), then 6"x € (07 %) foralln =0,1,...,m — 1. For this =, we get

oo n m—1 n_\2
fulr) = 32 20D S SO i > (84 ),
n=0 n=0

which contradicts (72). Therefore the quadratic functional equation (6) is not stable in the sense of Ulam, Hyers and Rassias

if s = §7 assumed in the inequality (40). O

Theorem 3.11. Let j € {—1,1} and o, B : X* — [0,00) be a function satisfying (28) and (52) for all x,y,z € X. Let

f: X =Y be a function satisfying the inequality

I1Df(z,y,2)|| < a(w,y,2) (73)

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y and a unique quadratic mapping Q : X — Y

satisfying (6) and

11 & [B(6"z) + B(—6Mz)
/@)~ Ax) - Q@) < & 122( )

where B(6"z), A(z) and Q(z) are defined in (31), (55),(32) and (56), respectively, for all x € X.

Proof. Let fo(z) = M for all z € X. Then f,(0) =0 and fo(—x) = —fo(x) for all z € X. Hence

||Df0(m7y,2)|| S a(w’zy“Z) + O‘(_-Ty;y,—z) (75)

for all z,y,z € X. By Theorem 3.1, we have

o k3 g —6Fi g
Ifo(z) — Az)|| < ?14 Z (6(6 )gk]ﬂ( 6 )) -
k

1—J

for all z € X. Also, let fo(z) = M for all z € X. Then fc(0) =0 and fe(—z) = fe(z) for all x € X. Hence

IDfe(ay, )] < 222 oLty =2) (1)
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for all z,y,z € X. By Theorem 3.6, we have

1 (B6"2) + B(-6"2)
Ife(@) = Q@) < 753 2 ( 3657 ) (78)
for all x € X. Define
f(@) = fol@) + fola) (79)

for all z € X. From (76),(78) and (79), we arrive

1f(x) = A(z) = Q)| = [l fe(x) + fo(z) — A(z) — Q)]
< lfo(z) = A@)| + [| fe(z) — Q)|

A

IN

L1 o (B6%2) +B(—6"2)
2112 Z ( 6ki )

1
k= 2

1 i (,8(6ij) + B(—ﬁ’“ﬂ'x))

36k

for all z € X. Hence the theorem is proved. O
Using Corollaries 3.2 and 3.7, we have the following corollary concerning the stability of (6).

Corollary 3.12. Let A\ and s be nonnegative real numbers. Let a function f: X — 'Y satisfy the inequality

A,
Mzl 4 [yl 4+ 112]°} s#1,2;

IDf(z,y,2)|| < (80)
Al [*[lyl*121]%, 3s #1,2;

A=yl 1=+ {lP + gl + 112173}, 3s # 1,25

for all x,y,z € X. Then there exists a unique additive function A : X — Y and a unique quadratic function Q : X — Y

such that
3) (% + 7101) 1
10 - A -l <d (i ~51" =g ) (81)
Ml <|6 —6] T e—6n )
M lal* (=g * =g )
forallz € X.

4. Stability Results: Fixed Point Method

In this section, the authors have proved the generalized Ulam - Hyers stability of functional equation (6) in Banach spaces

with the help of the fixed point method. Now we will recall the fundamental result in the fixed point theory.
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Theorem 4.1. [2/](The alternative of fized point) Suppose that for a complete generalized metric space (X, d) and a strictly
contractive mapping T : X — X with Lipschitz constant L. Then, for each given element x € X, either

(B1) d(T"z, T"t'z) =0 V n>0,

or

(B2) there exists a natural number ng such that:

(1) d(T"z, T 'z) < oo for alln > no ;

(i1) The sequence (T™x) is convergent to a fixed point y* of T';

(#i1) y* is the unique fized point of T in the set Y = {y € X : d(T™°z,y) < oo};

(

) d(y*,y) < 125 d(y, Ty) for ally €Y.
Hereafter throughout this section, let us assume V' be a vector space and B Banach space respectively. Define a mapping

Df:V — B by

Df(z,y,2) = flx + 2y +32) + f(x — 2y + 32) + f(z + 2y — 32) + f(z — 2y — 32)

—4f(x) = 8[f(y) + f(—y)] = 18[f(2) + f(—2)]

for all z,y,z € V.

Theorem 4.2. Let f, : V — B be a mapping for which there exists functions a, 3,7 : V? — [0, 00) with the condition

k.. .k k
lim Oé(/,L,L $7 /L’ka7 l’l‘l Z) — 07 (82)
where
6, i=0,
i = .
) =1
satisfying the functional inequality
IDfa(z,y,2)| < al,y,2) (83)

for all x,y,z € V. If there exists an L = L(i) < 1 such that the function

one has the property

) =Ly (2 (34)

i
for all x € V. Then there exists a unique additive function A :V — B satisfying the functional equation (6) and

Ll*i

fa(@) — A@)] < 7

v(x) (85)

holds for all x € V.
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Proof.  Consider the set X = {p/p: V — B, p(0) = 0} and introduce the generalized metric on X,
d(p,q) = inf{K € (0,00) :|| p(z) — () | < Kv(z),z € V'}.

It is easy to see that (X, d) is complete.
Define T: X — X by

Now p,q € X,

d(p,q) < K = || p(z) — q(2) |< Kry(z),z € V.

1
< ;Kv(uiw)vw ev,

K3

1 1
= ||—p(pir) — —q(pix
Hui () i (piz)

< LKy(z),z €V,

1 1
= || —ppix) — —q{piw
th‘ ( ) i ( )
= || Tp(z) — Tq(z) |< LKy(z),z €V,

=d(Tp,Tq) < LK.

This implies
d(Tp,Tq) < Ld(p,q),

for all p,q € X . i.e., T is a strictly contractive mapping on X with Lipschitz constant L.

B(z) = 2a(z,z,z) + a(x,0, )

From (36), we have

09 - ) < 53 (56)

where

for all x € V. Using (84) for the case ¢ = 0, it reduces to

Héf‘l(@v) — fa(@)|| < év(m)

forall z € V.

=L=L'"""=71"" <.

[N

ie., d(T fa, fa) <

Again replacing x = § in (86), we get

[t -0r (§)] <22 (5)-

for all x € V. Using (84) for the case ¢ = 1, it reduces to

|f@) =67 (3) ] =@
forallz € V.
ie, d(fe,Tfa)<1=L'=L'"'"=L"<x
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In the above cases, we arrive

d(fa,Tfa) < L'°

Therefore (B2(7)) holds.

By (B2(ii)), it follows that there exists a fixed point A of T"in X such that

k
Afx) = lim % VzeVv. (87)

Claim that A : V — B is additive. Replacing (z,y,2) by (ufz, ufy, usz) in (83) and dividing by uf, it follows from (82)
and (87), A satisfies (6) for all z,y,z € V.
By (B2(iti)), A is the unique fixed point of T in the set Y = {fa € X : d(T'fa, A) < o0}, using the fixed point alternative

result A is the unique function such that

[fa(z) — A2)|| < Kr(z)

for all z € V and K > 0. Finally by (Bz(iv)), we obtain

1
ll7A < T 7 a7T a
A(fas A) < = d(fas Th)
implying
Ll—z
a>A < .
dfas A) € 7
Hence we conclude that
Ll—z

for all x € V. This completes the proof of the theorem. O
From Theorem 4.2, we obtain the following corollary concerning the stability for the functional equation (6).

Corollary 4.3. Let f, : V — B be a mapping and there exist real numbers A\ and s such that

D falz,y,2)]
(@) A
1) M||z|]® + S+ 1|z|I°}, s<1 or s>1;
< (i) Mll=l® + llyll* + [12]°} (88)
(@) A lz|1*[lyll*]l=]°, 3s<1 or 3s>1;
(@) Xzl Myl 1=l + {Il]P* + [lgl** + 12>} }, 8s<1 or 3s>1;
for all x,y,z € V, then there exists a unique additive function A :V — B such that
) 3\
(Z) Ea .
(i)
[fa(@) =A@ < N[z (89)
(412) 6— 63;|
5A[|z[**
(3v) 16— 67

forallx e V.
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Proof.

for all z,y,z € V. Now

A,

A1+ 1yl + =17}

a(z,y,z) =

a(piz, iy, piz)

pk

i.e., (82) is holds. But, we have

Hence

Also,

—7(piw) =
A

Al 1yl =117
MUyl 12117+ (] + [yl + 112017}

Lkl + byl + 11k =117},

A
e
A
U)?
gl [* iyl | 2]
i
A
I
—0as k— oo,
—0as k— oo,
—0as k— oo,
—0as k— oco.
1 x 1
—5("Y= 1o (
2B(6) 2 [ o
r T
{555
[O‘ 6°6) ¢
3A
pi -2
| ial®
i
3s
m-63$”mx” ;
LA
i - 638 b ’

si6) (505

k s k s k s k 3s k 3s k 3s
{1kl bl e 211” {laboll®* + byl + b2} )

Q
27
4N s
T 0 g)] _ ngH )
6’6 A 3s
= llal >,
5A 3s
o llal
_13A .
i o 0 125 ’Y(w)v
s—14A | s s—
15 1gllﬂﬁll, ) (@),
S— )\ S o S—
? 16§H$H3» H? 17(95)7
s— 5)‘ S s—
P | ).

Hence the inequality (84) holds either, L =6~ for s = 1if i =0, or L = 6 for s = 0 if i = 1. Now from (85), we prove the

following cases for condition (7).

Case:l L=6"'fors=1ifi=0

[[fa(2) = Az)[| <

Case:2 L=6fors=0ifi=1

lfale) =A@ < (@) = P - 2 =

1—4
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Again, (84) holds either, L = 6°! for s < 1if i =0, or L = L for s > 1 if i = 1. Now from (85), we prove the following

6s—1
cases for condition (#7).

Case:1 L=6"tfors<1ifi=0

L (6517 4 6° 4\ AN||z||*
(z) — A(z)| < =2 ) Sy s o A s = 2AlEIE
Ife(z) = A@)]| < T=77() = T & 171" = = 6 121" = 5%
Case:2 L:GS%lfors>lifi:1
e — A < 2y = ED T e 6 A Al
o S R 7 N2 T 6°—66° T —6

Also, (84) holds either, L = 63*7! for 3s < 1ifi =0, or L = 635%1 for 3s > 1 if ¢ = 1. Now from (85), we prove the following

cases for condition (4i7).

Case:1 L=6%"'for3s<1ifi=0

Ll*i (635—1)1—0 A 635 A )\HQUHSS

. o < — 33: 35: )
1fa(@) = A@)] < T 7(@) = S S llall™ = 2 el = S

Case:2 L = gzi—y for 3s > 1ifi =1

14 _1 it
I£ula) = A < E) = T 2

63s—1

3s
Il = s
635 —6 635

Alle][**
3
[l=[|™ =

6% — 6

Finally, (84) holds either, L = 6* " for 3s < 1if i = 0, or L = gzi= for 3s > 1if i = 1. Now from (85), we prove the

following cases for condition (iv).

Case:l L=6>"1for3s<1ifi=0

L (6> 5x, e 6% BN .. BA||z|]*
| fa(z) — A(@)]] < 1_L7(37):W633||33H = 6—633@||x‘| = 5 _6%
Case:2 ngs%l for3s>1ifi=1
L (=)' 7" 5A . s 6% BA. s SAlz|*®
a — A < — \6%577/ s _ s _ 24
I2(0) = A < T 2(e) = ST gloll™ = g e lell™ = G0

Hence the proof of the corollary.

O

The proofs of the following Theorem and Corollary are similar to those proofs of Theorem 4.2 and Corollary 4.3 using (60).

Hence we omit the proofs.

Theorem 4.4. Let f, : V — B be a mapping for which there exists functions a, 8,7 : V? — [0, 00) with the condition

lim a(uf%ufg iz
k— o0 w3

where

=z
~.
Il

=

i =

=
.
I
—

(90)
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satisfying the functional inequality

IDfa(@,y, )| < ala,y, 2) (91)

for all x,y,z € V. If there exists L = L(i) < 1 such that the function

has the property

@) =L i ~ (3) (92)

i

for all x € V.. Then there exists a unique quadratic function Q : V — B satisfying the functional equation (6) and

1fal@) — Q) < L A(a) (93)

holds for all x € V.

Corollary 4.5. Let f, : V — B be a mapping and there exist real numbers A and s such that

1D fq(z,y,2)|l
(@) A
i) Mzl + lyll° + |1z|I°}, §<2 or s>2;
< (@) A{ll=[l” + [lyll* +[l=[I°} (04)
(id) A [l=[[*[lyl]*]]=]1°, 35<2 or 3s>2
(@) Azl Nyl l2]1" + {ll=l** + [[y]P* + |21} ), 3s <2 or 3s>2;

for all x,y,z € V, then there exists a unique quadratic function Q : V — B such that

. 3A
@ 7o .
i sl
36 — 65|’
@ -e@i<{ o (95)
('LZ'L) W
. 5A||z|]??
() 136 — 65|

forallz e V.

Theorem 4.6. Let f: V — B be a mapping for which there exists functions a, 8,7 : V* — [0, 00) with the condition (82)
and (90), where

6, i=0,
pi =
i i=1
such that the functional inequality
IDf(z,y,2)]| < alz,y,2) (96)

holds for all x,y,z € V. Assume there exists L = L(i) < 1 such that the function



Solution and Ulam - Hyers Stability of an Additive - Quadratic Functional Equation in Banach Space: Hyers Direct and Fixed Point Methods

has the properties (84) and (92) for all x € V. Then there exists a unique additive function A : V — B and a unique

quadratic function Q : V — B satisfying the functional equation (6) and

Ll—i
1-L

1f(x) = A(z) = Q)| < (v(z) +~(==)) (97)

holds for all x € V.

Proof. Let fo(z) = M for all z € V. Then f,(0) =0 and fo(—2z) = —fo(x) for all z € V. Hence

1Dfo(e,y, ) < 2D | 20w, 22) (99)

for all z,y,z € V. By Theorem 4.2, we have

Ll*i
—L

(v(@) +~(=2)), (99)

1
1fole) = A@)] < 5

[

for all z € V. Also, let fe(z) = fo(@) + fo(=2) for all z € V. Then f.(0) =0 and fe(—z) = fe(z) for all z € V. Hence

2
D < a(ﬂ:’, Y, Z) a(_x7 —-Y, _Z) 100
” fe(iU,:% Z)H > 2 + 2 ) ( )
for all z,y,z € V. By Theorem 4.4, we have
1Lt
1fe@) = Q) < 51 (1) + (=), (101)
for all x € V. Define
f(z) = fe(x) + folz) (102)

for all z € V. From (99),(101) and (102), we arrive

1f(2) = A(z) = Q)| = [[fe(z) + fo(z) — A(z) — Q(=)]]

[fo(z) = A@)|| + [ fe(z) = Q)]

1 L 1 L
< = — st
<5107 0@+ + 577

Ll—i
1-L

IN

(v(@) +~(=x))

IN

(v(@) +~v(=x))

for all x € V. Hence the theorem is proved. O
Using Corollaries 4.3 and 4.5, we have the following corollary concerning the stability of (6).

Corollary 4.7. Let A and s be nonnegative real numbers. Let a function f:V — B satisfy the inequality

IDf(z,y,2)]
(i) A
1) AM||=z|]® + S+ 12|17}, s#£1,2;

B RN (R R ETR) ; o
(@) A lz|]*[lyll®]l2]1*, 3s# 1,2

(@) A{llelP gl N2l + {2l + 1l + 1120}, 3s #1,2;
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for all x,y,z € V.. Then there exists a unique additive function A : V — B and a unique quadratic function Q : V — B such

that
1 1
NN
@ 3 (10+70)’
1 1
(@) el (=g + e )
1£(2) — Ale) - Q)| < 16671 136 =67l (104)
(ii1) Alle|** + :
|6 — 63 ' |36 — 63
1 1
. A 3s
(i) 5Alell* (=g * o )
forallz € V.
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