

International Journal of Mathematics And its Applications

Weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuity in Generalized Topologies

Research Article

R.Mariappan^{1*}, M.Murugalingam² and R.Ramesh¹

1 Department of Science and Humanities, Dr.Mahalingam College of Engineering and Technology, Pollachi, Tamil Nadu, India.

2 Department of Mathematics, Thiruvalluvar College, Papanasam, Tamil Nadu, India.

Abstract: In this paper, we introduce and study the notions of weakly π - \mathcal{H} -open sets and weakly $(\pi_{\mathcal{H}})$ -continuity in hereditary generalized topological spaces. Also we prove that a function $f : (X, \mu, \mathcal{H}) \to (Y, \lambda)$ is (μ, λ) -continuous function if and only if it is weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuous function and $(\delta_{\mathcal{H}}, \lambda)$ -continuous function where \mathcal{H} is μ -codense.

MSC: 54A05

Keywords: Generalized topology, hereditary class, weakly π - \mathcal{H} -open, weakly $(\pi_{\mathcal{H}})$ -continuity. © JS Publication.

1. Introduction and Preliminaries

A family μ of subsets of X is called a generalized topology(GT)[1] if $\emptyset \in \mu$ and closed under arbitrary union. The generalized topology μ is said to be strong [10], if $X \in \mu$. (X, μ) is called a quasi topology [6], if μ is closed under finite intersection. A subset A of a generalized topological space (X, μ) is called μ - σ -open [3] (resp. μ - π -open [3], μ - α -open [3], μ - β -open [3]) if $A \subset c_{\mu}(i_{\mu}(A))$ (resp. $A \subset i_{\mu}(c_{\mu}(A)) A \subset i_{\mu}(c_{\mu}(i_{\mu}(A))), A \subset c_{\mu}(i_{\mu}(c_{\mu}(A)))$. c_{σ} is the intersection of all μ - σ -closed containing A. A hereditary class \mathcal{H} of X is a non-empty collection of subsets of X such that $A \subset B$, $B \in \mathcal{H}$ implies $A \in \mathcal{H}$ [2]. In the paper [2], for a hereditary class \mathcal{H} , the operator ()*:exp X \rightarrow exp X was introduced. An operator c_{μ}^{*} : exp X \rightarrow exp X was defined by using the operator ()* (i.e., for $A \subset X$) $c_{\mu}^{*}(A) = A \cup A^{*}$, which is monotonic, enlarging and idempotent. Some properties of operators ()* and c_{μ}^{*} were investigated in [2]. For every subset A of X, with respect to μ and a hereditary class \mathcal{H} of subsets of X, then $\mu^{*} = \{A \subset X/c_{\mu}^{*}(X - A) = X - A\}$ is generalized topology[2], and $i_{\mu}^{*}(A)$ will denote the interior of A in (X, μ^{*}) . A function $f : (X, \mu, \mathcal{H}) \rightarrow (Y, \lambda)$ is said to be (μ, λ) -continuous if for every λ -open set U in Y implies that $f^{-1}(U)$ is μ -open [2], σ - \mathcal{H} -open [2], δ - \mathcal{H} -open [2], δ - \mathcal{H} -open [2], t- \mathcal{H} -set [7]) if $A \subseteq i_{\mu}(c_{\mu}^{*}(i_{\mu}(A)))$ (resp. $A \subseteq c_{\mu}(i_{\mu}(c_{\mu}^{*}(A))), A \subseteq i_{\mu}(c_{\mu}^{*}(A)), i_{\mu}(c_{\mu}^{*}(A)) \subseteq c_{\mu}^{*}(i_{\mu}(A)), i_{\mu}(c_{\mu}^{*}) = i_{\mu}(A), i_{\mu}(c_{\mu}^{*}(i_{\mu}(A))) = i_{\mu}(A))$. If A is μ^{*} -closed [2] if $A^{*} \subset A$.

Lemma 1.1 ([2]). Let (X, μ, \mathcal{H}) be a space with a hereditary generalized topological space and $A, B \subset X$, Then the following hold.

(a) If $A \subset B$, then $A^* \subset B^*$.

 $^{^{*}}$ E-mail: mariappanbagavathi@gmail.com

- (b) $A^* = c^*_{\mu}(A) \subset c^*_{\mu}(A^*).$
- (c) If $A \subset A^*$, then $c_{\mu}(A) = A^* = c_{\mu}^*(A) = c_{\mu}^*(A^*)$.
- (d) If $U \in \mu$, then $U \cap A^* \subset (U \cap A)^*$.

Lemma 1.2 ([7]). If (X, μ) is a quasi topology with a hereditary class \mathcal{H} . Then the following are hold.

- (a) \mathcal{H} is μ -codense if only if $A \subset A^*$ for every $A \in \mu$.
- (b) If $A \subset A^*$, then $A^* = c_{\mu}(A^*) = c_{\mu}(A) = c_{\mu}^*(A)$.

Lemma 1.3 ([9]). If (X, μ) is GTS with a hereditary class \mathcal{H} . For $A \subset X$,

- (a) $c^*_{\mu}(A) = X \cdot i^*_{\mu}(X \cdot A)$
- (b) $i_{\mu}(A) \subset i_{\mu}^*(A) \subset A$.

Lemma 1.4 ([3]). In a hereditary generalized topological space (X, μ, \mathcal{H}) , the following hold.

(a)
$$c_{\sigma}(A) = A \cup i_{\mu}(c_{\mu}(A)),$$

(b) $c_{\sigma}(A) = i_{\mu}(c_{\mu}(A)), \text{ if } A \in \mu.$

2. Generalized Weakly π - \mathcal{H} -open Sets

Definition 2.1. A subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is said to be weakly π - \mathcal{H} -open, if $A \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(A)))$. A subset A of X is said to be weakly π - \mathcal{H} -closed if its complement is weakly π - \mathcal{H} -open.

Proposition 2.2. In a hereditary generalized topological space (X, μ, \mathcal{H}) , the following hold.

- (a) Every μ -open is weakly π - \mathcal{H} open.
- (b) Every π -H-open is weakly π -H-open.
- (c) Every weakly π -H-open is β -H-open.
- (d) Every μ - α -open is weakly π - \mathcal{H} -open.
- (e) Every weakly π -H-open is μ - π -open.

Proposition 2.3. Let (X, μ, \mathcal{H}) be a quasi topology with a hereditary class \mathcal{H} where \mathcal{H} is μ -codense and $A \subset X$. Then A is weakly π - \mathcal{H} -open if and only if A is π - \mathcal{H} -open.

Proof. By Proposition 2.2, every π - \mathcal{H} -open is weakly π - \mathcal{H} -open. Conversely if A is weakly π - \mathcal{H} -open implies that $A \subset c_{\sigma}(i_{\mu}(c_{\mu}^{*}(A)))$. By Lemma 1.6, it follows that $c_{\sigma}(i_{\mu}(c_{\mu}^{*}(A))) = i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}^{*}(A)))) = i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}^{*}(A)))) = i_{\mu}(c_{\mu}^{*}(A))$, therefore, $A \subset i_{\mu}(c_{\mu}^{*}(A))$. Hence A is π - \mathcal{H} -open.

Proposition 2.4. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A, B \subset X$. If A is weakly π - \mathcal{H} -open and $A \subset B \subset c^*_{\mu}(A)$, then B is β - \mathcal{H} -open.

Proof. Suppose that $A \subset B \subset c_{\mu}^{*}(A)$ and A is weakly π - \mathcal{H} -open implies that $A \subset c_{\sigma}(i_{\mu}(c_{\mu}^{*}(A)))$. Since $B \subset c_{\mu}^{*}(A) \subset c_{\mu}^{*}(c_{\mu}(i_{\mu}(c_{\mu}^{*}(A)))) \subset c_{\mu}^{*}(c_{\mu}(i_{\mu}(c_{\mu}^{*}(A)))) \subset c_{\mu}(i_{\mu}(c_{\mu}^{*}(A))) \subset c_{\mu}(i_{\mu}(c_{\mu}^{*}(A)))$. Hence B is β - \mathcal{H} -open. \Box

Proposition 2.5. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$. If A is both weakly π - \mathcal{H} -open and μ^* -closed, then A is μ - α -open.

Proof. If A is weakly π - \mathcal{H} -open implies that $A \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(A)))$ and A is μ^* -closed implies that $A^* \subset A$. Then $A \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(A))) \subset i_{\mu}(c_{\mu}(i_{\mu}(c^*_{\mu}(A)))) \subset i_{\mu}(c_{\mu}(i_{\mu}(A^* \cup A))) \subset i_{\mu}(c_{\mu}(i_{\mu}(A)))$. Hence A is μ - α -open.

Corollary 2.6. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$. If $A \in \mathcal{H}$ and A is weakly π - \mathcal{H} -open, then A is μ - α -open.

Theorem 2.7. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then arbitrary union of weakly π - \mathcal{H} -open sets is weakly π - \mathcal{H} -open.

Proof. Since A_{α} is weakly π - \mathcal{H} -open for each $\alpha \in \Delta$, we have $A_{\alpha} \subset c_{\sigma}(i_{\mu}(c_{\mu}^{*}(A_{\alpha}))) \subset c_{\sigma}(i_{\mu}(c_{\mu}^{*}(\cup_{\alpha \in \Delta}A_{\alpha})))$ and hence $\cup_{\alpha \in \Delta}A_{\alpha} \subset c_{\sigma}(i_{\mu}(c_{\mu}^{*}(\cup_{\alpha \in \Delta}A_{\alpha})))$. Hence $\cup_{\alpha \in \Delta}A_{\alpha}$ is weakly π - \mathcal{H} -open.

Theorem 2.8. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A, B \subset X$. If A is weakly π - \mathcal{H} -open and B is μ -open, then $A \cap B$ is weakly π - \mathcal{H} -open.

Proof. If A is weakly π - \mathcal{H} -open implies that $A \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(A)))$ and B is μ - α -open implies that $B = i_{\mu}(B)$. Then $A \cap B \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(A))) \cap i_{\mu}(B) = i_{\mu}(c_{\mu}(i_{\mu}(c^*_{\mu}(A)))) \cap i_{\mu}(B) \subset i_{\mu}(c_{\mu}(i_{\mu}(c^*_{\mu}(A)))) \cap B) = i_{\mu}(c_{\mu}(i_{\mu}(c^*_{\mu}(A) \cap i_{\mu}(B)))) \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(A)) \cap i_{\mu}(B)) \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(A \cap i_{\mu}(B)))) \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(A \cap B)))$. Hence $A \cap B$ is weakly π - \mathcal{H} -open. \Box

Remark 2.9. The following example shows that the intersection of weakly π - \mathcal{H} -open sets need not be weakly π - \mathcal{H} -open.

Example 2.10. Let $X = \{a, b, c, d\}, \mu = \{\emptyset, \{c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, X\}$ and $\mathcal{H} = \{\emptyset, \{a\}, \{b\}, \{d\}, \{a, d\}\}$. Consider $A = \{a, b, c\}$ and $B = \{a, b, d\}$. Now $c_{\sigma}(i_{\mu}(c_{\mu}^{*}(A))) = c_{\sigma}(i_{\mu}(\{a, b, c\})) = c_{\sigma}(\{a, b, c\}) = X \supset A$ and $c_{\sigma}(i_{\mu}(c_{\mu}^{*}(B))) = c_{\sigma}(i_{\mu}(\{a, b, d\})) = c_{\sigma}(\{b, d\}) = \{a, b, d\} \supset B$. Hence A and B are weakly π - \mathcal{H} -open sets. But $c_{\sigma}(i_{\mu}(c_{\mu}^{*}(A \cap B))) = c_{\sigma}(i_{\mu}(c_{\mu}^{*}(b))) = c_{\sigma}(i_{\mu}(\{b\})) = c_{\sigma}(i_{\mu}(\{b\})) = c_{\sigma}(\emptyset) = \emptyset \not\supseteq A \cap B$. Therefore $A \cap B$ is not weakly π - \mathcal{H} -open.

Theorem 2.11. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$. Then A is weakly π - \mathcal{H} -closed if and only if $i_{\sigma}(c_{\mu}(i_{\mu}^{*}(A))) \subset A$.

Proof. If A is weakly π - \mathcal{H} -closed, then X-A is weakly π - \mathcal{H} -open which implies that $X - A \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(X - A))) = X - i_{\sigma}(c_{\mu}(i^*_{\mu}(A)))$. Therefore $i_{\sigma}(c_{\mu}(i^*_{\mu}(A))) \subset A$. Coversely, assume that $i_{\sigma}(c_{\mu}(i^*_{\mu}(A))) \subset A$. Then $X - A \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(X - A)))$. Hence X-A is weakly π - \mathcal{H} -open. Thus A is weakly π - \mathcal{H} -closed.

Proposition 2.12. Let A be a subset of a hereditary generalized topological space (X, μ, \mathcal{H}) such that $A \subset A^*$. Then the following are equivalent.

- (a) A is π -H-open.
- (b) A is weakly π -H-open,
- (c) A is μ - π -open.
- *Proof.* $(a) \Rightarrow (b)$ and $(b) \Rightarrow (c)$. Obvious.

 $(c) \Rightarrow (a)$. Since $A \subset A^*$ implies that $A \subset i_{\mu}(A^*) = i_{\mu}(A \cup A^*) = i_{\mu}(c^*_{\mu}(A))$. Also A is μ - π -open implies that $A \subset i_{\mu}(c_{\mu}(A)) = i_{\mu}(c^*_{\mu}(A))$ and hence A is π - \mathcal{H} -open.

Theorem 2.13. Let A be a subset of hereditary generalized topological space (X, μ, \mathcal{H}) such that $A \subset A^*$. Then A is weakly π - \mathcal{H} -open if and only if $c_{\sigma}(A) = c_{\sigma}(i_{\mu}(c_{\mu}^*(A)))$.

Proof. Since $A \subset A^*$ implies that $c_{\mu}(A) = c_{\mu}^*(A)$. If A is weakly π - \mathcal{H} -open implies that $A \subset c_{\sigma}(i_{\mu}(c_{\mu}^*(A)))$ and so $c_{\sigma}(i_{\mu}(c_{\mu}^*(A))) = A \cup c_{\sigma}(i_{\mu}(c_{\mu}^*(A))) = A \cup i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}^*(A)))) = A \cup i_{\mu}(c_{\mu}(a_{\mu}(A))) = A \cup i_{\mu}(c_{\mu}(A)) = c_{\sigma}(A)$. Conversely, assume that $c_{\sigma}(i_{\mu}(c_{\mu}^*(A))) = c_{\sigma}(A)$, then $c_{\sigma}(i_{\mu}(c_{\mu}(A))) = A \cup i_{\mu}(c_{\mu}(A)) = A \cup i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}(A)))) = A \cup i_{\mu}(c_{\mu}(c_{\mu}(A))) = A \cup i_{\mu}(c_{\mu}(c_{\mu}(A))) = A \cup i_{\mu}(c_{\mu}(c_{\mu}(A))) = A \cup i_{\mu}(c_{\mu}(a_{\mu}(A))) = A \cup i_{\mu}(c_{\mu}(a_{\mu}(C_{\mu}(A))) = A \cup i_{\mu}(c_{\mu}(c_{\mu}(A))) = A \cup i_{\mu}(c_{\mu}(c_{\mu}(C_{\mu}(A))) = A \cup i_{\mu}(c_{\mu}(c_{\mu}(C_{\mu}(A))) = A \cup i_{\mu}(c_{\mu}(c_{\mu}(C_{\mu}(A))) = A \cup i_{\mu}(c_{\mu}(c_{\mu}(C_{\mu}($

Theorem 2.14. Let (X, μ, \mathcal{H}) be a quasi topology with a hereditary class \mathcal{H} and \mathcal{H} be μ -codense and $A \subset X$. Then the following are equivalent.

- (a) A is α -H-open.
- (b) A is π -H-open and δ -H-open.
- (c) A is weakly π -H-open and δ -H-open.

Proof. $(a) \Rightarrow (b)$. If A is α - \mathcal{H} -open implies that $A \subset i_{\mu}(c^*_{\mu}(i_{\mu}(A))) \subset i_{\mu}(c^*_{\mu}(A))$. Hence A is π - \mathcal{H} -open. Since A is α - \mathcal{H} -open implies that $A \subset i_{\mu}(c^*_{\mu}(i_{\mu}(A))) \subset c^*_{\mu}(i_{\mu}(A))$, therefore, $i_{\mu}(c^*_{\mu}(A)) \subset i_{\mu}(c^*_{\mu}(i_{\mu}(A)))) \subset i_{\mu}(c^*_{\mu}(i_{\mu}(A))) \subset c^*_{\mu}(i_{\mu}(A))$. Hence A is δ - \mathcal{H} -open.

 $(b) \Rightarrow (c)$. Let A be both π -H-open and δ -H-open. By Proposition 2.2, every π -H-open is weakly π -H-open. Hence A is weakly π -H-open and δ -H-open.

 $(c) \Rightarrow (a)$. If A is weakly π - \mathcal{H} -open implies that $A \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(A)))$ and \mathcal{H} is μ -codense implies that $c^*_{\mu}(A) = c_{\mu}(A)$ for $A \in \mu$. Now $A \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(A))) = i_{\mu}(c_{\mu}(i_{\mu}(c^*_{\mu}(A)))) \subset i_{\mu}(c_{\mu}(c^*_{\mu}(i_{\mu}(A)))) = i_{\mu}(c_{\mu}(i_{\mu}(A))) = i_{\mu}(c_{\mu}(i_{\mu}(A))) = i_{\mu}(c^*_{\mu}(i_{\mu}(A)))$. Hence A is α - \mathcal{H} -open.

Definition 2.15. A subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is said to be a strong t- \mathcal{H} -set (resp. \mathcal{H}_{β} -set), if $c_{\sigma}(i_{\mu}(c^*_{\mu}(A))) = i_{\mu}(A)$ (resp. $c_{\mu}(i_{\mu}(c^*_{\mu}(A))) = i_{\mu}(A)$. A subset A of X is said to be a strong $\mathcal{B}_{\mathcal{H}}$ -set, if $A = U \cap V$, where $U \in \mu$ and V is a strong t- \mathcal{H} -set. A subset A of X is said to be a $\mathcal{S}_{\mathcal{H}_{\beta}}$ -set, if $A = U \cap V$, where $U \in \mu$ and V is a strong t- \mathcal{H} -set. A subset A of X is said to be a $\mathcal{S}_{\mathcal{H}_{\beta}}$ -set, if $A = U \cap V$, where $U \in \mu$ and V is a \mathcal{H}_{β} -set.

Theorem 2.16. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space, $A \subset X$ and \mathcal{H} be a μ -codense. Then A is t- \mathcal{H} -set if and only if A is a strong t- \mathcal{H} -set.

Proof. If A is a strong t-H-set, then $i_{\mu}(c^*_{\mu}(A)) \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(A))) = i_{\mu}(A) \subset i_{\mu}(c^*_{\mu}(A))$, so, $i_{\mu}(c^*_{\mu}(A)) = i_{\mu}(A)$. Hence A is a t-H-set.

Conversely, If A is a t-H-set, then $i_{\mu}(c^*_{\mu}(A)) = i_{\mu}(A)$. Now $i_{\mu}(A) \subset A \subset A \subset c_{\sigma}(i_{\mu}(c^*_{\mu}(A))) = i_{\mu}(c_{\mu}(i_{\mu}(c^*_{\mu}(A)))) = i_{\mu}(c_{\mu}(i_{\mu}(A))) \subset c^*_{\mu}(i_{\mu}(A)) = i_{\mu}(A)$. Hence A is a strong t-H-set.

Theorem 2.17. Let (X, μ, \mathcal{H}) be a strong hereditary generalized topological spaces. If \mathcal{H} is μ -codense and $\subset X$, then A is a strong t- \mathcal{H} -set if and only if A is both t^* - \mathcal{H} -set and a $B_{\mathcal{H}}$ -set.

Proof. Necessity. If A is a strong t-H-set, then $i_{\mu}(A) = c_{\sigma}(i_{\mu}(c_{\mu}^{*}(A)))$ and so $i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}^{*}(A)))) \subset A$ which implies that $i_{\mu}(c_{\mu}^{*}(A)) \subset A$. Therefore $i_{\mu}(c_{\mu}^{*}(A)) \subset i_{\mu}(A)$. Hence $i_{\mu}(A) = i_{\mu}(c_{\mu}^{*}(A))$ and so A is a t-H-set. Hence $A = X \cap A$ is a $B_{\mathcal{H}}$ -set. Since $i_{\mu}(c_{\mu}^{*}(i_{\mu}(A))) \subset i_{\mu}(c_{\mu}^{*}(A)) \subset A$, we have $i_{\mu}(A) \subset i_{\mu}(c_{\mu}^{*}(i_{\mu}(A))) \subset i_{\mu}(A)$ and so $i_{\mu}(A) = i_{\mu}(c_{\mu}^{*}(i_{\mu}((A))))$. Hence A is t^{*} -H-set.

Sufficiency. Since \mathcal{H} is μ -codense, $c_{\sigma}(i_{\mu}(c_{\mu}^{*}(A))) \subset c_{\sigma}(i_{\mu}(c_{\mu}^{*}(U \cap V))) \subset c_{\sigma}(i_{\mu}(c_{\mu}^{*}(U) \cap c_{\mu}^{*}(V))) = c_{\sigma}(i_{\mu}(c_{\mu}^{*}(U)) \cap i_{\mu}(c_{\mu}^{*}(V))) = i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}^{*}(U))) \cap i_{\mu}(V)) = i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}^{*}(U))) \cap i_{\mu}(V)) = i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}^{*}(U))) \cap i_{\mu}(V)) = i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}(U))) \cap i_{\mu}(V)) = i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}(U))) \cap i_{\mu}(V)) = c_{\mu}(i_{\mu}(c_{\mu}(U)) \cap i_{\mu}(V)) = c_{\mu}(i_{\mu}(c_{\mu}(U))) = c_{\mu}(i_{\mu}(c_{\mu}(U \cap i_{\mu}(V)))) = c_{\mu}(i_{\mu}(c_{\mu}(i_{\mu}(U \cap V)))) = c_{\mu}(i_{\mu}(U \cap V))) = c_{\mu}(i_{\mu}(c_{\mu}(A)) = c_{\mu}(i_{\mu}(A)) = c_{\mu}(i_{\mu}(A))$. Hence $c_{\sigma}(i_{\mu}(c_{\mu}^{*}(A))) = c_{\mu}(A)$ and so A is strong t- \mathcal{H} -set. \Box

Theorem 2.18. Let (X, μ, \mathcal{H}) be a strong hereditary generalized topological space and $A \subset X$. Then the following are equivalent.

- (a) A is μ -open.
- (b) A is weakly π -H-open and strong $B_{\mathcal{H}}$ -set.
- (c) A is β -H-open and an SH $_{\beta}$ -set.

Proof. The implications $(a) \Rightarrow (b)$ and $(a) \Rightarrow (c)$ are obvious, Since X is a strong t-H-set and a \mathcal{H}_{β} -set. $(b) \Rightarrow (a)$. Since A is weakly π -H-open, we have $A \subset c_{\sigma}(i_{\mu}(c_{\mu}^{*}(A))) = c_{\sigma}(i_{\mu}(c_{\mu}^{*}(U \cap V)))$, where $A = U \cap V$, $U \in \mu$ and V is strong t-H-set. Hence $A \subset U \cap A \subset (U \cap c_{\sigma}(i_{\mu}(c_{\mu}^{*}(V)))) \subset (U \cap c_{\mu}(i_{\mu}(c_{\mu}^{*}(V)))) = U \cap i_{\mu}(V) = i_{\mu}(A)$. Hence A is μ -open. $(c) \Rightarrow (a)$. Let A be β -H-open and a $S\mathcal{H}_{\beta}$ -set. Let $A = U \cap V$, where $U \in \mu$ and V is an \mathcal{H}_{β} -set. Since A is β -H-open, $A \subset c_{\mu}(i_{\mu}(c_{\mu}^{*}(A)))$ and $A = U \cap V \subset U$, we have $A \subset U \cap A \subset U \cap c_{\mu}(i_{\mu}(c_{\mu}^{*}(A))) = U \cap c_{\mu}(i_{\mu}(c_{\mu}^{*}(U \cap V))) \subset U \cap c_{\mu}(i_{\mu}(c_{\mu}^{*}(V))) = U \cap i_{\mu}(V) = i_{\mu}(A)$. Hence A is μ -open.

3. Generalized Weakly π - \mathcal{H} -continuous Functions

Definition 3.1. A function $f: (X, \mu, \mathcal{H}) \to (Y, \lambda)$ is said to be weakly π - \mathcal{H} -continuous (resp. $B_{\mathcal{H}}$ -continuous) if $f^{-1}(V)$ is weakly π - \mathcal{H} -open (resp. $B_{\mathcal{H}}$ -open) in (X, μ, \mathcal{H}) for every λ -open V of (Y, λ) .

Proposition 3.2. For a function $f : (X, \mu, \mathcal{H}) \to (Y, \lambda)$, the following hold.

(a) Every (μ, λ) -continuous is weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuous.

(b) Every $(\pi_{\mathcal{H}}, \lambda)$ -continuous is weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuous.

(c) Every weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuous is $(\beta_{\mathcal{H}}, \lambda)$ -continuous.

Theorem 3.3. Let $f : (X, \mu, \mathcal{H}_1) \to (Y, \lambda, \mathcal{H}_2)$ and $g : (Y, \lambda, \mathcal{H}_2) \to (Z, \eta)$ be two functions, where \mathcal{H}_1 and \mathcal{H}_2 are hereditary classes on X, Y and Z respectively. Then $g \circ f$ is weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuous if f is weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuous and g is (λ, η) -continuous.

Proof. Let U be any η -open in (Z, η) . Then g is (λ, η) -continuous, $g^{-1}(U)$ is λ -open in $(Y, \lambda, \mathcal{H}_2)$. Since f is weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuous, $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is weakly π - \mathcal{H} -open in (X, μ, \mathcal{H}_1) . Hence $g \circ f$ is weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuous.

Proposition 3.4. Let $f:(X,\mu,\mathcal{H}) \to (Y,\lambda)$ be a function and \mathcal{H} be μ -codense. Then the following are equivalent.

- (a) f is (μ, λ) -continuous.
- (b) f is weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuious and $(B_{\mathcal{H}}, \lambda)$ -continuous.
- (c) f is $(\beta_{\mathcal{H}}, \lambda)$ -continuous and a $(S\mathcal{H}_{\beta}, \lambda)$ -continuous.

Proposition 3.5. Let $f: (X, \mu, \mathcal{H}) \to (Y, \lambda)$ be a function and \mathcal{H} be μ -codense. Then the following are equivalent.

- (a) f is $(\alpha_{\mathcal{H}}, \lambda)$ -continuous.
- (b) f is weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuous and $(\delta_{\mathcal{H}}, \lambda)$ -continuous.
- (c) f is $(\pi_{\mathcal{H}}, \lambda)$ -continuous and $(\delta_{\mathcal{H}}, \lambda)$ -continuous.

Definition 3.6. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$ and let $x \in X$. Then A is said to be a weakly $\pi_{\mathcal{H}}$ -neighbourhood of x, if there exists weakly π - \mathcal{H} -open set U containing x such that $U \subset A$.

Theorem 3.7. Let $f : (X, \mu, \mathcal{H}) \to (Y, \lambda)$ be a function between the hereditary generalized topological space (X, μ, \mathcal{H}) to the generalized topological space (Y, λ) . Then the following are equivalent.

- (a) f is a weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuous.
- (b) for each $x \in X$ and each λ -open set V in Y with $f(x) \in V$, there exists weakly π - \mathcal{H} -open set U containing x such that $f(U) \subset V$.
- (c) for each $x \in X$ and each λ -open set V in Y with $f(x) \in V$, $f^{-1}(U)$ is a weakly $\pi_{\mathcal{H}}$ -neighbourhood of x.
- (d) the inverse image of each λ -closed in (Y, λ) is weakly π -H-closed.

Proof. (a) \Rightarrow (b). Let $x \in X$ and let V be any λ -open set in Y such that $f(x) \in V$. Since f is a weakly $(\pi_{\mathcal{H}}, \lambda)$ -continuous, $f^{-1}(V)$ is weakly π - \mathcal{H} -open set. By putting $U = f^{-1}(V)$ which is containing x, we have $f(U) \in V$.

 $(b) \Rightarrow (c)$. Let V be any λ -open set in Y and let $f(x) \in V$. Then by (b), there exists weakly π - \mathcal{H} -open set U containing x such that $f(U) \subset V$. Therefore, $x \in U \subset f^{-1}(V)$. Hence $f^{-1}(V)$ is a weakly $\pi_{\mathcal{H}}$ -neighbourhood of x.

 $(c) \Rightarrow (a)$. Let V be λ -open in Y and let $f(x) \in V$. Then by (c), $f^{-1}(V)$ is a weakly $\pi_{\mathcal{H}}$ -neighbourhood of x. Thus for each $x \in f^{-1}(V)$, there exists weakly π - \mathcal{H} -open set U_x containing x such that $x \in U_x \subset f^{-1}(V)$. Hence $f^{-1}(V) \subset \bigcup_{x \in f^{-1}(V)} U_x$ and so $f^{-1}(V)$ is weakly π - \mathcal{H} -open set.

 $(b) \Rightarrow (d)$. Let F be a λ -closed in Y. Take V = Y - F. Then V is a λ -open in Y. Let $x \in f^{-1}(V)$, by (b), there exists weakly π - \mathcal{H} -open set W of X containing x such that $f(W) \subset V$. Thus, we obtain $x \in W \subset c_{\sigma}(i_{\mu}(c_{\mu}^{*}(W))) \subset c_{\sigma}(i_{\mu}(c_{\mu}^{*}(f^{-1}(W))))$ and hence $f^{-1}(V) \subset c_{\sigma}(i_{\mu}(c_{\mu}^{*}(f^{-1}(W))))$. This shows that $f^{-1}(V)$ is weakly π - \mathcal{H} -open set in X. Hence $f^{-1}(F) = X - f^{-1}(Y - F) = X - f^{-1}(F)$ is weakly π - \mathcal{H} -closed in X.

References

- [1] A. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96(2002), 351-357.
- [2] A. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(2007), 29-36.
- [3] A. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(1-2)(2005), 53-66.
- [4] A. Császár, Weak structures, Acta Math. Hungar., (2010), 1-3.
- [5] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- [6] A. Császár, Remarks on quasi topologies, Acta Math. Hungar., 119(1-2)(2008), 197-200.
- [7] R. Ramesh and R. Mariappan, Generalized open sets in hereditary generalized topological spaces, Journal of Mathematical and computational Science, 5(2)(2015), 149-159.
- [8] M. Murugalingam, R. Ramesh and R. Mariappan, b-H-open sets and (μ, λ)-continuity via hereditary classes, International Journal of Mathematical Archive, 6(7)(2015), 194-199.
- Y.K. Kim and W.K.Kim, On operations Induced by Hereditary Classes on Generalized Topological Spaces, Acta Math. Hungar., 137(1-2)(2012), 130-138.
- [10] R. Jamunarani and P. Jeyanthi, Regular sets in generalized topological spaces, Acta Math. Hungar., DOI:10.1007/s10474-011-0179-7.