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1. Introduction, Definitions And Preliminaries

We let A to denote the class of functions analytic in U and having the power series expansion

f (z) = z +

∞∑
n=2

anz
n. (1)

Also we let S to denote the class of functions f ∈ A which are univalent in U. The Koebe one-quarter theorem [6] ensures

that the image of U under every univalent function f ∈ S contains a disk of radius
1

4
. Thus every univalent function f has

an inverse f−1 satisfying f−1 (f(z)) = z,(z ∈ U) and

f
(
f−1(w)

)
= w,

(
|w| < r0(f), r0(f) ≥ 1

4

)

where

h(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent in U. Let Σ denote the class of

bi-univalent functions in U given by (1). Also let function g ∈ Σ is given by

g(z) = z +

∞∑
n=2

bnz
n (3)
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has the inverse function of the form

j (w) = g−1 (w) = w − b2w2 + (2b22 − b3)w3 − (5b32 − 5b2b3 + b4)w4 + · · · . (4)

Earlier, Brannan and Taha [4] introduced certain subclasses of bi-univalent function class Σ, namely bi-starlike functions

S∗Σ(α) and bi-convex function KΣ(α) of order α corresponding to the function classes S∗(α) and K(α) respectively. Lewin [8]

investigated the class Σ of bi-univalent functions and showed that |a2| < 1.51 for the functions belonging to Σ. Subsequently,

Brannan and Clunie [5] conjectured that |a2| ≤
√

2.

An analytic function f is subordinate to an analytic function g,written f(z) ≺ g(z), provided there is a schwarz function

w defined on U with w(0) = 0 and |w(z)| < 1 satisfying f (z) = g (w(z)). Ma and Minda [9], unified various subclasses

of starlike and convex functions for which either of the quantity
zf ′(z)

f(z)
or 1 +

zf ′′(z)

f ′(z)
is subordinate to a more general

superordinate function. For this purpose, they considered an analytic function φ with positive real part in the unit disk U ,

φ(0) = 1, φ′(0) > 0 and U onto a region starlike with respect to 1 and symmetric with respect to the real axis. Such a

function has a series expansion of the form

φ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · , (B1 > 0). (5)

In this paper, we introduce the following new subclasses of Bi-univalent close-to-convex functions of the function class Σ

and find estimates on the coefficients |a2| and |a3| for functions in these new subclasses.

Definition 1.1. A function f ∈ Σ given by (1) is said to be in the class CCΣ (φ) if there exists a bi-convex function

g ∈ CVΣ (φ) given by (3) and satisfy the following conditions:

zf ′(z)

g(z)
≺ φ (z) , (6)

and

wh′(w)

j(w)
≺ φ (w) (7)

where h(w) is given by (2) and j(w) is given by (4) and z, w ∈ U.

Definition 1.2. A function f(z) given by (1) is said to be in the class QCΣ (φ), if there exists a bi-convex function

g ∈ CVΣ (φ) such that f ∈ Σ

(zf ′ (z))
′

g′ (z)
≺ φ (z) (8)

and

(wh′ (w))
′

j′ (w)
≺ φ (w) (9)

where h(w) is given by (2) and j(w) is given by (4) and z, w ∈ U.

Lemma 1.3. A function g ∈ A is said to be convex function in U if both g(z) and g−1(z) are convex in U, Nehari [10],

subsequently by Koepf [11] and Ian Graham and Gabriela Kohr [12], Corollary 2.2.19 gives

∣∣b3 − b22∣∣ ≤ 1

3
. (10)

This estimate is sharp.
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2. Coefficient Estimates for the Function Class CCΣ (φ)

Our first result provides estimates for the coefficients a2, a3 for functions belonging to the class CCΣ (φ).

Theorem 2.1. If f ∈ CCΣ (φ), then

|a2| ≤ B1 +
√
B1 (1 +B1) + |B1 −B2| and (11)

|a3| ≤
2B1 (B1 + 6) + 1

9
+ |B1 −B2|+ 2B1

√
B1 (1 +B1) + |B1 −B2|. (12)

Proof. Since f ∈ CCΣ (φ), there exists two analytic functions r, s : U→ U, with r(0) = 0 = s(0), such that

zf ′(z)

g(z)
= φ (r(z)) and (13)

wh′(w)

j(w)
= φ (s(w)) . (14)

Define the functions p and q by

p (z) =
1 + r(z)

1− r(z) = 1 + p1z + p2z
2 + · · · and q (z) =

1 + s(z)

1− s(z) = 1 + q1z + q2z
2 + · · · . (15)

Or equivalently,

r (z) =
p(z)− 1

p(z) + 1
=

1

2

[
p1z +

(
p2 −

p2
1

2

)
z2 +

(
p3 +

p1

2

(
p2

1

2
− p2

)
− p1p2

2

)
z3 + · · ·

]
(16)

and

s (z) =
q(z)− 1

q(z) + 1
=

1

2

[
q1z +

(
q2 −

q2
1

2

)
z2 +

(
q3 +

q1
2

(
q2
1

2
− q2

)
− q1q2

2

)
z3 + · · ·

]
. (17)

It is clear that p and q are analytic in U and p(0) = 1 = q(0). Also p and q have positive real part in U and hence |pi| ≤ 2

and |qi| ≤ 2. In the view of (13), (14) and (15), clearly,

zf ′(z)

g(z)
= φ

(
p(z)− 1

p(z) + 1

)
(18)

and

wh′(w)

j(w)
= φ

(
q(w)− 1

q(w) + 1

)
. (19)

Using (16) and (17) together with (3), one can easily verify that

φ

(
p(z)− 1

p(z) + 1

)
= 1 +

B1p1

2
z +

[
B1

2

(
p2 −

p2
1

2

)
+

1

4
B2p

2
1

]
z2 + · · · (20)

and

φ

(
q(w)− 1

q(w) + 1

)
= 1 +

B1q1
2

w +

[
B1

2

(
q2 −

q2
1

2

)
+
B2q

2
1

4

]
w2 + · · · . (21)

Since f ∈ Σ has the Maclaurin series given by (1), computation shows that its inverse h = f−1 and j = g−1 has the

expansion given by (2). It follows from (18), (19), (20) and (21) that

2a2 − b2 =
1

2
B1p1, (22)
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b22 − b3 − 2a2b2 + 3a3 =
1

2
B1

(
p2 −

1

2
p2

1

)
+

1

4
B2p

2
1 (23)

and

b2 − 2a2 =
1

2
B1q1, (24)

b3 − b22 − 2a2b2 + 6a2
2 − 3a3 =

1

2
B1

(
q2 −

1

2
q2
1

)
+

1

4
B2q

2
1 , (25)

From (22) and (24), it follows that

p1 = −q1, (26)

Now (23), (25) and using (22), (26) gives

(
a2 −

B1p1

2

)2

=
B2

1p
2
1

4
− B1 (p2 + q2)

4
+

(B1 −B2) p2
1

4
. (27)

Using the fact that |p2| ≤ 2 and |q2| ≤ 2 gives the desired estimate on |a2|,

|a2| ≤
(
B1 +

√
B1 (1 +B1) + |B1 −B2|

)
.

Subtracting (25) from (23), gives

a3 = a2
2 +

1

3

(
b3 − b22

)
+
B1

12
(p2 − q2) (28)

Using the fact that |p2| ≤ 2 and |q2| ≤ 2 and Lemma 1.3, then which yields the estimate (12).

3. Coefficient Estimates for the Function Class QCVΣ (φ)

Theorem 3.1. If f ∈ QCVΣ (φ), then

|a2| ≤
B1

3
+

1

6

√
7B2

1 + 12 (B1 + |B1 −B2|) and (29)

|a3| ≤
B1 (16 + 11B1) + 4

36
+
|B1 −B2|

3
+
B1

9

√
7B2

1 + 12 (B1 + |B1 −B2|) . (30)

Proof. Since f ∈ QCVΣ (φ), there exists two analytic functions r, s : U→ U, with r(0) = 0 = s(0), satisfying

(zf ′ (z))
′

g′ (z)
= φ (r(z)) and (31)

(wh′ (w))
′

j′ (w)
= φ (s(w)) (32)

From (20) and (21), (31) and (32) it follows that

4a2 − 2b2 =
1

2
B1p1, (33)

9a3 − 3b3 + 4b22 − 8a2b2 =
1

2
B1

(
p2 −

1

2
p2

1

)
+

1

4
B2p

2
1, (34)

2b2 − 4a2 =
1

2
B1q1 and (35)

18a2
2 − 9a3 − 8a2b2 − 2b22 + 3b3 =

1

2
B1

(
q2 −

1

2
q2
1

)
+

1

4
B2q

2
1 . (36)
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The equations (33) and (35) yield

p1 = −q1 (37)

The equations (34), (36) and using (33), (37) we get

(
a2 −

B1p1

6

)2

=
7B2

1p
2
1

144
+
p2

1 (B1 −B2)

12
− B1 (p2 + p2)

12
(38)

Using the familiar inequalities |pi| ≤ 2, |qi| ≤ 2 and (37) gives

|a2| ≤
B1

3
+

1

6

√
7B2

1 + 12 (B1 + |B1 −B2|)

Subtracting (36) from (34) using (37)

a3 =
B1 (p2 − q2)

36
+ a2

2 +
b3 − b22

3
. (39)

Using the fact that |pi| ≤ 2 , |qi| ≤ 2 and Lemma 1.3, in (39). which yields the estimate (30).

4. Coefficient Bounds for the Function Class MΣ (α, φ)

Theorem 4.1. Let f given by (1) be in the class MΣ (α, φ), then

|a2| ≤
B1

1 + 2α
+

√
(3α2 + 3α+ 1)B2

1

(1 + 2α)2 (1 + α)2 +
B1 + |B1 −B2|

(1 + 2α)
and (40)

|a3| ≤
(
4α2 + 5α+ 2

)
B2

1

(1 + 2α)2 (1 + α)2 +
4B1 − 3 |B1 −B2|

3 (1 + 2α)
+

1

9

+
2B1

(1 + 2α)

√
(3α2 + 3α+ 1)B2

1

(1 + 2α)2 (1 + α)2 +
B1 + |B1 −B2|

(1 + 2α)
. (41)

Proof. Since f ∈MΣ (α, φ), there exists two analytic functions r, s : U→ U, with r(0) = 0 = s(0), such that

(1− α)
zf ′(z)

g(z)
+ α

(zf ′ (z))
′

g′ (z)
= φ (r(z)) and (42)

(1− α)
wh′(w)

j(z)
+ α

(wh′ (w))
′

j′ (w)
= φ (s(w)) . (43)

From (20) and (21), (42) and (43) it follows that

(1 + α) (2a2 − b2) =
1

2
B1p1, (44)

(1 + 2α) (3a3 − b3) + (1 + 3α)
(
b22 − 2a2b2

)
=

1

2
B1

(
p2 −

1

2
p2

1

)
+

1

4
B2p

2
1, (45)

(1 + α) (b2 − 2a2) =
1

2
B1q1, (46)

and

(1 + 2α)
(
6a2

2 − 3a3 + b3
)
− (1 + 3α) 2a2b2 − (1 + α) b22

=
1

2
B1

(
q2 −

1

2
q2
1

)
+

1

4
B2q

2
1 . (47)
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The equations (44) and (46) yield

p1 = −q1 (48)

The equations (45), (47) and using (44) (48) we get

(
a2 −

B1p1

2 (1 + α)

)2

=

(
3α2 + 3α+ 1

)
B2

1p
2
1

4 (1 + 2α)2 (1 + α)2 −
B1 (p2 + q2)

4 (1 + 2α)
+
p2

1 (B1 −B2)

4 (1 + 2α)
(49)

Which yields the desired estimation of |a2| in (40). Subtracting (47) from (45) using (48)

a3 =
B1 (p2 − q2)

12 (1 + 2α)
+ a2

2 +
b3 − b22

3
. (50)

Using the fact that |pi| ≤ 2 , |qi| ≤ 2 and using Lemma 1.3 in (50), which yields the desired estimation of |a3| .
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