International Journal of Mathematics And its Applications

Bi-Univalent Coefficient Estimates for Certain Subclasses of Close-to-Convex Functions

Research Article

C.Selvaraj ${ }^{1}$ and T.R.K.Kumar ${ }^{2 *}$
1 Department of Mathematics, Presidency College, Chennai, Tamilnadu, India.
2 Department of Mathematics, R.M.K.Engineering College, R.S.M.Nagar, Kavaraipettai, Tamilnadu, India.

[^0]
1. Introduction, Definitions And Preliminaries

We let \mathcal{A} to denote the class of functions analytic in \mathbb{U} and having the power series expansion

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

Also we let \mathcal{S} to denote the class of functions $f \in \mathcal{A}$ which are univalent in \mathbb{U}. The Koebe one-quarter theorem [6] ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $\frac{1}{4}$. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z))=z,(z \in \mathbb{U})$ and

$$
f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
h(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). Also let function $g \in \Sigma$ is given by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{3}
\end{equation*}
$$

[^1]has the inverse function of the form
\[

$$
\begin{equation*}
j(w)=g^{-1}(w)=w-b_{2} w^{2}+\left(2 b_{2}^{2}-b_{3}\right) w^{3}-\left(5 b_{2}^{3}-5 b_{2} b_{3}+b_{4}\right) w^{4}+\cdots . \tag{4}
\end{equation*}
$$

\]

Earlier, Brannan and Taha [4] introduced certain subclasses of bi-univalent function class Σ, namely bi-starlike functions $\mathcal{S}_{\Sigma}^{*}(\alpha)$ and bi-convex function $\mathcal{K}_{\Sigma}(\alpha)$ of order α corresponding to the function classes $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ respectively. Lewin [8] investigated the class Σ of bi-univalent functions and showed that $\left|a_{2}\right|<1.51$ for the functions belonging to Σ. Subsequently, Brannan and Clunie [5] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$.

An analytic function f is subordinate to an analytic function g, written $f(z) \prec g(z)$, provided there is a schwarz function w defined on \mathbb{U} with $w(0)=0$ and $|w(z)|<1$ satisfying $f(z)=g(w(z))$. Ma and Minda [9], unified various subclasses of starlike and convex functions for which either of the quantity $\frac{z f^{\prime}(z)}{f(z)}$ or $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ is subordinate to a more general superordinate function. For this purpose, they considered an analytic function ϕ with positive real part in the unit disk U, $\phi(0)=1, \phi^{\prime}(0)>0$ and \mathbb{U} onto a region starlike with respect to 1 and symmetric with respect to the real axis. Such a function has a series expansion of the form

$$
\begin{equation*}
\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots,\left(B_{1}>0\right) \tag{5}
\end{equation*}
$$

In this paper, we introduce the following new subclasses of Bi-univalent close-to-convex functions of the function class Σ and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses.

Definition 1.1. A function $f \in \Sigma$ given by (1) is said to be in the class $C C_{\Sigma}(\phi)$ if there exists a bi-convex function $g \in C V_{\Sigma}(\phi)$ given by (3) and satisfy the following conditions:

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{g(z)} \prec \phi(z), \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w h^{\prime}(w)}{j(w)} \prec \phi(w) \tag{7}
\end{equation*}
$$

where $h(w)$ is given by (2) and $j(w)$ is given by (4) and $\quad z, w \in \mathbb{U}$.

Definition 1.2. A function $f(z)$ given by (1) is said to be in the class $Q C_{\Sigma}(\phi)$, if there exists a bi-convex function $g \in C V_{\Sigma}(\phi)$ such that $f \in \Sigma$

$$
\begin{equation*}
\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)} \prec \phi(z) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(w h^{\prime}(w)\right)^{\prime}}{j^{\prime}(w)} \prec \phi(w) \tag{9}
\end{equation*}
$$

where $h(w)$ is given by (2) and $j(w)$ is given by (4) and $z, w \in \mathbb{U}$.

Lemma 1.3. A function $g \in \mathcal{A}$ is said to be convex function in \mathbb{U} if both $g(z)$ and $g^{-1}(z)$ are convex in \mathbb{U}, Nehari [10], subsequently by Koepf [11] and Ian Graham and Gabriela Kohr [12], Corollary 2.2.19 gives

$$
\begin{equation*}
\left|b_{3}-b_{2}^{2}\right| \leq \frac{1}{3} \tag{10}
\end{equation*}
$$

This estimate is sharp.

2. Coefficient Estimates for the Function Class $C C_{\Sigma}(\phi)$

Our first result provides estimates for the coefficients a_{2}, a_{3} for functions belonging to the class $C C_{\Sigma}(\phi)$.
Theorem 2.1. If $f \in C C_{\Sigma}(\phi)$, then

$$
\begin{gather*}
\left|a_{2}\right| \leq B_{1}+\sqrt{B_{1}\left(1+B_{1}\right)+\left|B_{1}-B_{2}\right|} \quad \text { and } \tag{11}\\
\left|a_{3}\right| \leq \frac{2 B_{1}\left(B_{1}+6\right)+1}{9}+\left|B_{1}-B_{2}\right|+2 B_{1} \sqrt{B_{1}\left(1+B_{1}\right)+\left|B_{1}-B_{2}\right|} . \tag{12}
\end{gather*}
$$

Proof. Since $f \in C C_{\Sigma}(\phi)$, there exists two analytic functions $r, s: \mathbb{U} \rightarrow \mathbb{U}$, with $r(0)=0=s(0)$, such that

$$
\begin{gather*}
\frac{z f^{\prime}(z)}{g(z)}=\phi(r(z)) \quad \text { and } \tag{13}\\
\frac{w h^{\prime}(w)}{j(w)}=\phi(s(w)) . \tag{14}
\end{gather*}
$$

Define the functions p and q by

$$
\begin{equation*}
p(z)=\frac{1+r(z)}{1-r(z)}=1+p_{1} z+p_{2} z^{2}+\cdots \quad \text { and } \quad q(z)=\frac{1+s(z)}{1-s(z)}=1+q_{1} z+q_{2} z^{2}+\cdots . \tag{15}
\end{equation*}
$$

Or equivalently,

$$
\begin{equation*}
r(z)=\frac{p(z)-1}{p(z)+1}=\frac{1}{2}\left[p_{1} z+\left(p_{2}-\frac{p_{1}^{2}}{2}\right) z^{2}+\left(p_{3}+\frac{p_{1}}{2}\left(\frac{p_{1}^{2}}{2}-p_{2}\right)-\frac{p_{1} p_{2}}{2}\right) z^{3}+\cdots\right] \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
s(z)=\frac{q(z)-1}{q(z)+1}=\frac{1}{2}\left[q_{1} z+\left(q_{2}-\frac{q_{1}^{2}}{2}\right) z^{2}+\left(q_{3}+\frac{q_{1}}{2}\left(\frac{q_{1}^{2}}{2}-q_{2}\right)-\frac{q_{1} q_{2}}{2}\right) z^{3}+\cdots\right] . \tag{17}
\end{equation*}
$$

It is clear that p and q are analytic in \mathbb{U} and $p(0)=1=q(0)$. Also p and q have positive real part in \mathbb{U} and hence $\left|p_{i}\right| \leq 2$ and $\left|q_{i}\right| \leq 2$. In the view of (13), (14) and (15), clearly,

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{g(z)}=\phi\left(\frac{p(z)-1}{p(z)+1}\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w h^{\prime}(w)}{j(w)}=\phi\left(\frac{q(w)-1}{q(w)+1}\right) . \tag{19}
\end{equation*}
$$

Using (16) and (17) together with (3), one can easily verify that

$$
\begin{equation*}
\phi\left(\frac{p(z)-1}{p(z)+1}\right)=1+\frac{B_{1} p_{1}}{2} z+\left[\frac{B_{1}}{2}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} p_{1}^{2}\right] z^{2}+\cdots \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi\left(\frac{q(w)-1}{q(w)+1}\right)=1+\frac{B_{1} q_{1}}{2} w+\left[\frac{B_{1}}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{B_{2} q_{1}^{2}}{4}\right] w^{2}+\cdots . \tag{21}
\end{equation*}
$$

Since $f \in \Sigma$ has the Maclaurin series given by (1), computation shows that its inverse $h=f^{-1}$ and $j=g^{-1}$ has the expansion given by (2). It follows from (18), (19), (20) and (21) that

$$
\begin{equation*}
2 a_{2}-b_{2}=\frac{1}{2} B_{1} p_{1}, \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
b_{2}^{2}-b_{3}-2 a_{2} b_{2}+3 a_{3}=\frac{1}{2} B_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)+\frac{1}{4} B_{2} p_{1}^{2} \tag{23}
\end{equation*}
$$

and

$$
\begin{align*}
b_{2}-2 a_{2} & =\frac{1}{2} B_{1} q_{1}, \tag{24}\\
b_{3}-b_{2}^{2}-2 a_{2} b_{2}+6 a_{2}^{2}-3 a_{3} & =\frac{1}{2} B_{1}\left(q_{2}-\frac{1}{2} q_{1}^{2}\right)+\frac{1}{4} B_{2} q_{1}^{2}, \tag{25}
\end{align*}
$$

From (22) and (24), it follows that

$$
\begin{equation*}
p_{1}=-q_{1}, \tag{26}
\end{equation*}
$$

Now (23), (25) and using (22), (26) gives

$$
\begin{equation*}
\left(a_{2}-\frac{B_{1} p_{1}}{2}\right)^{2}=\frac{B_{1}^{2} p_{1}^{2}}{4}-\frac{B_{1}\left(p_{2}+q_{2}\right)}{4}+\frac{\left(B_{1}-B_{2}\right) p_{1}^{2}}{4} . \tag{27}
\end{equation*}
$$

Using the fact that $\left|p_{2}\right| \leq 2$ and $\left|q_{2}\right| \leq 2$ gives the desired estimate on $\left|a_{2}\right|$,

$$
\left|a_{2}\right| \leq\left(B_{1}+\sqrt{B_{1}\left(1+B_{1}\right)+\left|B_{1}-B_{2}\right|}\right) .
$$

Subtracting (25) from (23), gives

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{1}{3}\left(b_{3}-b_{2}^{2}\right)+\frac{B_{1}}{12}\left(p_{2}-q_{2}\right) \tag{28}
\end{equation*}
$$

Using the fact that $\left|p_{2}\right| \leq 2$ and $\left|q_{2}\right| \leq 2$ and Lemma 1.3, then which yields the estimate (12).

3. Coefficient Estimates for the Function Class $Q C V_{\Sigma}(\phi)$

Theorem 3.1. If $f \in Q C V_{\Sigma}(\phi)$, then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{B_{1}}{3}+\frac{1}{6} \sqrt{7 B_{1}^{2}+12\left(B_{1}+\left|B_{1}-B_{2}\right|\right)} \text { and } \tag{29}\\
\left|a_{3}\right| \leq \frac{B_{1}\left(16+11 B_{1}\right)+4}{36}+\frac{\left|B_{1}-B_{2}\right|}{3}+\frac{B_{1}}{9} \sqrt{7 B_{1}^{2}+12\left(B_{1}+\left|B_{1}-B_{2}\right|\right)} \tag{30}
\end{gather*}
$$

Proof. Since $f \in Q C V_{\Sigma}(\phi)$, there exists two analytic functions $r, s: \mathbb{U} \rightarrow \mathbb{U}$, with $r(0)=0=s(0)$, satisfying

$$
\begin{gather*}
\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}=\phi(r(z)) \quad \text { and } \tag{31}\\
\frac{\left(w h^{\prime}(w)\right)^{\prime}}{j^{\prime}(w)}=\phi(s(w)) \tag{32}
\end{gather*}
$$

From (20) and (21), (31) and (32) it follows that

$$
\begin{gather*}
4 a_{2}-2 b_{2}=\frac{1}{2} B_{1} p_{1}, \tag{33}\\
9 a_{3}-3 b_{3}+4 b_{2}^{2}-8 a_{2} b_{2}=\frac{1}{2} B_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)+\frac{1}{4} B_{2} p_{1}^{2}, \tag{34}\\
2 b_{2}-4 a_{2}=\frac{1}{2} B_{1} q_{1} \text { and } \tag{35}\\
18 a_{2}^{2}-9 a_{3}-8 a_{2} b_{2}-2 b_{2}^{2}+3 b_{3}=\frac{1}{2} B_{1}\left(q_{2}-\frac{1}{2} q_{1}^{2}\right)+\frac{1}{4} B_{2} q_{1}^{2} . \tag{36}
\end{gather*}
$$

The equations (33) and (35) yield

$$
\begin{equation*}
p_{1}=-q_{1} \tag{37}
\end{equation*}
$$

The equations (34), (36) and using (33), (37) we get

$$
\begin{equation*}
\left(a_{2}-\frac{B_{1} p_{1}}{6}\right)^{2}=\frac{7 B_{1}^{2} p_{1}^{2}}{144}+\frac{p_{1}^{2}\left(B_{1}-B_{2}\right)}{12}-\frac{B_{1}\left(p_{2}+p_{2}\right)}{12} \tag{38}
\end{equation*}
$$

Using the familiar inequalities $\left|p_{i}\right| \leq 2,\left|q_{i}\right| \leq 2$ and (37) gives

$$
\left|a_{2}\right| \leq \frac{B_{1}}{3}+\frac{1}{6} \sqrt{7 B_{1}^{2}+12\left(B_{1}+\left|B_{1}-B_{2}\right|\right)}
$$

Subtracting (36) from (34) using (37)

$$
\begin{equation*}
a_{3}=\frac{B_{1}\left(p_{2}-q_{2}\right)}{36}+a_{2}^{2}+\frac{b_{3}-b_{2}^{2}}{3} \tag{39}
\end{equation*}
$$

Using the fact that $\left|p_{i}\right| \leq 2,\left|q_{i}\right| \leq 2$ and Lemma 1.3, in (39). which yields the estimate (30).

4. Coefficient Bounds for the Function Class $M_{\Sigma}(\alpha, \phi)$

Theorem 4.1. Let f given by (1) be in the class $M_{\Sigma}(\alpha, \phi)$, then

$$
\begin{align*}
& \left|a_{2}\right| \leq \frac{B_{1}}{1+2 \alpha}+\sqrt{\frac{\left(3 \alpha^{2}+3 \alpha+1\right) B_{1}^{2}}{(1+2 \alpha)^{2}(1+\alpha)^{2}}+\frac{B_{1}+\left|B_{1}-B_{2}\right|}{(1+2 \alpha)}} \text { and } \tag{40}\\
& \left|a_{3}\right| \leq \\
& \quad \frac{\left(4 \alpha^{2}+5 \alpha+2\right) B_{1}^{2}}{(1+2 \alpha)^{2}(1+\alpha)^{2}}+\frac{4 B_{1}-3\left|B_{1}-B_{2}\right|}{3(1+2 \alpha)}+\frac{1}{9} \tag{41}\\
& \quad+\frac{2 B_{1}}{(1+2 \alpha)} \sqrt{\frac{\left(3 \alpha^{2}+3 \alpha+1\right) B_{1}^{2}}{(1+2 \alpha)^{2}(1+\alpha)^{2}}+\frac{B_{1}+\left|B_{1}-B_{2}\right|}{(1+2 \alpha)}}
\end{align*}
$$

Proof. Since $f \in M_{\Sigma}(\alpha, \phi)$, there exists two analytic functions $r, s: \mathbb{U} \rightarrow \mathbb{U}$, with $r(0)=0=s(0)$, such that

$$
\begin{align*}
& (1-\alpha) \frac{z f^{\prime}(z)}{g(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}=\phi(r(z)) \quad \text { and } \tag{42}\\
& (1-\alpha) \frac{w h^{\prime}(w)}{j(z)}+\alpha \frac{\left(w h^{\prime}(w)\right)^{\prime}}{j^{\prime}(w)}=\phi(s(w)) \tag{43}
\end{align*}
$$

From (20) and (21), (42) and (43) it follows that

$$
\begin{align*}
(1+\alpha)\left(2 a_{2}-b_{2}\right) & =\frac{1}{2} B_{1} p_{1} \tag{44}\\
(1+2 \alpha)\left(3 a_{3}-b_{3}\right)+(1+3 \alpha)\left(b_{2}^{2}-2 a_{2} b_{2}\right) & =\frac{1}{2} B_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)+\frac{1}{4} B_{2} p_{1}^{2} \tag{45}\\
(1+\alpha)\left(b_{2}-2 a_{2}\right) & =\frac{1}{2} B_{1} q_{1} \tag{46}
\end{align*}
$$

and

$$
\begin{gather*}
(1+2 \alpha)\left(6 a_{2}^{2}-3 a_{3}+b_{3}\right)-(1+3 \alpha) 2 a_{2} b_{2}-(1+\alpha) b_{2}^{2} \\
=\frac{1}{2} B_{1}\left(q_{2}-\frac{1}{2} q_{1}^{2}\right)+\frac{1}{4} B_{2} q_{1}^{2} \tag{47}
\end{gather*}
$$

The equations (44) and (46) yield

$$
\begin{equation*}
p_{1}=-q_{1} \tag{48}
\end{equation*}
$$

The equations (45), (47) and using (44) (48) we get

$$
\begin{equation*}
\left(a_{2}-\frac{B_{1} p_{1}}{2(1+\alpha)}\right)^{2}=\frac{\left(3 \alpha^{2}+3 \alpha+1\right) B_{1}^{2} p_{1}^{2}}{4(1+2 \alpha)^{2}(1+\alpha)^{2}}-\frac{B_{1}\left(p_{2}+q_{2}\right)}{4(1+2 \alpha)}+\frac{p_{1}^{2}\left(B_{1}-B_{2}\right)}{4(1+2 \alpha)} \tag{49}
\end{equation*}
$$

Which yields the desired estimation of $\left|a_{2}\right|$ in (40). Subtracting (47) from (45) using (48)

$$
\begin{equation*}
a_{3}=\frac{B_{1}\left(p_{2}-q_{2}\right)}{12(1+2 \alpha)}+a_{2}^{2}+\frac{b_{3}-b_{2}^{2}}{3} \tag{50}
\end{equation*}
$$

Using the fact that $\left|p_{i}\right| \leq 2,\left|q_{i}\right| \leq 2 \quad$ and \quad using Lemma 1.3 in (50), which yields the desired estimation of $\left|a_{3}\right|$.

References

[1] R.M.Ali, V.Ravichandran and N.Seenivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput., 187(1)(2007), 35-46.
[2] R.M.Ali et al., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., $25(3)(2012), 344-351$.
[3] L.de Branges, A proof of the Bieberbach conjecture, Acta Math., 154(1-2)(1985), 137-152.
[4] D.A.Brannan and T.S.Taha, On some classes of bi-univalent functions, Studia Univ.Babes-Bolyai Math., 31(2)(1986), 70-77.
[5] D.A.Brannan, J.Clunie and W.E.Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math., 22(1970), 476-485.
[6] P.L.Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, (1983).
[7] G.P.Kapoor and A.K.Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl., 329(2)(2007), 922-934.
[8] M.Lewin, On a coefficient problem for bi-unilvalent functions, Appl. MAth. Lett., 24(2011), 1569-1573.
[9] W.C.Ma and D.Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin), (1992), 157-169.
[10] Z.Nehari, A property of convex conformal maps, J.Analyse Math., 30(1976), 390-393.
[11] M.Koepf, Convex functions and the Nehari univalence criterion, Complex Analysis, Joensu, 1987, 214-218. Lecture Notes in Math., 1351, Springer-Verlag, Berlin-New York, (1988).
[12] Ian Graham and Gabriela Kohr, Geometric Function Theory In One And Higher Dimensions, Marcel Dekker, Inc. New York, Basel, (2003).

[^0]: Abstract: In this paper, we introduce two new subclasses of the function class Σ of Bi-univalent functions defined in the open unit disk $\mathbb{U}=\{z:|z|<1\}$. Besides, we find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses.

 MSC: 30 C 45 .
 Keywords: Bi-univalent functions, close-to-convex,quasi convex,coefficient bounds.
 (C) JS Publication.

[^1]: * E-mail: kumartrk@yahoo.com

