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1. Introduction

A map ¢ : R" — R™ is said to be affine, see [9], when ¢p(Az1 + (1 — N)z2) = Ap(z1) + (1 — N)p(x2) for all z1,z2 € R™ and
all A € R. If 0 < X\ < 1, then ¢ is said a linear convex (l.c.) map. Applications of l.c. maps are in game theory and convex
analysis , see [4] or [2]. Some algebraic properties of the class of the affine and l.c. maps are considered. In order to show a
complete description, some propositions, without proofs, are recalled from the paper [2].

It is possible to reduce the linearity of a map to the neighborhood of a fixed point. This new definition allows to considerate
a wide class, really a linear space, Lc(b), of maps which satisfy this property. The analytic form of these functions is obtained
as solution of a first order PDE. As an important obtained result, the space of the continuous linear functionals on R" is a
subspace of Le¢(b), this opens the way to many extensions of known properties. The study of the topological properties of
the l.c. maps, with respect to a point, is only started because of dimensiononal limit of the paper.

By l.c. maps a wider definition of differentiability is obtained. Functions, not differentiable at a point, may be l.c. differen-
tiable at the same point. The l.c. maps have a geometrical meaning as cones. The derivatives in a Taylor’s polynomial are
multilinear functions so that the Taylor’s formula may be written by cones.

A new definition for derivatives allows to consider a new development for functions, denoted by h-polynomial. Pointwise
and mean square convergence of the h-polynomial are studied in order to improve the known developments. Applications

of the new derivatives are considered in complex analysis.

2. Multilinear Convex Maps

Definition 2.1. Let A be a subset of R™ and let C C R™, a k-linear convex mapping ¢ : A* — C, for a; € A, is defined
by d)(al,...,ai,...,ak) = ¢(a1,...,Z:Zl)wbi,...,ak) = Z:Zl)\iqﬁ(ah...,bi,...,ak), where )\7, > 0 B Z::l)\i = 1, a; =
Z::l Aibi, and b; € .
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Note that if a vector bj, in the convex combination a; = >_;_, \ib;, is not at A, then ¢(a1,...,bj,...,ax) is not defined.

Proposition 2.2. Let ¢ : (R")* — C be a k-linear map, then the restriction of ¢ to the bounded subset A® C (R™)* with

A={(a1iy. -y Qjiy- .-y ans) : i < aji <rji, j=1,...,n} is not k-linear, instead the restricted map ¢ is k-linear convex.
Proof.  Let %* < vj; < wji <75, j =1,...,n,, then there exist ¢((a1,...,vi,...,ax) and ¢(a1,...,wi,...,ax) even if
¢(a,...,v; +wi,...,ar) does not exist. So ¢ is not k-linear. Instead, with A € [0, 1],

dlar, ..., i + (1 — Nws, ... ak) = Ap(a1, ..., viy ... ak) + (L = N)d(ar,..., Wiy ..., ak)
and ¢ is k-linear convex. O
Example 2.3. Consider the function f(z,y) = 2xy 0< 2 < a, 0<y<bletg <z <z2 <a, then

f(z1,y) = 2x1y and f(x2,y) = 2z2y, even if f(x1 + x2,y) does not exist, so f(x,y) is not a bilinear function. Whereas, for
0<A <1,
fQAz1 4+ (1= Na2,y) = 2(Az1 + (1 = Nz2)y
=2Az1y + 2(1 — N)z2y

=AM(z1,y) + (1 =N f(z2,v)

that is, f(x,y) is a convez linear function of each variable separately.
Some elementary properties of the k-linear convex maps follow. Let X be a convex subset of R, Va; € X, a € [0,1],

aa; + (1 — a)0 = aa; € X. In particular aa; € X. Moreover

<I>(a1, ..

g, ...

where 0, a1, ...,ar are vectors in X.

Proposition 2.4. Let A\ € RT (A€ R7) and Az € X, then ax € X (—ax € X), for a € [0,1].

Proof. 1f0 < B < 1 satisfies « = 8- A, then az = B(Az) + (1 —8)0, so ax € X. If —a = 8-\ then —az = (Az) + (1 —5)0
and —az € X. O
Proposition 2.5. Let ¢ : A* — C be a k-linear convex map and let ¢ defined on the vectors 0,a1,. .., as,...,ax. Then,

with X € [0,1],

(i) p(ar, ..., Aai, .. ax) + dlar, ..., (1= Nag, ..., ax) = ¢p(at, ..., ai,...,ax) + dplar,...,0,...,ax).
(i) 2¢(as,. .., Sai,...,ax) = ¢(a, ..., ai,...,ax) + dlat,...,0,...,ax).
(iii) p(ar,...,0,...,ar) = 3((¢(a1,...,ai,...,ax) + ¢lar, ..., —ai,...,ax).
Proof. (i)
Blar, ..., A, ... ax) = ¢plar, ..., Aa; + (1 = N0, ..., ax)
= (a1, ..., a5, ... ar) + (1 = Ng(ar,...,0,...,ax)
dlat, ..., (1= Nas,...,ax) = ¢plar,..., (1 —Na; + A0, ..., ax)
= (1= N¢(at,...,ai,...,ax) + Ap(at,...,0,...,ax)
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(i) is obtained summing the two relations.
(ii) The (i) for A = 3.
(iii)

1 1

olat,...,0,...,ar) = ¢(a,... ai—|—§(—ai)),...,ak)

1 1
= §¢(a1,...,ai,...,ak)+§¢(a1,...,—ai,...,ak)

3. Free Convex Sets

A first application of k-linear convex maps is the definition of a convex free set. This concept is useful in order to define

algebraic structures as free modules, vector spaces and so on.

Definition 3.1. Let K be a subset of a conver set X in R" and let j : K — X be the insertion of K in X. Denote by A a
subset of R™, then X is free over K if, for every function f : K — A, an unique linear convexr mapping ¢ : X — A exists

such that ¢ o j = f, as in the following commutative diagram

K—J}X

The next proposition, recalled from [2], extends the 1 and defines a linear convex mapping if an its argument is outside the

body.

Proposition 3.2. Let z1,...,2i,..., 2, be vectors in X and § € R, then a linear convex mapping ¢ : X* — A satisfies
¢($1,...,5x¢,...,$k) :5¢(x1,...,xi,...,xk)+(l 75)(]3(931,...,9,...,231@) (2)

Theorem 3.3. Let ¢ : X¥ — Y be a k-linear convex function and X a convex set with 0 € X, then ¢(aq,...,ar) may be

expressed by a linear combination of ¢(xj,,...,x;, ), where x;; € X span the vectors a; € X.

In the n-dimensional vector space R", denote by S,, the convex hull of the vectors {e1,...,e,} of the standard basis. S, is a

compact, connected, convex set and its elements may be expressed by convex combinations of the unit vectors {e1,...,en}.

Theorem 3.4. The set S, is free over the standard basis {e1,...,en} of R".

By the Fenchel-Bunt’ theorem, any element a of a compact, connected, convex set A is expressed as a convex combination
of the sequence a1, ..., ay of vectors of A, that is a = &1a1 + - -+ + {nan. By the theorem 3.4 exists an unique linear convex
function ¢ such that ¢(&re1 + -+ + &nen) = . &as = a = >, &P(e;) so, any element a € A may be expressed as a convex

combination of the vectors ¢(e;),...,¢(es). In other words, any a € A determines a linear convex function ¢ such that

> &ig(ei) = a.
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Example 3.5. Let A be a convex, connected set in R2. If a = &1a1 + €202, & >0, Zfi =1, a; = (ai1,a:2) is an element
of A, then, by the theorem 3.4, it follows a = ¢(E1e1 + 2e2) = E1a1 + E2a2 = E1d(e1) + Ea¢p(e2), where ¢ : So — A is linear

convex. This implies ¢p(e1) = a1, ¢(e2) = a2, and so

o(z) = (z) x €S2

4. Affine and Linear Convex Maps with Respect to a Fixed Point

For an affine or linear convex (l.c.) map, the differentiability condition is showed by the next expression.

Proposition 4.1. An affine or l. ¢. map ¢ : R" — C, defined in some neighborhood of a, is differentiable at a if

p(a) = ¢(b) = (b —a) - Vo(a) — [[b— alle(t(b — a)) ®3)

where a+t(b—a) is a point in the neighborhood of a, 0 <t < 1, and V¢(a) the gradient vector. The function e(t(b—a)) — 0
ast— 0.
Proof. By the differentiability condition is ¢(a + t(b— a)) — ¢(a) = t(b— a) - Vé(a) + ||t(b — a)|le(t(b — a)) by the convex

linearity of ¢

(1 = t)a+tb) — ¢(a) = t(b — a) - Vo(a) + [[t(b — a)|[e(t(b — a))
(1 =t)¢(a) +tp(b) — d(a) = t(b — a) - Vo(a) + t[|b — alle(t(b — a))
—¢(a) + ¢(b) = (b —a) - Vo(a) + [|b — alle(t(b — a))

that is, the 3. 0

The aim of the next definition is to reduce the linearity of a map to a neighborhood of a fixed point, that is, the property

becomes local.

Definition 4.2. Let A be a subset of R™ and let C C R™, a k-affine mapping ¢ : A¥ — C with respect to the fized point b =
(b1,.-.,bn), fora;,b € A, is defined by p(a1,...,(L=Na;+Ab,...,ar) = (1L=N)d(a1,...,a,...,ak)+Ap(a1,...,b,...,ax),
where A € R. A k-linear convex mapping ¢ : A¥ — C, with respect to the fized point b, for a;,b € A, is defined by
dlar,...,(L=XNa; + b, ... ax) = (L = N)d(a1,...,a,...,ak) + Ap(a1,...,b,...,ar), where 0 < A < 1.

The line segment connecting the points a; and b can be represented in the parametric form a; + A(b — a;) = (1 — A)a; + Ab,
0 < X < 1. So the definition 4.2 imposes the linearity for any direction at b, that is, ¢ is linear in a neighborhood of b. By
the above definition, the affinity and the convex linearity is restricted to an arbitrary fixed point, nevertheless a wide class

of maps exists satisfying this property.

Example 4.3. Consider the function f(z,y) = (x — b1)((1=2)? + k) bi,b2, k € R then, it is an affine or l.c.

z—by

function with respect to the point (b1,b2). In fact

(k(z = b1)* + (y — b2)*)
X — b1

F((1 =)z + thy, (1 — )y + tha) = (1 — t)
=1 =t)f(z,y) +tf(b1,b2)

Observe that f(x,y) is not a linear or l.c. function.
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The affine and 1. ¢. maps, with respect to a fixed point, satisfy an analytic property that characterizes themselves. Let E, F'
be normed vector spaces, and let d = b — = be a direction at a fixed point b € E. The directional derivative of ¢ : E — F in

that direction is denoted by D¢(x)(d), see, for example, [5], then

Theorem 4.4. Let ¢ : U C E — F be an affine or l. c¢. map, with respect to the point b, of class C? in the open U , with

b —z|| =1, satisfies the relations
(i)
p(z) = ¢(b) — Do(x) (b — z) (4)
where the D$(z) is the derivative of ¢.
(ii)
DEg(z)(b—z)*) =0 k=2,...,p—1 (5)

where Dkqb(x) is the k-th derivative of ¢ at the point .

(iir) D(x)b — Dp(x)x = ¢(b) — p(x).

Proof. (i) With 0 < ¢ < 1 and by the convex linearity

ii) The Taylor’s formula of ¢ is ¢(b) = ¢(z) + ZDd(z)(b—z)+ -+ —==DP *(z)(b—z)P~ P +6(b— z), where (b— z)*
1! (p—1)!
denotes the k-tuple (b — x,...,b — z). Comparing 4 and the Taylor’s formula the (ii) follows.

(iii) It is well known, see [5], that the derivative mapping D f(x) : E — F is linear. O

Later it is showed that a l.c. function with respect to a point has a non null Hessian matrix even if it satisfies 5. The

following example shows that a linear function satisfies the 4.

Example 4.5. The function ¢(z,y) = k(x,y), with k € R, is linear on R* and

B(b1,b2) = k(b1,b2) = ¢(z,y) + ¢ (2, y) (b1 — 2) + dy(z,y) (b2 — ¥)
= k(z,y) + k(1,0)(b1 — x) + £(0,1)(b2 — y)
= k(z,y) + (kb1 — kz,0) + (0, kb2 — ky)

= k(b1,b2)

5. Real-valued Affine and Linear Convex Functions of a Real Variable

For functions of one real variable, the theorem 4.4 becomes the following proposition

Proposition 5.1. The affine and . c. derivable function f: A C R — R, with respect to a fized point xo € A, satisfies

f(@) = f(wo) + f'(x)(x — wo) (6)
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Proof. By the convex linearity, with 0 < ¢t < 1,

/() o — ) = lim +(f (& + t(z0 — 2)) — f(z)
= lim 7 (£(1 = )z + tao) — £(x)

= lim %((1 —t)f(x) + tf(zo) — f(x))
= lim — (=t (z) + tf(20))
= —f(z) + f(z0)

O

By w0 = z + h, the 6 may be written as f(x + h) — f(z) = f'(z)h, that is, the affine and l.c. functions , of one variable, with

respect to a point, satisfy Af(z) = d f(x). The relation 6 is a simple ODE and its solution is

f(@) = f(o) + (z — o)k (7)

with k an arbitrary real constant. The relation 7 characterizes the affine and l.c. functions, so these coincide with the affine

and l.c. functions with respect to a point.

6. Affine and 1. c. Functions of Two Variables, with Respect to a
Point

The relation 4 is a very useful tool in order to determinate the wide class of the affine and 1. c¢. maps with respect to a
point . The simplest set of these maps is obtained by two variable functions. For a differentiable function f : &2 — %, the

4 becomes

flzi,m2) = f(b1,b2) — (b1 — 1) fuy (21, 22) — (b2 — 2) fu, (1, 72) (8)

the 8 is a first order PDE, see, for example, [7], and the general integral may be written as

f(‘Tth) - f(b17b2) f($17$2) — f(b17b2)

1 — b1 ' T2 — b

U( )=0 9)

where 9 is an arbitrary function. Another form for the solution is

132—1)2
Q:l—bl

f(z1,22) = f(b1,b2) + (21 — b1)y( (10)

and again 1 is an arbitrary function. The solutions 9 or 10 are linear convex functions with respect to the arbitrary point
(b1, b2). This means that the solutions satisfy the relation of affine or convex linearity for every combination written in the

form )\1(%1,[62) =+ )\Q(bl,bg), Vl’l,l’g,bl,bz € §R, A+ X2 =1 and (bl,bz) is a critical point of f(l’l,fz) .

flz1,22)—f(b1,b2) + flz1,@2)—f(b1

w1 by o b2) 41 = 0 expressing with respect to flz1,22), a

Example 6.1. Choose the function i as

solution of 8 is
(1 = b1) (w2 — ba)
1+ x2 — (b1 + b2)

f(z1,22) = f(b1,b2) — (11)

It is straightforward to verify the linear convexity of 11, that is f((1 — t)(z1, m2) + t(b1, b)) = f (b, by) — L= e1=b1)(@z2—b2)

@1 +zo—(b1+b2)
is equal to (1 —t) f(x1,x2) + tf(b1,b2).
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xg—bo

Example 6.2. Using the solution of 8 in the form 10, choose as a solution f(x1,z2) = f(b1,b2) + (x1 — b1)e®1-?1 then
zo—by
f((l — t)(x;[,xz) + t(bl,bz)) = f(b1, bz) + (1 - t)(CIZ’1 — b1)€11_b1 is equal to (1 — t)f(ml,xg) + tf(b1, bz)

Example 6.3. The graph of the Lc. function f(z1,x2) = @2=h)? it respect to the point (3,4) is

x1—3

(Computer-generated graph).

The following proposition proves (ii) of 4.4 for two variable functions .

Proposition 6.4. The affine or l.c. function set, with respect to the point (b1, ba), f(x1,x2) = f(b1,ba)+ (z1 — by )ih(E2=22),

z1—b1

with Y an arbitrary, twice differentiable, function, satisfies

(b1 7281,b2 7(22)TH(.’21,:E2)(b1 *xl,bgffcg) =0 (12)
where H is the Hessian matriz of f.
Proof. By
T2 — b2 by —x2, , x2—b2 /T2 — b2
x1 — ) 9 = d
fl w(l‘1—b1)+(1’1—b1)w($1—b1 f2 w(Il—bl) an
(w2 —b2)? w2 —bo _ —T2+ba T2 —ba
lezl — (xl_bl)S (ivl_bl)’ fl‘112 - (xl_bl)gw (Qﬁ'l—bl)
x2—b —x2+b
f = 1 1, T2 — bo H(CCl .’EQ) = 1 n2 = ba (If*bi )2 112*112
r2e2 €T, — b1 1 — bl ’ 1 — bl 1 — bl —xo+bo 1
x1—by
it follows 12 . O

Observe that the relation (b1 — x1,b2 — $2)TH(I1,$2)(b1 — x1,b2 — x2) = 0 is true for every W'(iféf ).

7. Affine and 1. c. Functions of n Variables, with Respect to a Point
For a function f : #° — R, the 4 becomes

J(x1, w2, 23) = f(b1,b2,b3) — (b1 — x1) fo, (w1, 22, %3) — (b — @2) fay (T1, T2, 23) — (b3 — 3) [y (21, T2, 23) (13)

the 13 is a first order PDE, and the solution may be written as

xg—bz m3—b3

F(wr, @2, w3) = f(br, b2, ba) + (21 = by (==,

where ¢ is an arbitrary function.
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Example 7.1. The function f(z1,z2,x3) = (2a=b2)(@3=03) o1 o ayith, respect to the point (b1, b2,b3), f((1 —t)(x1,x2,23) +

z1—b1

t(b1,b2,b3)) = (I‘l — b1)_1((1 — t)(a?z ol bz)(l‘g — bg)) 18 equal to (1 — t)f(x1,m2,x3) —|—tf(b1,b2,b3)

A result similar to the proposition 6.4 can be proved.
More in general, let f: U C " — R be a differentiable affine or l.c. function with respect to the point b, U an open set,

then the 4 is

f(@) = f(b) = Vf(z)(b—2) (15)
where t = x1,...,Zn,b="01,...,bn, € U.

Theorem 7.2. The set Le(b)(R™,R) of the affine or l.c. functions, with respect to b, is given by

T2 — b2 Tn — bn
= — 1
Fla) = 1) + (o1~ b2 2 B (16)
where Y is an arbitrary differentiable function.
Proof. The set Le(b) is the solution of the PDE 15, in fact, being
le :w(227"'7zn) _Z2wz2(z2""7zn) - _Zn/l/]z’n(z27"'7zn)
fzz = wz2(227"'7zn)7 fIS = wz?)(zz""7zn)7"'7fzn = wzn(z2a"'32n)
where z; = i::Zi , and replacing in equation 15 it follows the identity
f(x) = f(0) = (m1 — b1) (Y22, - - s 2n) — 22925 (22, -+, 20) — - — 202, (22, -+, 20)
+ (w2 — b2)zy (22, oy 2n) + -+ (Tn — b)Yz, (22, .., 20)
= (J,’l — bl)w(ZQ, ey Zn)
The solution 16 is in Le(b), indeed
f((1 =)z +tb) = f(L —t)z1 +tbr, ..., (1 —t)zpn + thy)
(1 —t)l‘g + tbs — bo (l—t)xn—i—tbn — by,
= f(b 1—t thy — b .
F) + (1=t + ths nw( R e
_ T2 — ba Tn — bn
=10+ (= 0= b (B )
T2 — bg Tn — bn
R T e R
=1 —t)f(x) +tf(b)
O

By the f(1 — t)z + tb) = tf(b) + (1 — t)(x1 — bl)w(“_b2 z"_b"), setting ¢ = 0, it follows f(z) = (z1 —

x1—by’ ? x1—by
bl)w(zz—bz znfbn)
x1—b1 """ w1 —by /)

Proposition 7.3. The set Lc(b) is a linear space.
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Proof.  Let ¢1,¢2 € Le(b), then ¢ = ¢1 + ¢ € Le(b), indeed

P((1 =) +tb) = 1 ((1 — t)z 4+ tb) + ¢ ((1 — t)z + tb)
= (1 =t)p1(z) +1h1(b) + (1 — t)da(x) + t $2(b)
= (1 =t)(¢1(2) + ¢2(2)) + t(d1(x) + ¢2(2))
= (1= t)p(z) +tp(b)

If X e R, ¢ € Le(d), then AP((1 — t)x + tb) = A(1 — t)p(z) + Atp(b) = (1 — t)(Ap(x)) + t(Ap(D)) that is A € Le(b). O

Proposition 7.4. Let E, F be normed linear spaces. If Dp(z) : E — F, with ¢ € Lc(b)(E, F), is injective, then ¢ is

injective too.

Proof. Let z1,z2 € E, with 1 # z2. It is Do(z)(z1) = ¢(z1) — #(0) and De(z)(z2) = ¢(z2) — ¢(0) and subtracting
Do(z)(x1) — Do(z)(w2) = ¢(x1) — ¢(w2). Then De(x)(z1) # Dd(x)(w2) implies ¢(x1) # d(w2). O

Proposition 7.5. Let ¢1 € Lc(b) and ¢2 € Le(p1(b)), then ¢2 0 ¢p1 € Le(d2 o p1(D)).

Proof.

b2 0 P1((1 —t)z +tb) = ¢2((1 — t)p1(x) + th1(D))
= (1 —t)p2 0 ¢p1(x) +td2 0 p1(b)

8. Some Topological Properties of Lc(b)

Let E, F be normed vector spaces. The continuity definition of a map f: E — F at a point o € F may be rewritten as
Ve > 0, Va € I(x0,8) C E, Jte, 0 < te <1, such that 0 < ¢t < t. implies |f(zo + t(x — x0)) — f(z0)| < €. If the map f is l.c.

with respect to the point x¢, then

[f(zo +t(x —x0)) — fwo)| = |(1 — ) f(20) +tf(x) — f(wo)| = [tf(x) — tf(x0)l
= t|f(xo) — f(2)| = t|Df(x)(x0 — x)| <€

that is, by restricting enough the open ball I(zo,d), the derivative is close to zero. The dual space of R", that is the space
of the continuous linear functionals on ", is denoted by L(R",R), see [5]. The link with the space L.(b)(R",R) is the

following property

Proposition 8.1. L(R™ ™!, R) is a subspace of L.(b).

Proof. Tt is immediate, for any A € L(R™,R), by A((1 — t)x + tb) = (1 — t)A(z) + tA(b). O
Moreover, for any A € L(R" !, R), let A(bz,...,b,) = k with k € R, then

Mz, .. .yxn) =k — A2, ...,bn) + A(z2,...,Tn)

_ 1‘2_b2 -Tn_bn

=k -+ (ZBl — bl))\(

111—171’.”’111—171
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So the functional A may have the form of the elements of L.(b). It is known, see [5], that a linear map A : F — F is
continuous if and only if there exists C' > 0 such that |Az| < C|z| for all x € E. The following proposition extends a similar

property to the l.c. maps with respect to a point.

Proposition 8.2. The l.c. map ¢ : E — F, with respect to the point b, is continuous if and only if there exists C > 0 such

that |Dp(x)z| < Clz|, for all z € E.

Proof. Let ¢ € Le(b). By the equation 4, it follows D¢(z)(b — o) = &(b) — ¢(x0) and subtracting with the 4 it is
D¢(x)(z —x0) = ¢(x) — d(z0). For |x —xo| < 9§, with z,z0 € E, it is [Do(z)(x — z0)| = |¢(z) — d(z0)| < Clz —z0| < CO <€,
where § < & then ¢(z) is continuous at xo.

Conversely, by the continuity of ¢, there exists § such that, for |x — x| < 6, it follows |px — pxo| = |Dd(z)(x — z0)| < € < 1.

Then | D¢ (x)(2E=20))| = |‘x_5x0|D<Z>(x)(a?f:Eo)\ <1 for all x —xzo € E , with |x — xzo| < 4§, namely |D¢(z)z| < Clz|. O

B

Definition 8.3. Let ¢ € Le(b), then |¢|, the norm of ¢, is defined by || = |D¢(z)|, where |D¢(z)| is the usual norm of the
linear map D¢(x) with |Dé(z)| < Clz|, C > 0.

Proposition 8.4. If ¢1 € Le(b) and g2 € Le(g1 (b)), then |¢2 0 ¢1] < |(Do2(2)| |o1] |x].
Proof. |¢2 0 ¢1(z)| = [Dg2(2)($1(x))| < |Dd2(x)| |p1(z)| < [Dg2(2)] |p1] |z]. 0

Let ¢ : FF — G, with ¢ € Le(b) and F a subspace of E. Since ¢(z) = ¢(0) + Do(z)(z), with D¢(z)z : E — G, then there
exists the extension of ¢ to the space F, defined by the same ¢(z) = ¢(0) + D¢(x)z. Let E** = Le(b)(Le(b)(E, R), R) be
the double dual space of F with respect to the space Lc(b). Functions @, : E* — R are defined by ®.(¢) = ¢(x) for any

peEE*, zE€FE.

Proposition 8.5. The map of E — E** defined by x — @, is linear , injective and norm preserving, that is |z| = |Pz|.
Proof. Let z1,72 € E with x1 # x2, so ©1 — x2 # 0. By the Hahn-Banach theorem there exists Dé(x) € L(E,R), with
¢ € Le(E,R), such that D(x)(z1 —x2) # 0, then Do(x)(z1) # Dd(z)(z2) so Dg(x) is injective. By the proposition 7.4 also

¢x is injective, that is ¢x1 # ¢z2, this implies that the map z — ®, is injective. By |pz| < || |z| and | @, (@) < |Ps||P],

since |p(x)| = | Pz ()] it follows |@| |z| = |Pz||d| and |Pg| = |z O

The Linear Extension Theorem, see [5], for a linear map A : F — G, where E is a normed vector space, F' a subspace of F
and G a Banach space, proves that there exists a unique extension of A to a continuous linear map X : F' — G. Where F is

the closure of F' and A, A have the same norm. The next theorem is a similar result for the space Lc(b).

Theorem 8.6. Let ¢ : F — G, with ¢ € Le(b), E a normed vector space and F a subspace of E, G a Banach space. The
norm of ¢ is C. F denotes the closure of F in E. Then there exists a unique extension of ¢ to a continuous ¢ : F — G,

with ¢ € Le(b), and ¢ has the same norm C.

Proof.  Uniqueness. Suppose x = limz,,, with € F and z,, € F. By the continuity of ¢z it follows lim ¢(z,) = ¢z € G,
in fact G is complete. So

or=¢xifx e F

pr=¢zifz e F

is an extension of ¢. If § is again an extension, it follows

br=¢xifx e F

dx=¢xifxeF
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so § = ¢. Existence. Suppose z = limx,,, with « € F, 2, € F, ¢ € Lc(b), b € F. Then

|¢(2n) = ¢(2m)| = |¢b + Do(z) (2 — b) — b — Dp(x)(xm — b)|

— |D()(@n — b) — D(a)(@m — b)| = [D(@) (wn — )| < Clen — 2]

so {#(x,)} is a Cauchy sequence in the Banach space G. Denote lim ¢(z,) = dx. It is immediate that ¢ is independent of
the sequence x, — x. If x € F and = = lim z, then ¢z = ¢z. This implies ¢pb = ¢b because b € F' and ¢ is an extension of

#. Now one must prove that ¢ € Le(b).

G((1 = )z +tb) = lim ¢((1 — t)an + tb) = lim((1 — £)B(xn) + tb)

= (1 — t) lim ¢(z,) + tob = (1 — t)px + tHb

so ¢ is l.c. with respect to b. The norm is a continuous function, then |pz| = lim|¢(z,)| and by |¢(zn)| < Clzxl, it is

|<;_Sx| = lim|¢z,| < C|limz,| = C|x|, hence |q§| =|d|. O

9. The Function @D(;—f, —_——

) T
The m11/1(%f, RN 2—’1‘), with ¢ an arbitrary C™ function, is l.c. with respect to the point zero. Then it holds z1¢ =
z1 6;;11& +t T aazzlf and this implies
oy o
x1 Er + + xn P ( )

this is a known result by the Euler’s theorem, since the function 1 is homogeneous of degree 0, that is ¢ (tz) = ¢ (x), t > 0.

The next theorem states a stronger property of .

Theorem 9.1. Let ¢ : R™ — R be the homogeneous function of class C?, defined by x — w(%, RN %), with arbitrary .
Then

DFy(z) 2™ =0 k=1,...,p (18)

Proof.  Denote by (%050 (1) the partial derivative with respect to the i-th variable.

x1
n 1 1 1
Zn (0,0,..., D) (@00 4 (LgpOin0y (L 00ny
T1 T1 I1 T1
=0
and DPy(z) P = D(DP~')(x) zP~V)z, so, by induction, it follows 18 O

10. Linear Convex Differentiability

The l.c. maps allow an extension of the differentiability’ s definition .

Definition 10.1. Let U open in E, andb € U. Let f : U — F be a map. Then f is linear convex differentiable at b if there

exists a continuous l.c. ¢ € Le(b), defined for all sufficiently small h in E, such that limp,_o ‘—il(f(bJrh) —f()—¢(b+h))=0

Proposition 10.2. If f is l.c. differentiable at b, then it has derivative for every direction at b.
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Proof. Suppose h = t(x —b), z — b € U and observing that ¢(b+ t(z — b)) = té(x) it follows

Df(b)(a —b) = lim L F b+ tlx — b)) — F(b) — o(b+ t(z — b))

5 Til
= lim ﬁ(f(b iz — b)) — F(b) — t(x))
= Jim r;(f(b +t(z — b)) — £(b)) = b(x)

O

In particular if z —b=¢; , i =1,...,n, it is Df(b)e; = (b + e;). The definition 10.1 becomes especially useful if a map is

not differentiable at a point.

Example 10.3. The function

2D if () # (0,0)
0 if (z,y) = (0,0)

is not differentiable at the point (0,0), in fact, with d = (d1, d2),

f(:c,y) =

D(0,0)d =lim - 1 L((0+ td) — £(0))

B d';’d2
T A2+ d3

# Df(0,0)erdr + Df(0,0)eads

=0d; +0d2>

In order to f(x,y) is L.c. differentiable at (0,0), a ¢(x,y) € Lc(0,0) has to exist such that D f(0,0)((z,y) —(0,0)) = ¢(z,y),

that is
B, y) = 1 (fO+t(z —0)) = F(0))
= (@), 1)) ~ F0))
= (/) 1))
_ 7y
o2 + 92

Then ¢(z,y) = x 2+y =z—=25 = 2Y(¥). So the f(x,y) is a Lc. differentiable function at (0,0). Observe that f(x,y) ¢
Le(0,0).

Proposition 10.4. The continuous functions of the space Lc(b) are l.c. differentiable at b.

Proof. By f € Lc(b),

DF(b)(x — b) = lim —(£(b+ t(x — b)) — £(b))

t—0 [t

—lim L (F(b(1 = t) + t2)) — F(b) — b+ t(x — b))

t—0 |t|
= lim |1| (1= 0)f(b) +tf(z) — (b))
= f(z) = f(b)
and by f € Le(b) it follows ¢(x) = f(z) — f(b) € Lc(b), so f is l.c. differentiable at b. 0
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Example 10.5. The function
0 if (z,y) = (1,1)

is not differentiable at the point (1,1), in fact, with d = (d1,dz2), Df(1,1)d = d1 sin(i—; +1) but Df(1,1)e1 is indeterminate.

f(x,y) =

Since Df(1,1)((z,y) — (1,1)) = (z — 1) sin(;—j +1) = (z — DY(Z=2) = ¢(z,y). So the function f(z,y) is Lc. differentiable

y—1

at (1,1).
Proposition 10.6. If f is differentiable at b then f is l.c. differentiable at the same point.

Proof. In the definition 10.1, if f is differentiable at b then ¢(b+ h) = D f(b)(z — b) is linear, so Df(b)(z —b) = ¢(x) and
f is Lc. differentiable. O

Example 10.7. Let the function f(x,y) = ylog((x+1)%y), with x > —1, y > 0, be differentiable at b = (b1,b2). The f is lc.
differentiable at b if there exists ¢ € Le(b) such that D f (b, b2)((x,y)— (b1, b2)) = ¢(x,y), that is D f (b1, b2)((x,y)—(b1,b2)) =
limg—o ¢ (F((b1,b2) + t(z — b,y — b2)) — f(b1,b2).

. 1 bl tx tbl b1
—lim = ((by 4tz + th)log 2T IETE g 1og 2L
lim t((bl tx+tbi)log R——y b1 log by

= log((1+51)Ba) (y — ba) + - (y + ba(y = 4ba) + (~1 4 32)ba)

= (o= )y B L2 (0 ba) log(1 1)) + 1+ 1))
= @bl

= ¢(337y)

then ¢(z,y) € Le(b) and f is l.c. differentiable at b.
Proposition 10.8. If f(z) is l.c.differentiable at b, then it is continuous at b.

Proof. By the lL.c. differentiability lim; o +(f(b+t(x—b)— f(b)) = ¢(x) with ¢(z) a bounded function . Set - (f(b+t(x—

[t]

b)— F(5)) = b(a) + (1), then limy—o(f (b+t(x —b) — (b)) = lims—so(|tlb(a) +[t16(t)) = 0, s0 limo f(B+t(x—b)) = f(B). O

11. Cones and Derivatives

Recall the known cone’s definition, and apply this to ¢(®) () = (z1—b1)*9a((22=22), ... (22=bn)2) = 0, where o € R—{0},

z1—b1 z1—b1

1 is an arbitrary function, with ¢(*(a) = 0. Then ¢*) () is a cone if the straight line 7 = a + t(a — b), t € R, joining the

two points a = (a1,...,a,) and b = (b1,...,bn), is completely contained in ¢(O‘)(:r). Since
() ta—b _ t _b a a2+t(a27b2)7b2a.” an‘i’t(an*bn)*bna
60+ ta = b)) = a1+ tlar — b)) BT (et et =y
_ o o 02 —by g An — bn \a
= (10— b (2R, (B

=(1+8)%a) =0

then the line r is in ¢(*) (x). The Taylor’s formula may be written by the cones ¢V (z), i € N — {0}

Proposition 11.1. Let f : U CR™ — R be a function of class C? in the open U, with |z —b|| = 1, then its Taylor’s formula

may be set in the form
1
(-1t

F@) = F6) + 560 (@) o+ 80 (@) + 0(z — b). (19)
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Proof. Since D'f(b)(x — b)) is multilinear, then D' f(b)(z — b)) = ¢V (x) = (21 — b1)*es((22=22)7, ..., (2a=bu)?) with

z1—b1 z1—b1

i=1,...,p—1. O

Example 11.2. The function f(z,y) = z* + (y — 2)3, with respect to the point b = (b1, b2), has the Taylor’s formula

1 —b
4 (y=2)° = b+ (b2 = 2) 4 gy~ b) (B +3(] ) (02— 2)%)
(o= b)%620 + (L2020 — 2) 4 (@ — 01)°6(4bs + (X220 4 L (w - by) 24
2! x—b1 3! x—b 4!
Let ¢ =z + t(xz — b), with ¢ € R, be a point on the straight line connecting = and b, then
Proposition 11.3. Let f: U CR" — R be a function of class C? in the open U, it holds
1 1 _ _
F©) = F0) + 1+ )8 (@) + 5,1+ %P (@) + - + G+ Lo () + 01 (2 — b). (20)

Proof.  The function ¢* (z) = (z1 — bl)awa((%)o‘, ceey (%)0‘) satisfies

() = ¢ (L4 t)zy —tby,..., (1 + )T — tby)

(1 + (w2 —b2) \a

=1+ t)a(Zm - bl)awa(((l +t)(z1 — by)

= (1+0°6 ()
so, substituting for 19, it follows the 20. O

The derivatives of a function f may be expressed by the cones ¢ of the Taylor’s formula 19.

Proposition 11.4. Let f: U CR"™ — R be a function of class C* in the open U, then

1;Dif<:c>(x—b>“>=;(j)qﬁ%H : (if1>¢“+l>(x>+---+ — .<p‘.1>¢<“><w> 1)

(e +1)!
fori=1,....p—1andn > 2.
Proof. By the Taylor’s formula, it is

tr1
(p—1)!

1f(z+t(z — b)) = f(z) + t Df(z)(z — b) + ;—Q!DZf(x)(m -0 44 D7 (@) (@ —b) P 4 0a(z—b)  (22)

comparing the right sides of 20 and 22, it follows

f@) = fb) + %ﬁf’(”(m) ety ! 1)!¢(p_1)(x) +01(x — b)
+ (%(j)(l)(x) + ;¢<2)(x) +et (é’) - BT@S(”*”@)) tDf @) B) + fa(z — )
+ (% (;) @ (z) + % (;’) 6@ () + -+ (p’i 5 <pg 1> 40D (2)

- %Df(x)(w —0)® +01(z — b))

(e (7o g (e

— S0 @@ -5 +61(a - )

+

=t (p—1 (P=1) () _ Pt 2z — 5 @D e b) — Oo(x —
+(p_1)!<p_1>¢ (z) woni” f@)(@—b)"P"Y + 61 (x —b) — O2(x — b)

then the 22. 0
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A corollary of the Proposition 11.4 is

Proposition 11.5. Let f : U CR" — R be a function of class C? in the open U, then

;Dvuwx—bw>—;C)Dv@xx—w“%%@j1NCj‘>D”Vuww—w““>

o (p—1 1! (p; 1) DP7LE(b)(z — b)Y

fori=1,....p—1andx,b e U.
Proof. TImmediate by ¢V (z) = D'f(b)(z — b)) if f: U CR" = R . O

The derivatives of the functions ¢ (z) satisfy some properties

Proposition 11.6. Let ¢V : R™ — R be a function defined by ¢D (x) = (z1— by )1p((22=22)F ..., (22=00)%) for an arbitrary

z1—by z1—by

C* differentiable 1, with x,b € R", then

(i) DD (z)(z —b) = ipWD(z) i=1,2,...

(i) D*¢D (2)(z —b)D =i(i—1)---(i—(k—1)¢P(z) 0<k<i
(iii) D*¢D(2)(z =)W =0 k=i+1,....

Proof. (i) By the ¢\ (x + t(z — b)) = (1 4+ t)'¢? it follows

Do @) ) = lim L6+ 1 - 1) 69 @)

-1
= lim (1 + 00 (@) ~ 6 (2))
= }13(1] %((1 + it + 75(1%1)152 NI ti)(j)(i)(z) _ (25(2)(%‘))

= lim + (it + @g e 60 (2)

=i (a)

(ii) by induction on k. (iii)For i = 1. The first step is to prove D?¢™")(z)(z — b)® = 0. Denote ¥((£2=52),..., (Z2=bn)) by

x1—by x1—by

¥(z) and 109 (2) be the partial derivative with respect to the first variable, then

D*¢W(z)(z — b)) = o0 V(@) (x1 — b1)* + -+ + 68, (@) (21 — bi)(@n — bu)+
ot s (@) (20 — bn)”

(z2 —b2)® (w2 —b2)® | (w2 —b2)®

— 200 o -2 p— 1 — b *
m+w(0a07-~-v2>(z)((m;__b,;)2 _ 2(xj:ll—_bbnl)2 + (x;_—bbif)
gl ezl —b) _ (o ba)(as b
a0 (o _fiji(lmn —bn) (@ _Z‘fz(lxn —bu),
=0
Now, by induction, D*~'¢(z)(z — b) = 0 so D¥¢(z)(z — b) = D(D* ' ¢(z)(z — b)) = 0. O
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12. h-derivatives

Let f : U C ®* — R be a function of class C? in the open U and suppose the point ¢ = (b + t(z — b)) € U, with
t € R, then the function g(t) = f(b+ t(x — b)) is defined and it is known that ¢g"(f) = > 7_, (Z)fm*k’k)(b + t(x —

b))(z1 — bl)("fm(mg — b2)*, where k%) denote the partial derivative %. In general, if f: U C R" — R, then
T1 T2

90 = Ty Gy " W5 04 b = ) T (i — b)), where (" ) = ™y and 32, 4, _, denote

r

the sum over all subsets of nonnegative integer indices k1 through k, such that the sum of all k; is n. By a similar way,
for the function f, it is possible to define new ”derivatives”. In the simplest case of a differentiable f : ® — R, the first
derivative may be defined by the finite lim¢_,q w This limit has value f'(x) if k(t) is a differentiable function

with lim;_,o k() = 0 and lim;_,¢ k’(t) = 1. Among the functions with this property, the next definition chooses k(t) = e’ — 1.
Definition 12.1.

(i) The h-derivative of the function f: U CR" — R, r > 2, of class CP, at the point b, is defined by H™ f(b)(b — 2)™ =
(£)"Rh(0) n=12,...,p, where h(t) = f(z + ' (b — x)) and (z +e'(b—x)) € U.

(i) In the special case f : U C R — R, the h-derivative at the point x is H" f(x) = (%)”h(O) n=12,...,p, where
h(t) = f(x —1+e'), with (x — 1 +¢') € U.

Next example stresses (i) as a particular case of (ii).

Example 12.2. By the (i), for f(z) at a point b= (b1, b), setting (x —b) = ex = (1,0), is H* f(b)el* = f'(b) + TP (b) +
63 () + fB(b). By the (ii), with f : R — R H*f(z) = f'() + TP (@) + 6P (2) + f® (x). Then, the derwatives are

equal.
Example 12.3. For the elementary function x<,

1 2 2 1
Hz® = ax® Hz® = a(la — 1)z + ax®
)

H’z® = a(a —1)(a —2)2° " + 3a(a — 1)z* > + az®"

that is, H"z® is a polynomial with n addend and degree o — 1.
It is immediate that

(i) B (0) = Dy f(b)(b—x) = =D f(b)(x — b) = —¢(0)

(it) A"(0) = D3 f(b)(b — )P = D*f(b)(b — )P + D f(b)(b — z) = —(4°(0) + ¢'(0))

where D, denotes the derivative with respect to the vector variable b. The higher n-th derivative will be denoted by

h"(0) = Dy f(0)(b — )™ = H" f(b)(b — x) ™.

Proposition 12.4. Let 1) : R" — R be the homogeneous function of class C*, defined by x — w(;—f, RN Z—T), with arbitrary
¥. Then H*(z) 2™ =0 k=1,...

Proof. By the Theorem 9.1

t t
d T2 + e X2 Tn + € Tn

H¥ () a™ = Ji=o = D*y(z)z™ =0

14 etz 1 + eta



Franco Fineschi

Proposition 12.5. Let f : U CR" — R be a function of class C™ in the open U, then
(i) Dpg™(t)(x —b) = (1 — t)g" " (t) — ng"(t) c=b+tlx—b €U
(ii) Di(Dy g™~ (t)(w — b)) = Dug" (t)(z — D)
(ii)) D" F(b)(x =)™ = 6 (@) = g"(0) = D6 (@)(w = b) + (n — 16"V (x)
wheren =1,...,p and ¢V (z) = f(b).
Proof. (i) In order to reduce the proof, only two variables z1,x2 are considered

n

Dyg"(t)(x —b) = Do(D (Z) FOTER ) (@ — b)) (22 — b2)*) (x — b)
k=0

n

=(z1—b1) Z( <Z> (=(n—=k)(z1 — b1)n—k—1(m2 _ b2)kf("7k’k)(c))

k=0

* <Z> FOTEER )1 = t) (@1 — b1)" (w2 — b2)")

+ (2 —b2) D ( <Z> (=k(@2 = b2)" (@1 = b2)"FF T () +
k=0

+ <Z> FUTERED (1 = 1) (w1 — 1) (w2 — b2)")
== <Z> (= k) (1 = b1)" " (22 — ba)" 75 ()

k=
+ Z) k(w1 —b1)" (s — b2)" F 9 (0))

+ (Z FUTRE @)1 = ) (21— b1)" (w2 = b2) (L~ 1)

= (n (”) (a1 = b1)" (w2 = 02) T ()

n

+ Z) ((z1 — bl)n—k+1(x2 _ bz)kf(n—k-i,q,k)(c)
0

k
+ (@1 = b1)" (w2 = b2) T TR () (1 - 1)

_ on & (n+1 o \ntl—k 3 \k p(ntl—k,k) B
= —ng"(t) + (D p )@ —b1) (w2 — b2)" f ()1 —1)
k=0

=1 -t)g" () —ng"(t)
(i7) By (i) Dog" ™" (t)(x = b) = (1 = t)g"(t) — (n — 1)g" "' (t), then

De(Dyg" ™" (t)(z = b)) = Die((1 = t)g" () — (n = 1)g" (1))
=—g"() + 1= t)g" ' (t) = (n — 1)g" (1)
=(1—1)g""(t) —ng"(t)

= Dog" (t)(z — b)

(412) Tt is a special case of (i) by t = 0.
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Recall the known functions

Definition 12.6. The k-th elementary symmetric function on the n numbers Ai,...,An 18 Sk(A1,...,An) =

Zl§i1<~-<ik§n Hle)\ij the sum of all (Z) k-fold products of distinct items from A1,..., An.
Particular cases are S1(A1,...,An) = A1+ -+ Ap and Sp(A1,..., An) = A1+ Ap.

Proposition 12.7. Let f: U CR" — R be a function of class C" in the open U, then

D"f(b)(z —b)"™ = DEf(b)(x —b)"™ +51(1,...,n—1)Dy f(b)(x — b)Y
+Sa(1,...,n—=1)DF2f(b)(z —0) " 4+ S 1 (1,...,n— 1)Dy f(b)(z — b)

= (Dyf(b)(z — b) + 1) o (Dpf(b)(w — b) +2) 0+ 0 (Dyf(b)(w — b) +n — 1) + Dy f(b)(a — b)""”

where Dy f(b)(z — b) o Dy f(b)(z — b) = D f(b)(z — b)@.

Proof. 1f n =1 it immediate that Df(b)(x — b) = Dy f(b)(z — b). By induction and using (7ii) of Proposition 12.4

D™ () (@ — b)Y = g" D (0) = ng"(0) + Dug" (0)(x — b)

=n(Dpfb)(x —b)"™ + S (1,...,n— 1D f(b) (@ —b) "V 4.
o4 Sn1(1,...,n—1)Dyf(b)(z — b)) + Dy(Dy f(b)(z — b)™

+8:1(1,...,n =)D ) (x — b)Y 4
4 Spi(1,...,n— 1Dy f(b)(x — b)) (z — b)

=D ) (@ — b)Y + (n+Si(1,...,n— 1)) Dy F(b)(z — b)™

+(nSi(1,...,n—1) 4 S®1,...,n—1)Dr f(b) (@ —b) "V 4.

+ (S a(l,...,n—1) 4 Sp_1(1,...,n— 1)) D f(b)(z — b)?
+ 18 1(1,...,n—1)Dyf(b)(z — b)
=Dy )@ = 0) " £ 511, ) DY f(b) (@ — b)™)

+ So(1,...,n) DR (b)Y (@ — b)Y 4+ Su(1,. ., n) Dy f(b)(z — b)

By the h-derivatives the Taylor’s formula has the following form

Proposition 12.8. Let f: U CR" — R be a function of class C™ in the open U and b+ t(x — b) € U, then

Fl@) = 1)+ (5 +Z +1 (1., ) Dy f (b)(x — b)
i )] (1,...,i,i+ 1) DEf(b)(x — b)) + ...
Z ZH Si(l,. iyt 1, i+ —1)Difb)(z — b)) +

=1

ot mD{}f(b)(ag — )™ +6(x —b)
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Proof. In the Taylor’s formula
1 1
F@) = F6) + 55D FO)( =)+ -+ 2 D" fB) 5™ + 6w )
by the Proposition 12.7, replacing the derivatives

F@) = () + (S0(0) + 5 81(1) + 3:82(1,2) + -+ + = Sua(L,o,m — 1) Dy f(6)(x — b)

1 1 1 1 1
+ (550(1) + §S1(172) + 552(17273) +oF ﬁsn—2(17 =)D fb) (=) -+ EDgf(b)(x — b

the new formula follows. |

Example 12.9. Forn =2 it is f(z) = f(b) + 2Dy f(b)(x — b) + 1 D; f(b)(z — b)@ +0(z —b) forn =4

35 2 2 10 3 3 1 4 4
F@) =F(0) + 12 Dof(B)(x — ) + o2 DR ) — B + DB~ 5 + DB~ ) + 6~ b)

1
13. New Polynomial for f(x)

In this section, by the h-derivatives, a polynomial of degree n for f about the point b, is obtained. The following is a known

Lemma, see [6]

Proposition 13.1. Let f: U CR" — R be a function of class C" in the open U, then a & exists, with 0 < & < 1, such that

fy=xr e )(0) + f(n)@, where f¥(t) = (&) f(t) and the closed unit interval 0 <t <1 in U.

It follows

Theorem 13.2. Let f : U CR" — R be a function of class C™ in the open U, t € [0,1], and (z + €' (b —z)) € U, then

1 g® o)
Ftelb— ) = foy + 3 LSOO 2)

v=1

+0(b— ) (23)

v!

where r > 2, HY f(b)(b — ) = b (t) with h(t) = f(z + e'(b—z)). Forr=1

1)
fat pe-0)=f@+ X 0 1 o) (24)

where h(t) = f(z + f(e' — 1)), k € {R— 0} and (z + (' = 1)) € U.

Proof. By the lemma 13.1, applied to the function h(t) = f(x + €’(b — x)) or, in the particular case, to the function
h(t) = f(z+ £(e" — 1)) , it is h(1) = h(0) + >0 2, ! h(”>(0) + % then the polynomial 23 and 24. O

By the 24, for t — 0,

fz+ %(et -1))=f(=)+ @) tz(f’(x) + /(@)

k 200k k2
& @) @) fO@), @) o) O D) 4
Ty T P Th S S K o) Telt)
or equivalently
@) w2 f@)  f(x))
£(@) = flao) + 2 (T L)
3 " (3) 4 (1 " 0 (3) (4) 4
+%(J”I(C)Jr?)fkg) fks( ))Jr%(f](g)Jr?f]i )+6fk() fk4( )))Jro(u)
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where p = log(k(z —x0) —1). By a similar way, starting from h(t) = f(z—1+k"), k> 0, the same development is obtained.
It is log(k(z — o) — 1) = O(k(x — z0)). Moreover, by the Leibtniz’s formula
i=0

D<")r(t)s(t) = Z (7;) p(n= gk

suppose (t) = f'(zo + 1 (' — 1)) and s(t) = €', so

and

then the final form

(x — xo)2

(@) = f(@o) + f'(wo) (@ — wo) + (kS (wo) + " (20))—;

[un

n—

2

2

(R o) + 3k (o) 19 (o) C I g

(n i 1) ()" (1) T2 4 (0 — )"

Example 13.3. Using the 25, with xo =0, k=1

2 3 4
e =e’ + ez + (e + eo)g + (e 4 3¢° + eo)é—' + (e 4 6e° 4 7¢° +eo)% + o(z?)
s 1
= 1+x+x2+2x3+£x4+o(z4)

The pointwise convergence is slower with respect to the Taylor’ development, this is due to the choice k = 1.

14. Pointwise Convergence

In Numerical Analysis and other applications, it is useful to know a development of a differentiable function f with pointwise
convergence faster of the Taylor’ formula. The aim of this section is to make a such representation for f. Let h(t) be a

differentiable function of class C™ ™ (U), where U is an open set with to € U. By the Taylor’ formula it follows

h(t) = i R (to)  Ern(t)

!
i=0 v

it known that the remainder Er,(t) may be written in the form Ern(t) = & ftto (t — v)"h "+ (1) dv. The following known

theorem, see [1] , estimates the remainder.

Proposition 14.1. If h(”H)(t) satisfies, in (to — d,t0 + 9), § > 0, the inequality m < h<"+1>(t) < M, then , in the same

interval, it is

(t _ to)n+1 (t — to)’n-‘rl
T S PO SMEEEESS frt>to (26)
% < ()" Era(t) < M% fort <to
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In 25, the h-development of f , the remainder Ep , is given by

x —x0)?

Enn = f(x) = (f(wo) + f'(z0)(w = x0) + (kf (wo) + f"(x0)) ( 21

—z0)? ity (e 1—i x—x0)"
+<k2f’<xo>+3kf”<xo>+f<3)<xo>>w+~~-+<Z< .1>(f 10 () )

3! ) n!
i=0

= J(@) = (o) + f'o)e — o) + 1" e T2 4 1 (o) EZI0L gt ) = 0]

3! n!
-y e (; 1) () W) emo — e F D 0)
i=2 j=0
S <_Z WlaZmol s ( ; ) DD @))mo = 1S o))
=Ern—r1n

)

where r, denotes the sum in right side. In order to determinate a value of k such that 0 < |Eu,n| < |ET,n|, consider the
two cases
(i) 0 < Eg,n < Ern, if E7,, > 0. By the 26, it follows 0 < r, < Fr,, and this inequality is satisfied substituting for the

lower bound of Er ,, that is

syl .
0<rn<m% if x > xo @)
ro—x n+1 .
0< (71)"“% < m% if z < 2o
(ii) Ern < Ean <0if Ery, <0 in the same way, using the upper bound of Er,
M%<rn<0 if z > @0
(28)
M (o= zyntt 1)+t 0 i
e < (=)™ r, < if z < o

If n+ 1 is odd, then 27 and 28 became an unique inequality. The following examples show how to use these inequalities.

Example 14.2. Consider the h-polynomial of degree two of f(x) = cosz about zo = 2. The third derivative is sinz and

this satisfies the inequality + < sinz < 1 on the interval (1.8,2.5). So the Er»’ estimate is

l( <E 1@22? ifx > here F 0
B 31 0, where L2 >

(29)

3 3
%% < (=1®Erps < 1(9”3!2) if £ < xo, where Er2 <0

(i) Er,2 > 0 for x > 2, then

that is 0 < Mf’(wo) < Erp2. By the 29, it is 0 < k@f’@) < S(x—2)% so k> G(f;?. Considering together

sin 2)

the inequalities — 3 4558

< k < 0. Then choose k = _%27 the h-polynomial is
(x—2)*, z-2

cosz & cos2 — (sin2)(x — 2) + 3 (fT

(—sin2) — cos2) forx >2

(ii) Er,2 <0 for x < 2, then
k(x — xo)2

Ero < Ego=FErs— 3

f/({Eo) <0
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then 0 < _Ma—w)? < —FEr32. By the 29, 0 < _Ma—w)? < L(Q fx)?’ and 0 < k < —=2=%_ then choose k = 2% the
2 )2 ) 2 12 6F (z0)’ 6 ’
h-polynomial is
(x—2)2(2—x
2 6

cosx & cos2 — (sin2)(z — 2) + (—sin2) — cos 2) for x <2

The following graph immediately verifies that the h-polynomial is faster in pointwise convergence.

JEE A
I
as / Cosfi]
'
- ) . ) Taylar polynomial
E T % 2 3 v 7o
Ay S — — H-polynomial.
. N y
AN !
M, /
-0 - sl

(Computer-generated graph).

Example 14.3. Consider the h-polynomial of degree three of f(x) = xsinz about zo = 0. The fourth derivative is

’

—4cosz + xsinz and this satisfies the inequality —4 < —4cosx + xsinz < —1.3 on the interval (—1,1). So the Er3

estimate 1s

_4% < Ers(z) < —1‘3% if x > 0, where Ep 3 <0 (30)

—4% < (=1)*Ers(z) < —1.3% if x <0, where Ep3 <0
that this

1, 13 4
&% <ET,3(JC)<—2—41: forx <0 andx >0
Because of ET3 <0, impose Er3 < Epz <0 and then
k(x — z0)?
Bra < PE—T (3 4 k(o — 20))f'(@0) + 3@ — 20) " (w0)) < 0 (31)

(i) For x > 2, by the second inequality of 31 it is

k(3 + kx — 20))f(20) + 3(z — 20) " (20)) < 0

in the example 6kx < 0 then k < 0 the first inequality of 31, using the upper bound of Er 3 becomes

—1.3z4
24

M@ =207 (3 4 k(o — 20)) (0) + (2 — 20) " (20)) >

that is

4k((3 4 k(z — 20))(f (z0) + 3(z — 20) f” (z0)) + 1.32° > 0

in the example

24kz +1.32°> > 0 then k> —0.054167x

so k has to satisfy —0.054167 < k < 0, choose k = —0.05z.
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— % &in [x]
Taylor' polynomisl

— — H=polynomial

-t = L ey
) 1 1 ]

(Computer-generated graph)
(i) For z < 0, by the second inequality of 31, in the same way of (i), it follows

6+ 6kx <0 then k>—%
by the first inequality, in the same way of (i),
24kz 4+ 1.32° > 0 then k < —0.05417x (32)
Again choose k = —0.05x then the h-polynomial is
zsinz ~ z° — 0.05z*

The graph above verifies the pointwise convergence of the h-polynomial.

15. Convergence in Square Mean
For an integrable function f(z), with the h-polynomial H,, the square error E, in the interval (a,b), is defined by
b
En :/ (f(z) — Hy,)? dz

It is possible to minimize FE, suitably choosing the k value in the h-polynomial. Next example shows this algorithm and

confronts the result with the Taylor and Fourier polynomials.

100
Nd Taylor'petynomial
wr | - - Ry H-polynomial
T o — — Fourler' trig. pelynomial
- I _
= .
1 ] 3 a 5

(Computer-generated graph)

Example 15.1. Consider f(z) = e* and its H-polynomial to order two about the point o = 2. The square error, in the

interval (0,5), is
(x

Br = [ (7(@) = (oo + ao)o = w0) + L0 e ao) 4 1 (00))) P
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that s

2)2

E; = /0 (" — (e +e*(x—2)+ (I_T(IWZ +e%))dx

= i(—2 +2¢'0 +8¢*(3 4 5k) — 4e” (11 4 5k) + 264(152 + 133k + 33k%))

Find the minimum of Ea(k)

1
Dy Es(k) = 1(4062 — 20" + 264(133 + 66k)
and
DyEs(k)=0  for k= é(fﬂ — 133 + 12¢°) = 1.5876
The h-polynomial, with k = 1.5876, is
2 (ZC - 2)2

e (14 (x —2) + ————(2.5876))

The Taylor’ polynomial is
—9)2
At -2+ & 5 %y
The Fourier’ trigonometric polynomial is
e —1 212 — 2 h—em
o Z e cos(hz) + Z i sin(hz)
h=1 h=1

The graph above shows that the h-polynomial is mean square convergent, in the interval (0,5), better than the other
polynomials. As a numerical check :

by the Taylor’ polynomial, the square error is 2452

by the Fourier’ polynomial, the square error is 14338

by the H- polynomial, the square error is 559.919

16. Partial h-derivatives

The partial derivatives, by the h-derivation, have the following
Definition 16.1. Let f(x,y) be a function on an open set U which possess continuous partial h-derivatives, denoted by
H@122) f(z.y), then
al,a d a d o
OV fa,y) = (57 (5™ ha(0)mo(w,y = 1+ €))emo

where hi(t) = f(x —1+¢€',y) and k = 1.
The definition may be extended to functions with more variables.

Example 16.2.

HED f(a,9) = (NP1~ 14 e )emoley — 14 ico
- (%)1@0(1*‘”(% y—1+e)+ OV @y —1+e))m0

= (@, y) + fO (@, y)

With respect to the vector b — x, a new definition of partial derivatives is
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Definition 16.3. Let f(z,y) be a function of class C™ on an open set U, then

KO0 (b1, ba) = (D) ()11 (0)) 2,y + € (b2 — 9)imo where k(1) = o+ €' (b1 — ), )

Example 16.4.

d d

K f(b,b2) = () (5)°Fla+ €' (b1 = 2),9)) o2,y + €' (b2 = )0
= ()M (b = )40 (@ €02 — ) + (b — )72y + € (B2 — 9))mo

= (by — x)(b2 — y) f TV (b1, b2) + (b1 — )7 (b2 — y) f*V (b1, ba)

The h-derivative and the k-partials are related by the following statement

Proposition 16.5. Let U be an open set in R* and let f € C™(U). Then

H )b — )™ =3 (“) K0 £(b)

1=0
with © = (x1,22), b= (b1,b2) € U.
Proof. Tt is immediate H! f(b)(b — 2) = K9 £(b) + KOV £(b) with h(t) = f(z + €'(b — z)), by induction

H™ 00— )™ = 2 ()" (1)) im0

3

(?) KT (@t (b= 2)))i=o

i=

( ) (KO f(B) + KR S0)

n+]‘ n ’L’L
i )K( )

Il
3 .
¥ HM: &‘&
- O —

=0

The proposition may be extended to functions with more variables.

Example 16.6. Forn =3
Hf(b)(b— ) = K®O £(b) + 3K f(b) + 3K £(b) + KO £ (b)

By Definition 16.1, it is immediate to verify the Schwarz’s property, that is permissible to interchange the order of differen-

tiation

Example 16.7.

H®O f(@,y) = fC(@,y) + F2V(2,y),
d
(g @y = 1)+ 120 @y = 14 e))imo = OV (@,9) + 12D (@) = 2V f(2,y)
to the same result by
HOY f(a,y) = 1OV (2,y),

((%)Q(f(oyl)(x —1+4e,y))imo = fEV(z,y) + F@V(z,y)

= H®Y f(z,y)
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17. Homogeneous Complex Functions

The definition of h-derivative for a complex function f(z) may be rewritten in the form

Definition 17.1.

H(2) = 1(0) = lim LEFHET = 1) = [(2)

v—0 v

where h(t) = f(z + k(' — 1)), t,v,k € C.

It is immediate that f(z) is necessarily continuous. Indeed, by h(t 4+ v) — h(t) = k(h(t + v) — h(t))/v, it follows

lim (A(t +v) — h(1)) = lim (f(z + k(" = 1)) = f(z + k(e — 1))

v—0

=0-K'(t)=0

so, for t = 0, limy_ f(z + k(e” — 1)) = f(2) and f is continuous at z. Let h(t) = f(z + k(e" — 1)) be differentiable at t = 0

and let z =z + 4y, t = t1 + it2. By the Cauchy-Riemann equation, it follows

w005y = (B0, g HEERHEZD), (I )

OV 1) = (Ot = LEE =D O i
that is Hf(z) = kf'(z) and iH®O f(z) = HOD f(2).
Proposition 17.2. Let f(2) be analytic in a region Q0. Then

HPOr() + HO?Pf(z) =0 (33)

Proof. By

HZVf(z) = (g—;f(z FRET D))o = kf(2) +£°f"(2)  and

OV () = (D e+ K = D))eca = =k () = K1 (2)
the 33. O

That is, the h-derivation satisfies the Laplace’s equation.
Example 17.3. Let f(z) = 4xy — i(x — iy)?, then H®O f(2) = kf'(2) + K2 f"(2) = —2ik? + k(—2i(x — iy) + 4y)
The theorem 9.1 has a version for complex homogeneous functions.

Proposition 17.4. Let ¢y : C? — C be the homogencous function of class CP, defined by (z1,22) — 1/1(2—?), with z1 =

r1 +1iy1, 22 = v2 +iy2. Then

(4) D*p(a1,x2) (21,22) % =0 k=1,...,p
7
D*(yr,2) (21,22)F =0 k=1,....p
(n=1,1,0,0) (22} 4 (_;)nqy(Ln=1,0,0) 22} _ orn > 2
w 1Y () + (i) () forn >
w(0,0,n—l,l)(%) + (_i)nw(0,0,l,n—l)(%) =0 forn >2

where P(22) = (w1, w2) = P(y1,y2) = ¥(T1, 91, 72, Y2).
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PTOOf. (7) The partial derivatives with respect to z1 and x2 are

(1000 22y _ L ;22 d (0,0,1,0 022y _ _ 21 .22
) - L2 and 0 () - SR
then (1/)“’0’0‘0)(%)) -z + (1/)<0’0’1‘0>(z—?)) - 2o = 0. By induction DPy(z1,x2) (21, 22)P =
D(DP~Y)(x1, x2) (21, 22) P V) (21, 22) = 0. The second of (i) is proved by the same way.
(#1) The partial derivatives with respect to x1 and z2 are
(n—1,1,0,0) ; #2 T (n), %2 (1,n—1,0,0) ; 22 (=)' (ny, 22
(8 (Z)=Z¢v" () and ¢ (Z)=—"—F—v" ()
21 25 21 21 23 21
summing the partial derivatives, the first of (i) follows. By a same way, the second of (ii). O

18. Power Series
The Cauchy’s Theorem has an extension by the h-derivation. Let H(Q2) be the ring of all holomorphic functions in the
region €.

Proposition 18.1. Let h(t) = f(z + £(e' — 1)) € H(Q) and 7 in Q represents a circle a + re'?, 0 <0 < 2r, then

R (a 1 h(t
n!( - i | - i))nﬂdt (34)

(2)

supposing a = 0

(i2)

K™ (0) _ H™fGz) 1 / flz+ 1" — 1))dt (35)

n! n! T 2mi tntl

Proof. TImmediate by the Cauchy’s formula. O

Example 18.2. The 35, forn =2, f(z) =22, r =1, t = and dt = ie"%d#, is

2.2 2 (et — 1))2
L2, 2y HG KO _ 1 fGerie D)7,
2k k2 2 2 27 J, 3
1 (ZJF%(eew—l))ng_i 2m(1+kz) oz 1
2m (e??)? o k2 ko k2

The following result gives new power series for holomorphic functions, see [8]

Theorem 18.3. Let f(z) € H(Q2) be a holomorphic function in a region Q with zo € Q. Then f can be represented in Q as

the power series centered at zo

-

(n) n-
1@ = 00 ) = o) + 3

n! n
n>0 n>1 =0

(n; 1) ()" P )z = 20)" %0

where h(t) = f(z+ £(e" —1)).

Proof. h(t) is a holomorphic function at ¢ = 0, indeed it is the composition of two holomorphic functions . So

(n)
h(t) is represented by the power series h(t) = f(z + (' — 1)) = 3, -, RO ()" . By a substitution, it is

n!

f(2) =300 R (0) log"(z + 1 — 20), where log is a branch of the logarithm, and recalling log(z — 1 + 20) = O(z — 20) it

n!

follows the 36 O

The next proposition gives a relation for holomorphic functions at each point of a close disk centered at 0.
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Theorem 18.4. Let v be the counterclockwise circle with radius r centered at 0 and f(z+t) be holomorphic on vy and inside,

then there exists ¢, with 0 < ¢ < 2w such that

flz+7re) = w for all z inside (37)
rec —z

Proof. By the Cauchy’s integral formula it follows f(z + w) = ﬁ fw %dt then, for w = 0, supposing ¢ = re*, with
dt = ire’®df, and 0 < 0 < 27

1 27 0

f(z)=— f(z+re”)do

2m Jo

Again, by the Cauchy’s integral formula, f(z) = ﬁ 5 i(j’z) dv with z inside 7 , supposing v = re®®

f2) = == / 7)o g
0

T 2mi rei? — z
1 27 0 .
= — @rew do z inside y
2 J, re? —z
comparing the two forms for f(z)
27 0 0
/ (f(z+re) — %) dd =0 z inside
0

as the function in the integral is continuous, by the mean value theorem, there is at least one point ¢, with 0 < ¢ < 27, such

that 37. O
Example 18.5. Suppose f(z) = 2% and r = 1, the 37 becomes (z + re'®)? = (re’c)?

2 _ (52(1£V5)?
- %z(li\/g)fz‘

Solving the equation by e it follows

ret¢—z "’

e'“ = 22(1£/5), then the identity (z + 2(1 £ V/5)
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