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1. Introduction

A map φ : <n → <m is said to be affine, see [9], when φ(λx1 + (1− λ)x2) = λφ(x1) + (1− λ)φ(x2) for all x1, x2 ∈ <n and

all λ ∈ <. If 0 ≤ λ ≤ 1, then φ is said a linear convex (l.c.) map. Applications of l.c. maps are in game theory and convex

analysis , see [4] or [2]. Some algebraic properties of the class of the affine and l.c. maps are considered. In order to show a

complete description, some propositions, without proofs, are recalled from the paper [2].

It is possible to reduce the linearity of a map to the neighborhood of a fixed point. This new definition allows to considerate

a wide class, really a linear space, Lc(b), of maps which satisfy this property. The analytic form of these functions is obtained

as solution of a first order PDE. As an important obtained result, the space of the continuous linear functionals on <n is a

subspace of Lc(b), this opens the way to many extensions of known properties. The study of the topological properties of

the l.c. maps, with respect to a point, is only started because of dimensiononal limit of the paper.

By l.c. maps a wider definition of differentiability is obtained. Functions, not differentiable at a point, may be l.c. differen-

tiable at the same point. The l.c. maps have a geometrical meaning as cones. The derivatives in a Taylor’s polynomial are

multilinear functions so that the Taylor’s formula may be written by cones.

A new definition for derivatives allows to consider a new development for functions, denoted by h-polynomial. Pointwise

and mean square convergence of the h-polynomial are studied in order to improve the known developments. Applications

of the new derivatives are considered in complex analysis.

2. Multilinear Convex Maps

Definition 2.1. Let A be a subset of <n and let C ⊂ <m, a k-linear convex mapping φ : Ak → C, for ai ∈ A, is defined

by φ(a1, . . . , ai, . . . , ak) = φ(a1, . . . ,
∑r
i=1 λibi, . . . , ak) =

∑r
i=1 λiφ(a1, . . . , bi, . . . , ak), where λi ≥ 0 ,

∑r
i=1 λi = 1, ai =∑r

i=1 λibi, and bi ∈ <n.
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Note that if a vector bj , in the convex combination ai =
∑r
i=1 λibi, is not at A, then φ(a1, . . . , bj , . . . , ak) is not defined.

Proposition 2.2. Let φ : (<n)k → C be a k-linear map, then the restriction of φ to the bounded subset Ak ⊂ (<n)k with

A = {(a1i, . . . , aji, . . . , ani) : sji ≤ aji ≤ rji, j = 1, . . . , n} is not k-linear, instead the restricted map φ is k-linear convex.

Proof. Let
sji
2
< vji < wji < rji, j = 1, . . . , n, , then there exist φ((a1, . . . , vi, . . . , ak) and φ(a1, . . . , wi, . . . , ak) even if

φ(a1, . . . , vi + wi, . . . , ak) does not exist. So φ is not k-linear. Instead, with λ ∈ [0, 1],

φ(a1, . . . , λvi + (1− λ)wi, . . . , ak) = λφ(a1, . . . , vi, . . . , ak) + (1− λ)φ(a1, . . . , wi, . . . , ak)

and φ is k-linear convex.

Example 2.3. Consider the function f(x, y) = 2xy 0 ≤ x ≤ a, 0 ≤ y ≤ b, let a
2
< x1 < x2 < a, then

f(x1, y) = 2x1y and f(x2, y) = 2x2y, even if f(x1 + x2, y) does not exist, so f(x, y) is not a bilinear function. Whereas, for

0 ≤ λ ≤ 1,

f(λx1 + (1− λ)x2, y) = 2(λx1 + (1− λ)x2)y

= 2λx1y + 2(1− λ)x2y

= λf(x1, y) + (1− λ)f(x2, y)

that is, f(x, y) is a convex linear function of each variable separately.

Some elementary properties of the k-linear convex maps follow. Let X be a convex subset of <n, ∀ai ∈ X, α ∈ [0, 1],

αai + (1− α)0 = αai ∈ X. In particular αai ∈ X. Moreover

Φ(a1, . . . , αai, . . . , ak) = Φ(a1, . . . , αai + (1− α)0, . . . , ak)

= αΦ(a1, . . . , ai, . . . , ak) + (1− α)Φ(a1, . . . , 0, . . . , ak) (1)

where 0, a1, . . . , ak are vectors in X.

Proposition 2.4. Let λ ∈ <+ (λ ∈ <−) and λx ∈ X, then αx ∈ X (−αx ∈ X), for α ∈ [0, 1].

Proof. If 0 < β < 1 satisfies α = β ·λ, then αx = β(λx) + (1−β)0, so αx ∈ X. If −α = β ·λ then −αx = β(λx) + (1−β)0

and −αx ∈ X.

Proposition 2.5. Let φ : Ak → C be a k-linear convex map and let φ defined on the vectors 0, a1, . . . , ai, . . . , ak. Then,

with λ ∈ [0, 1],

(i) φ(a1, . . . , λai, . . . , ak) + φ(a1, . . . , (1− λ)ai, . . . , ak) = φ(a1, . . . , ai, . . . , ak) + φ(a1, . . . , 0, . . . , ak).

(ii) 2φ(a1, . . . ,
1
2
ai, . . . , ak) = φ(a1, . . . , ai, . . . , ak) + φ(a1, . . . , 0, . . . , ak).

(iii) φ(a1, . . . , 0, . . . , ak) = 1
2
((φ(a1, . . . , ai, . . . , ak) + φ(a1, . . . ,−ai, . . . , ak).

Proof. (i)

φ(a1, . . . , λai, . . . , ak) = φ(a1, . . . , λai + (1− λ)0, . . . , ak)

= λφ(a1, . . . , ai, . . . , ak) + (1− λ)φ(a1, . . . , 0, . . . , ak)

φ(a1, . . . , (1− λ)ai, . . . , ak) = φ(a1, . . . , (1− λ)ai + λ0, . . . , ak)

= (1− λ)φ(a1, . . . , ai, . . . , ak) + λφ(a1, . . . , 0, . . . , ak)
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(i) is obtained summing the two relations.

(ii) The (i) for λ = 1
2
.

(iii)

φ(a1, . . . , 0, . . . , ak) = φ(a1, . . . , (
1

2
ai +

1

2
(−ai)), . . . , ak)

=
1

2
φ(a1, . . . , ai, . . . , ak) +

1

2
φ(a1, . . . ,−ai, . . . , ak)

3. Free Convex Sets

A first application of k-linear convex maps is the definition of a convex free set. This concept is useful in order to define

algebraic structures as free modules, vector spaces and so on.

Definition 3.1. Let K be a subset of a convex set X in <n and let j : K → X be the insertion of K in X. Denote by A a

subset of <m, then X is free over K if, for every function f : K → A, an unique linear convex mapping φ : X → A exists

such that φ ◦ j = f , as in the following commutative diagram

The next proposition, recalled from [2], extends the 1 and defines a linear convex mapping if an its argument is outside the

body.

Proposition 3.2. Let x1, . . . , xi, . . . , xk be vectors in X and δ ∈ <, then a linear convex mapping φ : Xk → A satisfies

φ(x1, . . . , δxi, . . . , xk) = δφ(x1, . . . , xi, . . . , xk) + (1− δ)φ(x1, . . . , 0, . . . , xk) (2)

Theorem 3.3. Let φ : Xk → Y be a k-linear convex function and X a convex set with 0 ∈ X, then φ(a1, . . . , ak) may be

expressed by a linear combination of φ(xj1 , . . . , xjk ), where xji ∈ X span the vectors ai ∈ X.

In the n-dimensional vector space <n, denote by Sn the convex hull of the vectors {e1, . . . , en} of the standard basis. Sn is a

compact, connected, convex set and its elements may be expressed by convex combinations of the unit vectors {e1, . . . , en}.

Theorem 3.4. The set Sn is free over the standard basis {e1, . . . , en} of <n.

By the Fenchel-Bunt’ theorem, any element a of a compact, connected, convex set A is expressed as a convex combination

of the sequence a1, . . . , an of vectors of A, that is a = ξ1a1 + · · ·+ ξnan. By the theorem 3.4 exists an unique linear convex

function φ such that φ(ξ1e1 + · · · + ξnen) =
∑
ξiai = a =

∑
ξiφ(ei) so, any element a ∈ A may be expressed as a convex

combination of the vectors φ(ei), . . . , φ(en). In other words, any a ∈ A determines a linear convex function φ such that∑
ξiφ(ei) = a.
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Example 3.5. Let A be a convex, connected set in <2. If a = ξ1a1 + ξ2a2, ξi ≥ 0,
∑
ξi = 1, ai = (ai1, ai2) is an element

of A, then, by the theorem 3.4, it follows a = φ(ξ1e1 + ξ2e2) = ξ1a1 + ξ2a2 = ξ1φ(e1) + ξ2φ(e2), where φ : S2 → A is linear

convex. This implies φ(e1) = a1, φ(e2) = a2, and so

φ(x) =

a11 a21

a12 a22

 (x) x ∈ S2

4. Affine and Linear Convex Maps with Respect to a Fixed Point

For an affine or linear convex (l.c.) map, the differentiability condition is showed by the next expression.

Proposition 4.1. An affine or l. c. map φ : <n → C, defined in some neighborhood of a, is differentiable at a if

φ(a) = φ(b)− (b− a) · Oφ(a)− ‖b− a‖ε(t(b− a)) (3)

where a+ t(b−a) is a point in the neighborhood of a, 0 < t < 1, and Oφ(a) the gradient vector. The function ε(t(b−a))→ 0

as t→ 0.

Proof. By the differentiability condition is φ(a+ t(b− a))− φ(a) = t(b− a) · Oφ(a) + ‖t(b− a)‖ε(t(b− a)) by the convex

linearity of φ

φ((1− t)a+ tb)− φ(a) = t(b− a) · Oφ(a) + ‖t(b− a)‖ε(t(b− a))

(1− t)φ(a) + tφ(b)− φ(a) = t(b− a) · Oφ(a) + t‖b− a‖ε(t(b− a))

−φ(a) + φ(b) = (b− a) · Oφ(a) + ‖b− a‖ε(t(b− a))

that is, the 3.

The aim of the next definition is to reduce the linearity of a map to a neighborhood of a fixed point, that is, the property

becomes local.

Definition 4.2. Let A be a subset of <n and let C ⊂ <m, a k-affine mapping φ : Ak → C with respect to the fixed point b =

(b1, . . . , bn), for ai, b ∈ A, is defined by φ(a1, . . . , (1−λ)ai+λb, . . . , ak) = (1−λ)φ(a1, . . . , ai, . . . , ak)+λφ(a1, . . . , b, . . . , ak),

where λ ∈ <. A k-linear convex mapping φ : Ak → C, with respect to the fixed point b, for ai, b ∈ A, is defined by

φ(a1, . . . , (1− λ)ai + λb, . . . , ak) = (1− λ)φ(a1, . . . , ai, . . . , ak) + λφ(a1, . . . , b, . . . , ak), where 0 ≤ λ ≤ 1.

The line segment connecting the points ai and b can be represented in the parametric form ai + λ(b− ai) = (1− λ)ai + λb,

0 ≤ λ ≤ 1. So the definition 4.2 imposes the linearity for any direction at b, that is, φ is linear in a neighborhood of b. By

the above definition, the affinity and the convex linearity is restricted to an arbitrary fixed point, nevertheless a wide class

of maps exists satisfying this property.

Example 4.3. Consider the function f(x, y) = (x − b1)(( y−b2
x−b1

)2 + k) b1, b2, k ∈ < then, it is an affine or l.c.

function with respect to the point (b1, b2). In fact

f((1− t)x+ tb1, (1− t)y + tb2) = (1− t) (k(x− b1)2 + (y − b2)2)

x− b1

= (1− t)f(x, y) + tf(b1, b2)

Observe that f(x, y) is not a linear or l.c. function.
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The affine and l. c. maps, with respect to a fixed point, satisfy an analytic property that characterizes themselves. Let E,F

be normed vector spaces, and let d = b− x be a direction at a fixed point b ∈ E. The directional derivative of φ : E → F in

that direction is denoted by Dφ(x)(d), see, for example, [5], then

Theorem 4.4. Let φ : U ⊆ E → F be an affine or l. c. map, with respect to the point b, of class Cp in the open U , with

‖b− x‖ = 1 , satisfies the relations

(i)

φ(x) = φ(b)−Dφ(x) (b− x) (4)

where the Dφ(x) is the derivative of φ.

(ii)

Dkφ(x)(b− x)(k) = 0 k = 2, . . . , p− 1 (5)

where Dkφ(x) is the k-th derivative of φ at the point x.

(iii) Dφ(x)b−Dφ(x)x = φ(b)− φ(x).

Proof. (i) With 0 < t < 1 and by the convex linearity

Dφ(x)d = lim
t→0

1

t
(φ(x+ t(b− x))− φ(x)

= lim
t→0

1

t
(φ((1− t)x+ t b)− φ(x)

= lim
t→0

1

t
(−tφ(x) + tφ(b))

= −φ(x) + φ(b)

(ii) The Taylor’s formula of φ is φ(b) = φ(x) + 1
1!
Dφ(x)(b−x) + · · ·+ 1

(p−1)!
Dp−1φ(x)(b−x)(p−1) + θ(b−x), where (b−x)(k)

denotes the k-tuple (b− x, . . . , b− x). Comparing 4 and the Taylor’s formula the (ii) follows.

(iii) It is well known, see [5], that the derivative mapping Df(x) : E → F is linear.

Later it is showed that a l.c. function with respect to a point has a non null Hessian matrix even if it satisfies 5. The

following example shows that a linear function satisfies the 4.

Example 4.5. The function φ(x, y) = k(x, y), with k ∈ <, is linear on <2 and

φ(b1, b2) = k(b1, b2) = φ(x, y) + φx(x, y)(b1 − x) + φy(x, y)(b2 − y)

= k(x, y) + k(1, 0)(b1 − x) + k(0, 1)(b2 − y)

= k(x, y) + (kb1 − kx, 0) + (0, kb2 − ky)

= k(b1, b2)

5. Real-valued Affine and Linear Convex Functions of a Real Variable

For functions of one real variable, the theorem 4.4 becomes the following proposition

Proposition 5.1. The affine and l. c. derivable function f : A ⊂ < → <, with respect to a fixed point x0 ∈ A, satisfies

f(x) = f(x0) + f ′(x)(x− x0) (6)

5
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Proof. By the convex linearity, with 0 < t < 1,

f ′(x)(x0 − x) = lim
t→0

1

t
(f(x+ t(x0 − x))− f(x))

= lim
t→0

1

t
(f((1− t)x+ tx0)− f(x))

= lim
t→0

1

t
((1− t)f(x) + tf(x0)− f(x))

= lim
t→0

1

t
(−tf(x) + tf(x0))

= −f(x) + f(x0)

By x0 = x+h, the 6 may be written as f(x+h)− f(x) = f ′(x)h, that is, the affine and l.c. functions , of one variable, with

respect to a point, satisfy ∆f(x) = d f(x). The relation 6 is a simple ODE and its solution is

f(x) = f(x0) + (x− x0)k (7)

with k an arbitrary real constant. The relation 7 characterizes the affine and l.c. functions, so these coincide with the affine

and l.c. functions with respect to a point.

6. Affine and l. c. Functions of Two Variables, with Respect to a
Point

The relation 4 is a very useful tool in order to determinate the wide class of the affine and l. c. maps with respect to a

point . The simplest set of these maps is obtained by two variable functions. For a differentiable function f : <2 → <, the

4 becomes

f(x1, x2) = f(b1, b2)− (b1 − x1)fx1(x1, x2)− (b2 − x2)fx2(x1, x2) (8)

the 8 is a first order PDE, see, for example, [7], and the general integral may be written as

ψ(
f(x1, x2)− f(b1, b2)

x1 − b1
,
f(x1, x2)− f(b1, b2)

x2 − b2
) = 0 (9)

where ψ is an arbitrary function. Another form for the solution is

f(x1, x2) = f(b1, b2) + (x1 − b1)ψ(
x2 − b2
x1 − b1

) (10)

and again ψ is an arbitrary function. The solutions 9 or 10 are linear convex functions with respect to the arbitrary point

(b1, b2). This means that the solutions satisfy the relation of affine or convex linearity for every combination written in the

form λ1(x1, x2) + λ2(b1, b2), ∀x1, x2, b1, b2 ∈ <, λ1 + λ2 = 1 and (b1, b2) is a critical point of f(x1, x2) .

Example 6.1. Choose the function ψ as f(x1,x2)−f(b1,b2)
x1−b1

+ f(x1,x2)−f(b1,b2)
x2−b2

+ 1 = 0 expressing with respect to f(x1, x2), a

solution of 8 is

f(x1, x2) = f(b1, b2)− (x1 − b1)(x2 − b2)

x1 + x2 − (b1 + b2)
(11)

It is straightforward to verify the linear convexity of 11, that is f((1− t)(x1, x2) + t(b1, b2)) = f(b1, b2)− (1−t)(x1−b1)(x2−b2)
x1+x2−(b1+b2)

is equal to (1− t)f(x1, x2) + tf(b1, b2).

6
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Example 6.2. Using the solution of 8 in the form 10, choose as a solution f(x1, x2) = f(b1, b2) + (x1 − b1)e
x2−b2
x1−b1 then

f((1− t)(x1, x2) + t(b1, b2)) = f(b1, b2) + (1− t)(x1 − b1)e
x2−b2
x1−b1 is equal to (1− t)f(x1, x2) + tf(b1, b2).

Example 6.3. The graph of the l.c. function f(x1, x2) = (x2−4)2

x1−3
with respect to the point (3, 4) is

(Computer-generated graph).

The following proposition proves (ii) of 4.4 for two variable functions .

Proposition 6.4. The affine or l.c. function set, with respect to the point (b1, b2), f(x1, x2) = f(b1, b2)+(x1−b1)ψ(x2−b2
x1−b1

),

with ψ an arbitrary, twice differentiable, function, satisfies

(b1 − x1, b2 − x2)TH(x1, x2)(b1 − x1, b2 − x2) = 0 (12)

where H is the Hessian matrix of f .

Proof. By

fx1 = ψ(
x2 − b2
x1 − b1

) + (
b2 − x2
x1 − b1

)ψ′(
x2 − b2
x1 − b1

), fx2 = ψ′(
x2 − b2
x1 − b1

) and

fx1x1 =
(x2 − b2)2

(x1 − b1)3
ψ′′(

x2 − b2
x1 − b1

), fx1x2 =
−x2 + b2
(x1 − b1)2

ψ′′(
x2 − b2
x1 − b1

)

fx2x2 =
1

x1 − b1
ψ′′(

x2 − b2
x1 − b1

) H(x1, x2) =
1

x1 − b1
ψ′′(

x2 − b2
x1 − b1

)

(x2−b2
x1−b1

)2 −x2+b2
x1−b1

−x2+b2
x1−b1

1


it follows 12 .

Observe that the relation (b1 − x1, b2 − x2)TH(x1, x2)(b1 − x1, b2 − x2) = 0 is true for every ψ′′(x2−b2
x1−b1

).

7. Affine and l. c. Functions of n Variables, with Respect to a Point

For a function f : <3 → <, the 4 becomes

f(x1, x2, x3) = f(b1, b2, b3)− (b1 − x1)fx1(x1, x2, x3)− (b2 − x2)fx2(x1, x2, x3)− (b3 − x3)fx3(x1, x2, x3) (13)

the 13 is a first order PDE, and the solution may be written as

f(x1, x2, x3) = f(b1, b2, b3) + (x1 − b1)ψ(
x2 − b2
x1 − b1

,
x3 − b3
x1 − b1

) (14)

where ψ is an arbitrary function.

7
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Example 7.1. The function f(x1, x2, x3) = (x2−b2)(x3−b3)
x1−b1

is l.c. with respect to the point (b1, b2, b3), f((1− t)(x1, x2, x3) +

t(b1, b2, b3)) = (x1 − b1)−1((1− t)(x2 − b2)(x3 − b3)) is equal to (1− t)f(x1, x2, x3) + tf(b1, b2, b3)

A result similar to the proposition 6.4 can be proved.

More in general, let f : U ⊂ <n → < be a differentiable affine or l.c. function with respect to the point b, U an open set,

then the 4 is

f(x) = f(b)− Of(x) (b− x) (15)

where x = x1, . . . , xn, b = b1, . . . , bn ∈ U .

Theorem 7.2. The set Lc(b)(<n,<) of the affine or l.c. functions, with respect to b, is given by

f(x) = f(b) + (x1 − b1)ψ(
x2 − b2
x1 − b1

, . . . ,
xn − bn
x1 − b1

) (16)

where ψ is an arbitrary differentiable function.

Proof. The set Lc(b) is the solution of the PDE 15, in fact, being

fx1 = ψ(z2, . . . , zn)− z2ψz2(z2, . . . , zn)− · · · − znψzn(z2, . . . , zn)

fx2 = ψz2(z2, . . . , zn), fx3 = ψz3(z2, . . . , zn), . . . , fxn = ψzn(z2, . . . , zn)

where zi = xi−bi
x1−b1

, and replacing in equation 15 it follows the identity

f(x)− f(b) = (x1 − b1)(ψ(z2, . . . , zn)− z2ψz2(z2, . . . , zn)− · · · − znψzn(z2, . . . , zn))

+ (x2 − b2)ψz2(z2, . . . , zn) + · · ·+ (xn − bn)ψzn(z2, . . . , zn)

= (x1 − b1)ψ(z2, . . . , zn)

The solution 16 is in Lc(b), indeed

f((1− t)x+ tb) = f((1− t)x1 + tb1, . . . , (1− t)xn + tbn)

= f(b) + ((1− t)x1 + tb1 − b1)ψ

(
(1− t)x2 + tb2 − b2

(1− t)x1 + tb1
, . . . ,

(1− t)xn + tbn − bn
(1− t)x1 + tb1

)
= f(b) + (1− t)(x1 − b1)ψ

(
x2 − b2
x1 − b1

, . . . ,
xn − bn
x1 − b1

)
= (1− t)(f(b) + (x1 − b1)ψ

(
x2 − b2
x1 − b1

, . . . ,
xn − bn
x1 − b1

)
+ t f(b)

= (1− t)f(x) + t f(b)

By the f(1 − t)x + tb) = tf(b) + (1 − t)(x1 − b1)ψ(x2−b2
x1−b1

, . . . , xn−bn
x1−b1

), setting t = 0, it follows f(x) = (x1 −

b1)ψ(x2−b2
x1−b1

, . . . , xn−bn
x1−b1

).

Proposition 7.3. The set Lc(b) is a linear space.

8
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Proof. Let φ1, φ2 ∈ Lc(b), then φ = φ1 + φ2 ∈ Lc(b), indeed

φ((1− t)x+ t b) = φ1((1− t)x+ t b) + φ2((1− t)x+ t b)

= (1− t)φ1(x) + t φ1(b) + (1− t)φ2(x) + t φ2(b)

= (1− t)(φ1(x) + φ2(x)) + t(φ1(x) + φ2(x))

= (1− t)φ(x) + t φ(b)

If λ ∈ <, φ ∈ Lc(b), then λφ((1− t)x+ tb) = λ(1− t)φ(x) + λtφ(b) = (1− t)(λφ(x)) + t(λφ(b)) that is λφ ∈ Lc(b).

Proposition 7.4. Let E, F be normed linear spaces. If Dφ(x) : E → F , with φ ∈ Lc(b)(E,F ), is injective, then φ is

injective too.

Proof. Let x1, x2 ∈ E, with x1 6= x2. It is Dφ(x)(x1) = φ(x1) − φ(0) and Dφ(x)(x2) = φ(x2) − φ(0) and subtracting

Dφ(x)(x1)−Dφ(x)(x2) = φ(x1)− φ(x2). Then Dφ(x)(x1) 6= Dφ(x)(x2) implies φ(x1) 6= φ(x2).

Proposition 7.5. Let φ1 ∈ Lc(b) and φ2 ∈ Lc(φ1(b)), then φ2 ◦ φ1 ∈ Lc(φ2 ◦ φ1(b)).

Proof.

φ2 ◦ φ1((1− t)x+ tb) = φ2((1− t)φ1(x) + tφ1(b))

= (1− t)φ2 ◦ φ1(x) + tφ2 ◦ φ1(b)

8. Some Topological Properties of Lc(b)

Let E, F be normed vector spaces. The continuity definition of a map f : E → F at a point x0 ∈ E may be rewritten as

∀ε > 0, ∀x ∈ I(x0, δ) ⊂ E, ∃tε, 0 < tε ≤ 1, such that 0 < t < tε implies |f(x0 + t(x− x0))− f(x0)| < ε. If the map f is l.c.

with respect to the point x0, then

|f(x0 + t(x− x0))− f(x0)| = |(1− t)f(x0) + tf(x)− f(x0)| = |tf(x)− tf(x0)|

= t|f(x0)− f(x)| = t|Df(x)(x0 − x)| < ε

that is, by restricting enough the open ball I(x0, δ), the derivative is close to zero. The dual space of <n, that is the space

of the continuous linear functionals on <n, is denoted by L(<n,<), see [5]. The link with the space Lc(b)(<n,<) is the

following property

Proposition 8.1. L(<n−1,<) is a subspace of Lc(b).

Proof. It is immediate, for any λ ∈ L(<n,<), by λ((1− t)x+ tb) = (1− t)λ(x) + tλ(b).

Moreover, for any λ ∈ L(<n−1,<), let λ(b2, . . . , bn) = k with k ∈ <, then

λ(x2, . . . , xn) = k − λ(b2, . . . , bn) + λ(x2, . . . , xn)

= k + (x1 − b1)λ(
x2 − b2
x1 − b1

, . . . ,
xn − bn
x1 − b1

)

9
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So the functional λ may have the form of the elements of Lc(b). It is known, see [5], that a linear map λ : E → F is

continuous if and only if there exists C > 0 such that |λx| ≤ C|x| for all x ∈ E. The following proposition extends a similar

property to the l.c. maps with respect to a point.

Proposition 8.2. The l.c. map φ : E → F , with respect to the point b, is continuous if and only if there exists C > 0 such

that |Dφ(x)x| ≤ C|x|, for all x ∈ E.

Proof. Let φ ∈ Lc(b). By the equation 4, it follows Dφ(x)(b − x0) = φ(b) − φ(x0) and subtracting with the 4 it is

Dφ(x)(x−x0) = φ(x)−φ(x0). For |x−x0| < δ, with x, x0 ∈ E, it is |Dφ(x)(x−x0)| = |φ(x)−φ(x0)| ≤ C|x−x0| < Cδ < ε,

where δ < ε
C

then φ(x) is continuous at x0.

Conversely, by the continuity of φ, there exists δ such that, for |x−x0| ≤ δ, it follows |φx−φx0| = |Dφ(x)(x−x0)| < ε < 1.

Then |Dφ(x)( δ(x−x0)|x−x0|
)| = | δ

|x−x0|
Dφ(x)(x−x0)| < 1 for all x− x0 ∈ E , with |x−x0| ≤ δ, namely |Dφ(x)x| ≤ C|x|.

Definition 8.3. Let φ ∈ Lc(b), then |φ|, the norm of φ, is defined by |φ| = |Dφ(x)|, where |Dφ(x)| is the usual norm of the

linear map Dφ(x) with |Dφ(x)| ≤ C|x| , C > 0.

Proposition 8.4. If φ1 ∈ Lc(b) and φ2 ∈ Lc(φ1(b)), then |φ2 ◦ φ1| ≤ |(Dφ2(x)| |φ1| |x|.

Proof. |φ2 ◦ φ1(x)| = |Dφ2(x)(φ1(x))| ≤ |Dφ2(x)| |φ1(x)| ≤ |Dφ2(x)| |φ1| |x|.

Let φ : F → G, with φ ∈ Lc(b) and F a subspace of E. Since φ(x) = φ(0) + Dφ(x)(x), with Dφ(x)x : E → G, then there

exists the extension of φ to the space E, defined by the same φ(x) = φ(0) + Dφ(x)x. Let E?? = Lc(b)(Lc(b)(E,<),<) be

the double dual space of E with respect to the space Lc(b). Functions Φx : E? → < are defined by Φx(φ) = φ(x) for any

φ ∈ E?, x ∈ E.

Proposition 8.5. The map of E → E?? defined by x 7→ Φx is linear , injective and norm preserving, that is |x| = |Φx|.

Proof. Let x1, x2 ∈ E with x1 6= x2, so x1 − x2 6= 0. By the Hahn-Banach theorem there exists Dφ(x) ∈ L(E,<), with

φ ∈ Lc(E,<), such that Dφ(x)(x1−x2) 6= 0, then Dφ(x)(x1) 6= Dφ(x)(x2) so Dφ(x) is injective. By the proposition 7.4 also

φx is injective, that is φx1 6= φx2, this implies that the map x 7→ Φx is injective. By |φx| ≤ |φ| |x| and |Φx(φ)| ≤ |Φx| |φ|,

since |φ(x)| = |Φx(φ)| it follows |φ| |x| = |Φx| |φ| and |Φx| = |x|.

The Linear Extension Theorem, see [5], for a linear map λ : F → G, where E is a normed vector space, F a subspace of E

and G a Banach space, proves that there exists a unique extension of λ to a continuous linear map λ̄ : F̄ → G. Where F̄ is

the closure of F and λ, λ̄ have the same norm. The next theorem is a similar result for the space Lc(b).

Theorem 8.6. Let φ : F → G, with φ ∈ Lc(b), E a normed vector space and F a subspace of E, G a Banach space. The

norm of φ is C. F̄ denotes the closure of F in E. Then there exists a unique extension of φ to a continuous φ̄ : F̄ → G,

with φ̄ ∈ Lc(b), and φ̄ has the same norm C.

Proof. Uniqueness. Suppose x = limxn, with x ∈ F̄ and xn ∈ F . By the continuity of φx it follows limφ(xn) = φ̄x ∈ G,

in fact G is complete. So 
φ̄x = φx if x ∈ F

φ̄x = φ̄x if x ∈ F̄

is an extension of φ. If δ is again an extension, it follows
δx = φx if x ∈ F

δx = φ̄x if x ∈ F̄

10
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so δ = φ̄. Existence. Suppose x = limxn, with x ∈ F̄ , xn ∈ F, φ ∈ Lc(b), b ∈ F . Then

|φ(xn)− φ(xm)| = |φb+Dφ(x)(xn − b)− φb−Dφ(x)(xm − b)|

= |Dφ(x)(xn − b)−Dφ(x)(xm − b)| = |Dφ(x)(xn − xm)| ≤ C|xn − xm|

so {φ(xn)} is a Cauchy sequence in the Banach space G. Denote limφ(xn) = φ̄x. It is immediate that φ̄x is independent of

the sequence xn → x. If x ∈ F and x = limx, then φ̄x = φx. This implies φb = φ̄b because b ∈ F and φ̄ is an extension of

φ. Now one must prove that φ̄ ∈ Lc(b).

φ̄((1− t)x+ t b) = limφ((1− t)xn + t b) = lim((1− t)φ(xn) + tφb)

= (1− t) limφ(xn) + tφb = (1− t)φ̄x+ tφ̄b

so φ̄ is l.c. with respect to b. The norm is a continuous function, then |φ̄x| = lim |φ(xn)| and by |φ(xn)| ≤ C|xn|, it is

|φ̄x| = lim |φxn| ≤ C| limxn| = C|x|, hence |φ̄| = |φ|.

9. The Function ψ(x2

x1
, . . . , xn

x1
)

The x1ψ(x2
x1
, . . . , xn

x1
), with ψ an arbitrary Cn function, is l.c. with respect to the point zero. Then it holds x1ψ =

x1
∂x1ψ
∂x1

+ · · ·+ xn
∂x1ψ
∂xn

and this implies

x1
∂ψ

∂x1
+ · · ·+ xn

∂ψ

∂xn
= 0 (17)

this is a known result by the Euler’s theorem, since the function ψ is homogeneous of degree 0, that is ψ(t x) = ψ(x), t > 0.

The next theorem states a stronger property of ψ.

Theorem 9.1. Let ψ : <n → < be the homogeneous function of class Cp, defined by x→ ψ(x2
x1
, . . . , xn

x1
), with arbitrary ψ.

Then

Dkψ(x) x(k) = 0 k = 1, . . . , p (18)

Proof. Denote by ψ(0,0,...,i,...,0)(x) the partial derivative with respect to the i-th variable.

Dψ(x)x = (−x2
x1
ψ(1,0,...,0) − x3

x1
ψ(0,1,...,0) − · · ·

− xn
x1
ψ(0,0,...,1)) + (

1

x1
ψ(1,0,...,0))x2 + (

1

x1
ψ(0,1,...,0))x3 + · · ·+ (

1

x1
ψ(0,0,...,1))xn

= 0

and Dpψ(x) x(p) = D(Dp−1ψ(x) x(p−1))x, so, by induction, it follows 18

10. Linear Convex Differentiability

The l.c. maps allow an extension of the differentiability’ s definition .

Definition 10.1. Let U open in E, and b ∈ U . Let f : U → F be a map. Then f is linear convex differentiable at b if there

exists a continuous l.c. φ ∈ Lc(b), defined for all sufficiently small h in E, such that limh→0
1
|h| (f(b+h)−f(b)−φ(b+h)) = 0

Proposition 10.2. If f is l.c. differentiable at b, then it has derivative for every direction at b.

11
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Proof. Suppose h = t(x− b), x− b ∈ U and observing that φ(b+ t(x− b)) = tφ(x) it follows

Df(b)(x− b) = lim
t→0

1

|t| (f(b+ t(x− b))− f(b)− φ(b+ t(x− b))

= lim
t→0

1

|t| (f(b+ t(x− b))− f(b)− tφ(x))

= lim
t→0

1

|t| (f(b+ t(x− b))− f(b)) = φ(x)

In particular if x− b = ei , i = 1, . . . , n, it is Df(b)ei = ψ(b+ ei). The definition 10.1 becomes especially useful if a map is

not differentiable at a point.

Example 10.3. The function

f(x, y) =


x2y(y+1)

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

is not differentiable at the point (0, 0), in fact, with d = (d1, d2),

Df(0, 0)d = lim
t→0

1

t
(f(0 + td)− f(0))

=
d21d2
d21 + d22

6= Df(0, 0)e1d1 +Df(0, 0)e2d2

= 0 d1 + 0 d2

In order to f(x, y) is l.c. differentiable at (0, 0), a φ(x, y) ∈ Lc(0, 0) has to exist such that Df(0, 0)((x, y)− (0, 0)) = φ(x, y),

that is

φ(x, y) =
1

t
(f(0 + t(x− 0))− f(0))

=
1

t
(f(t(x), t(y))− f(0))

=
1

t
(f(t(x), t(y)))

=
x2y

x2 + y2

Then φ(x, y) = x xy
x2+y2

= x
y
x

1+ y2

x2

= xψ( y
x

). So the f(x, y) is a l.c. differentiable function at (0, 0). Observe that f(x, y) /∈

Lc(0, 0).

Proposition 10.4. The continuous functions of the space Lc(b) are l.c. differentiable at b.

Proof. By f ∈ Lc(b),

Df(b)(x− b) = lim
t→0

1

|t| (f(b+ t(x− b))− f(b))

= lim
t→0

1

|t| (f(b(1− t) + tx))− f(b)− φ(b+ t(x− b))

= lim
t→0

1

|t| ((1− t)f(b) + tf(x)− f(b))

= f(x)− f(b)

and by f ∈ Lc(b) it follows φ(x) = f(x)− f(b) ∈ Lc(b), so f is l.c. differentiable at b.

12



Franco Fineschi

Example 10.5. The function

f(x, y) =


(x− 1) sin(x−1

y−1
+ 1) if (x, y) 6= (1, 1)

0 if (x, y) = (1, 1)

is not differentiable at the point (1, 1), in fact, with d = (d1, d2), Df(1, 1)d = d1 sin( d1
d2

+ 1) but Df(1, 1)e1 is indeterminate.

Since Df(1, 1)((x, y)− (1, 1)) = (x− 1) sin(x−1
y−1

+ 1) = (x− 1)ψ(x−1
y−1

) = φ(x, y). So the function f(x, y) is l.c. differentiable

at (1, 1).

Proposition 10.6. If f is differentiable at b then f is l.c. differentiable at the same point.

Proof. In the definition 10.1, if f is differentiable at b then φ(b+ h) = Df(b)(x− b) is linear, so Df(b)(x− b) = φ(x) and

f is l.c. differentiable.

Example 10.7. Let the function f(x, y) = y log((x+1)3y), with x > −1, y > 0, be differentiable at b = (b1, b2). The f is l.c.

differentiable at b if there exists φ ∈ Lc(b) such that Df(b1, b2)((x, y)−(b1, b2)) = φ(x, y), that is Df(b1, b2)((x, y)−(b1, b2)) =

limt→0
1
t
(f((b1, b2) + t(x− b1, y − b2))− f(b1, b2).

= lim
t→0

1

t
((b1 + t x+ t b1) log

b1 + t x+ t b1
b2 + t y + t b2

− b1 log
b1
b2

= log((1 + b1)3b2)(y − b2) +
1

1 + b1
(y + b1(y − 4b2) + (−1 + 3x)b2)

= (x− b1)(
1

1 + b1
(3b2 +

y − b2
x− b1

((1 + b1) log((1 + b1)3b2) + 1 + b1)))

= (x− b1)ψ(
y − b2
x− b1

)

= φ(x, y)

then φ(x, y) ∈ Lc(b) and f is l.c. differentiable at b.

Proposition 10.8. If f(x) is l.c.differentiable at b, then it is continuous at b.

Proof. By the l.c. differentiability limt→0
1
t
(f(b+t(x−b)−f(b)) = φ(x) with φ(x) a bounded function . Set 1

|t| (f(b+t(x−

b)−f(b)) = φ(x)+θ(t), then limt→0(f(b+t(x−b)−f(b)) = limt→0(|t|φ(x)+ |t|θ(t)) = 0, so limt→0 f(b+t(x−b)) = f(b).

11. Cones and Derivatives

Recall the known cone’s definition, and apply this to φ(α)(x) = (x1−b1)αψα((x2−b2
x1−b1

)α, . . . , (xn−bn
x1−b1

)α) = 0, where α ∈ <−{0},

ψ is an arbitrary function, with φ(α)(a) = 0. Then φ(α)(x) is a cone if the straight line r = a+ t(a− b), t ∈ <, joining the

two points a = (a1, . . . , an) and b = (b1, . . . , bn), is completely contained in φ(α)(x). Since

φ(α)(a+ t(a− b))) = (a1 + t(a1 − b1))αψ((
a2 + t(a2 − b2)− b2
a1 + t(a1 − b1)− b1

)α, . . . , (
an + t(an − bn)− bn
a1 + t(a1 − b1)− b1

)α)

= (1 + t)α(a1 − b1)αψ(
a2 − b2
a1 − b1

)α, . . . , (
an − bn
a1 − b1

)α)

= (1 + t)αφ(α)(a) = 0

then the line r is in φ(α)(x). The Taylor’s formula may be written by the cones φ(i)(x), i ∈ N − {0}

Proposition 11.1. Let f : U ⊆ <n → < be a function of class Cp in the open U , with ‖x−b‖ = 1, then its Taylor’s formula

may be set in the form

f(x) = f(b) +
1

1!
φ(1)(x) + · · ·+ 1

(p− 1)!
φ(p−1)(x) + θ(x− b). (19)
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Proof. Since Dif(b)(x − b)(i) is multilinear, then Dif(b)(x − b)(i) = φ(i)(x) = (x1 − b1)iψi((
x2−b2
x1−b1

)i, . . . , (xn−bn
x1−b1

)i) with

i = 1, . . . , p− 1.

Example 11.2. The function f(x, y) = x4 + (y − 2)3, with respect to the point b = (b1, b2), has the Taylor’s formula

x4 + (y − 2)3 = b41 + (b2 − 2)3 +
1

1!
(x− b1)(4b31 + 3(

y − b2
x− b1

)(b2 − 2)2)

+
1

2!
(x− b1)26(2b21 + (

y − b2
x− b1

)2(b2 − 2)) +
1

3!
(x− b1)36(4b1 + (

y − b2
x− b1

)3) +
1

4!
(x− b1)4 24

Let c = x+ t(x− b), with t ∈ <, be a point on the straight line connecting x and b, then

Proposition 11.3. Let f : U ⊆ <n → < be a function of class Cp in the open U , it holds

f(c) = f(b) + (1 + t)φ(1)(x) +
1

2!
(1 + t)2φ(2)(x) + · · ·+ 1

(p− 1)!
(1 + t)p−1φ(p−1)(x) + θ1(x− b). (20)

Proof. The function φ(α)(x) = (x1 − b1)αψα((x2−b2
x1−b1

)α, . . . , (xn−bn
x1−b1

)α) satisfies

φ(α)(c) = φ(α)((1 + t)x1 − t b1, . . . , (1 + t)xn − t bn)

= (1 + t)α(x1 − b1)αψα((
(1 + t)(x2 − b2)

(1 + t)(x1 − b1)
)α + · · ·+ (

(1 + t)(xn − bn)

(1 + t)(x1 − b1)
)α)

= (1 + t)αφ(α)(x)

so, substituting for 19, it follows the 20.

The derivatives of a function f may be expressed by the cones φ(i) of the Taylor’s formula 19.

Proposition 11.4. Let f : U ⊆ <n → < be a function of class Cp in the open U , then

1
1

i!
Dif(x)(x− b)(i) =

1

i!

(
i

i

)
φ(i)(x) +

1

(i+ 1)!

(
i+ 1

i

)
φ(i+1)(x) + · · ·+ 1

(p− 1)!

(
p− 1

i

)
φ(p−1)(x) (21)

for i = 1, . . . , p− 1 and n ≥ 2.

Proof. By the Taylor’s formula, it is

1f(x+ t(x− b)) = f(x) + tDf(x)(x− b) +
t2

2!
D2f(x)(x− b)(2) + · · ·+ tp−1

(p− 1)!
Dp−1f(x)(x− b)(p−1) + θ2(x− b) (22)

comparing the right sides of 20 and 22, it follows

f(x) = f(b) +
1

1!
φ(1)(x) + · · ·+ 1

(p− 1)!
φ(p−1)(x) + θ1(x− b)

+ (
t

1!
φ(1)(x) +

2t

2!
φ(2)(x) + · · ·+ (p− 1)t

(p− 1)!
φ(p−1)(x))− tDf(x)(x− b) + θ1(x− b))

+ (
t2

2!

(
2

2

)
φ(2)(x) +

t2

3!

(
3

2

)
φ(3)(x) + · · ·+ t2

(p− 1)!

(
p− 1

2

)
φ(p−1)(x)

− t2

2!
Df(x)(x− b)(2) + θ1(x− b))

+ · · · · · · · · ·

+ (
ti

i!

(
i

i

)
φ(i)(x) +

ti

(i+ 1)!

(
i+ 1

i

)
φ(i+1)(x) + · · ·+ ti

(p− 1)!

(
p− 1

i

)
φ(p−1)(x)

− ti

i!
Dif(x)(x− b)(i) + θ1(x− b))

+ · · · · · · · · ·

+
tp−1

(p− 1)!

(
p− 1

p− 1

)
φ(p−1)(x)− tp−1

(p− 1)!
Dp−1f(x)(x− b)(p−1) + θ1(x− b)− θ2(x− b)

then the 22.
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A corollary of the Proposition 11.4 is

Proposition 11.5. Let f : U ⊆ <n → < be a function of class Cp in the open U , then

1

i!
Dif(x)(x− b)(i) =

1

i!

(
i

i

)
Dif(b)(x− b)(i) +

1

(i+ 1)!

(
i+ 1

i

)
Di+1f(x)(x− b)(i+1)

· · ·+ 1

(p− 1)!

(
p− 1

i

)
Dp−1f(b)(x− b)(p−1)

for i = 1, . . . , p− 1 and x, b ∈ U .

Proof. Immediate by φ(i)(x) = Dif(b)(x− b)(i) if f : U ⊆ <n → < .

The derivatives of the functions φ(i)(x) satisfy some properties

Proposition 11.6. Let φ(i) : <n → < be a function defined by φ(i)(x) = (x1−b1)iψ((x2−b2
x1−b1

)i, . . . , (xn−bn
x1−b1

)i) for an arbitrary

Ck differentiable ψ, with x, b ∈ <n, then

(i) Dφ(i)(x)(x− b) = iφ(i)(x) i = 1, 2, . . .

(ii) Dkφ(i)(x)(x− b)(i) = i(i− 1) · · · (i− (k − 1))φ(i)(x) 0 < k ≤ i

(iii) Dkφ(i)(x)(x− b)(k) = 0 k = i+ 1, . . ..

Proof. (i) By the φ(i)(x+ t(x− b)) = (1 + t)iφ(i) it follows

Dφ(i)(x)(x− b) = lim
t→0

1

t
(φ(i)(x+ t(x− b))− φ(i)(x))

= lim
t→0

1

t
((1 + t)iφ(i)(x)− φ(i)(x))

= lim
t→0

1

t
((1 + it+

i(i− 1)

2
t2 + · · ·+ ti)φ(i)(x)− φ(i)(x))

= lim
t→0

1

t
((it+

i(i− 1)

2
t2 + · · ·+ ti)φ(i)(x))

= iφ(i)(x)

(ii) by induction on k. (iii)For i = 1. The first step is to prove D2φ(1)(x)(x− b)(2) = 0. Denote ψ((x2−b2
x1−b1

), . . . , (xn−bn
x1−b1

)) by

ψ(z) and ψ(1,0,...,0)(z) be the partial derivative with respect to the first variable, then

D2φ(1)(x)(x− b)(2) = φ(1)
x1x1)(x)(x1 − b1)2 + · · ·+ φ(1)

x1xn(x)(x1 − b1)(xn − bn)+

· · ·+ φ(1)
xnxn(x)(xn − bn)2

= ψ(2,0,...,0)(z)(
(x2 − b2)2

x1 − b1
− 2

(x2 − b2)2

x1 − b1
+

(x2 − b2)2

x1 − b1
)+

. . .+ ψ(0,0,...,2)(z)(
(xn − bn)2

x1 − b1
− 2

(xn − bn)2

x1 − b1
+

(xn − bn)2

x1 − b1
)

+ 4ψ(1,1,...,0)(z)(
(x2 − b2)(x3 − b3)

x1 − b1
− (x2 − b2)(x3 − b3)

x1 − b1
)+

· · ·+ 4ψ(0,...,1,1)(z)(
(xn−1 − bn−1)(xn − bn)

x1 − b1
− (xn−1 − bn−1)(xn − bn)

x1 − b1
)

= 0

Now, by induction, Dk−1φ(x)(x− b) = 0 so Dkφ(x)(x− b) = D(Dk−1φ(x)(x− b)) = 0.
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12. h-derivatives

Let f : U ⊆ <2 → < be a function of class Cp in the open U and suppose the point c = (b + t(x − b)) ∈ U , with

t ∈ <, then the function g(t) = f(b + t(x − b)) is defined and it is known that gn(t) =
∑n
k=0

(
n
k

)
f (n−k,k)(b + t(x −

b))(x1 − b1)(n−k)(x2 − b2)k, where f (n−k,k) denote the partial derivative ∂nf

∂xn−k1 ∂xk2
. In general, if f : U ⊆ <r → <, then

gn(t) =
∑
k1,...,kr=n

(
n

k1,...,kr

)
f (k1,...,kr)(b + t(x − b))

∏r
i=1(xi − bi)ki , where

(
n

k1,...,kr

)
= n!∏r

i=1 ki!
and

∑
k1,...,kr=n

denote

the sum over all subsets of nonnegative integer indices k1 through kr such that the sum of all ki is n. By a similar way,

for the function f , it is possible to define new ”derivatives”. In the simplest case of a differentiable f : < → <, the first

derivative may be defined by the finite limt→0
f(x+k(t))−f(x)

t
. This limit has value f ′(x) if k(t) is a differentiable function

with limt→0 k(t) = 0 and limt→0 k
′(t) = 1. Among the functions with this property, the next definition chooses k(t) = et−1.

Definition 12.1.

(i) The h-derivative of the function f : U ⊆ <r → <, r ≥ 2, of class Cp, at the point b, is defined by Hnf(b)(b− x)(n) =

( d
dt

)nh(0) n = 1, 2, . . . , p, where h(t) = f(x+ et(b− x)) and (x+ et(b− x)) ∈ U .

(ii) In the special case f : U ⊆ < → <, the h-derivative at the point x is Hnf(x) = ( d
dt

)nh(0) n = 1, 2, . . . , p, where

h(t) = f(x− 1 + et), with (x− 1 + et) ∈ U .

Next example stresses (i) as a particular case of (ii).

Example 12.2. By the (i), for f(x) at a point b = (b1, b2), setting (x− b) = e1 = (1, 0), is H4f(b)e
(4)
1 = f ′(b) + 7f (2)(b) +

6f (3)(b) + f (4)(b). By the (ii), with f : < → < H4f(x) = f ′(x) + 7f (2)(x) + 6f (3)(x) + f (4)(x). Then, the derivatives are

equal.

Example 12.3. For the elementary function xα,

H xα = αxα−1, H2xα = α(α− 1)xα−2 + αxα−1

H3xα = α(α− 1)(α− 2)xα−2 + 3α(α− 1)xα−2 + αxα−1

that is, Hnxα is a polynomial with n addend and degree α− 1.

It is immediate that

(i) h′(0) = Dbf(b)(b− x) = −Df(b)(x− b) = −g′(0)

(ii) h′′(0) = D2
bf(b)(b− x)(2) = D2f(b)(b− x)(2) +Df(b)(b− x) = −(g2(0) + g′(0))

where Db denotes the derivative with respect to the vector variable b. The higher n-th derivative will be denoted by

hn(0) = Dn
b f(b)(b− x)(n) = Hnf(b)(b− x)(n).

Proposition 12.4. Let ψ : <n → < be the homogeneous function of class Cp, defined by x→ ψ(x2
x1
, . . . , xn

x1
), with arbitrary

ψ. Then Hkψ(x) x(k) = 0 k = 1, . . ..

Proof. By the Theorem 9.1

Hkψ(x) x(k) =
d

dt
ψ(
x2 + etx2
x1 + etx1

, . . . ,
xn + etxn
x1 + etx1

)t=0 = Dkψ(x)x(k) = 0

16
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Proposition 12.5. Let f : U ⊆ <r → < be a function of class Cn in the open U , then

(i) Dbg
n(t)(x− b) = (1− t)gn+1(t)− n gn(t) c = b+ t(x− b) ∈ U

(ii) Dt(Db g
n−1(t)(x− b)) = Dbg

n(t)(x− b)

(iii) Dnf(b)(x− b)(n) = φ(n)(x) = gn(0) = Dbφ
(n−1)(x)(x− b) + (n− 1)φ(n−1)(x)

where n = 1, . . . , p and φ(0)(x) = f(b).

Proof. (i) In order to reduce the proof, only two variables x1, x2 are considered

Dbg
n(t)(x− b) = Db(

n∑
k=0

(
n

k

)
f (n−k,k)(c)(x1 − b1)n−k(x2 − b2)k)(x− b)

= (x1 − b1)

n∑
k=0

(

(
n

k

)
(−(n− k)(x1 − b1)n−k−1(x2 − b2)kf (n−k,k)(c))

+

(
n

k

)
f (n−k+1,k)(c)(1− t)(x1 − b1)n−k(x2 − b2)k)

+ (x2 − b2)

n∑
k=0

(

(
n

k

)
(−k(x2 − b2)k−1(x1 − b1)n−kf (n−k,k)(c))+

+

(
n

k

)
f (n−k,k+1)(c)(1− t)(x1 − b1)n−k(x2 − b2)k)

= −
n∑
k=0

(

(
n

k

)
((n− k)(x1 − b1)n−k(x2 − b2)kf (n−k,k)(c))

+

(
n

k

)
k(x1 − b1)n−k(x2 − b2)kf (n−k,k)(c))

+

n∑
k=0

(

(
n

k

)
f (n−k+1,k)(c)(x1 − b1)n−k−1(x2 − b2)k)

+

(
n

k

)
f (n−k,k+1)(c)(1− t)(x1 − b1)n−k(x2 − b2)k+1)(1− t)

= −
n∑
k=0

(n

(
n

k

)
(x1 − b1)n−k(x2 − b2)kf (n−k,k)(c))

+

n∑
k=0

(
n

k

)
((x1 − b1)n−k+1(x2 − b2)kf (n−k+1,k)(c)

+ (x1 − b1)n−k(x2 − b2)k+1f (n−k,k+1)(c))(1− t)

= −ngn(t) + (

n+1∑
k=0

(
n+ 1

k

)
(x1 − b1)n+1−k(x2 − b2)kf (n+1−k,k)(c))(1− t)

= (1− t)gn+1(t)− n gn(t)

(ii) By (i) Dbg
n−1(t)(x− b) = (1− t)gn(t)− (n− 1)gn−1(t), then

Dt(Dbg
n−1(t)(x− b)) = Dt((1− t)gn(t)− (n− 1)gn−1(t))

= −gn(t) + (1− t)gn+1(t)− (n− 1)gn(t)

= (1− t)gn+1(t)− n gn(t)

= Dbg
n(t)(x− b)

(iii) It is a special case of (i) by t = 0.
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Recall the known functions

Definition 12.6. The k-th elementary symmetric function on the n numbers λ1, . . . , λn is Sk(λ1, . . . , λn) =∑
1≤i1<···<ik≤n

Πk
j=1λij the sum of all

(
n
k

)
k-fold products of distinct items from λ1, . . . , λn.

Particular cases are S1(λ1, . . . , λn) = λ1 + · · ·+ λn and Sn(λ1, . . . , λn) = λ1 · · ·λn.

Proposition 12.7. Let f : U ⊆ <r → < be a function of class Cn in the open U , then

Dnf(b)(x− b)(n) = Dn
b f(b)(x− b)(n) + S1(1, . . . , n− 1)Dn−1

b f(b)(x− b)(n−1)

+ S2(1, . . . , n− 1)Dn−2
b f(b)(x− b)(n−2) + · · ·+ Sn−1(1, . . . , n− 1)Dbf(b)(x− b)

= (Dbf(b)(x− b) + 1) ◦ (Dbf(b)(x− b) + 2) ◦ · · · ◦ (Dbf(b)(x− b) + n− 1) +Dn
b f(b)(x− b)(n)

where Dbf(b)(x− b) ◦Dbf(b)(x− b) = D2
bf(b)(x− b)(2).

Proof. If n = 1 it immediate that Df(b)(x− b) = Dbf(b)(x− b). By induction and using (iii) of Proposition 12.4

Dn+1f(b)(x− b)(n+1) = g(n+1)(0) = n gn(0) +Dbg
n(0)(x− b)

= n(Dn
b f(b)(x− b)(n) + S1(1, . . . , n− 1)Dn−1

b f(b)(x− b)(n−1) + · · ·

· · ·+ Sn−1(1, . . . , n− 1)Dbf(b)(x− b)) +Db(D
n
b f(b)(x− b)(n)

+ S1(1, . . . , n− 1)Dn−1
b f(b)(x− b)(n−1) + · · ·

· · ·+ Sn−1(1, . . . , n− 1)Dbf(b)(x− b))(x− b)

= Dn+1
b f(b)(x− b)(n+1) + (n+ S1(1, . . . , n− 1))Dn

b f(b)(x− b)(n)

+ (nS1(1, . . . , n− 1) + S2(1, . . . , n− 1))Dn−1
b f(b)(x− b)(n−1) + · · ·

· · ·+ (nSn−2(1, . . . , n− 1) + Sn−1(1, . . . , n− 1))D2
bf(b)(x− b)(2)

+ nSn−1(1, . . . , n− 1)Dbf(b)(x− b)

= Dn+1
b f(b)(x− b)(n+1) + S1(1, . . . , n)Dn

b f(b)(x− b)(n)

+ S2(1, . . . , n)Dn−1
b f(b)(x− b)(n−1) + · · ·+ Sn(1, . . . , n)Dbf(b)(x− b)

By the h-derivatives the Taylor’s formula has the following form

Proposition 12.8. Let f : U ⊆ <r → < be a function of class Cn in the open U and b+ t(x− b) ∈ U , then

f(x) = f(b) + (
1

1!
+

n−1∑
i=1

1

(i+ 1)!
Si(1, . . . , i))Dbf(b)(x− b)

+ (
1

2!
+

n−2∑
i=1

1

(i+ 2)!
Si(1, . . . , i, i+ 1))D2

bf(b)(x− b)(2) + · · ·

· · ·+ (
1

j!
+

n−j∑
i=1

1

(i+ j)!
Si(1, . . . , i, i+ 1, . . . , i+ j − 1))Dj

bf(b)(x− b)(j) + · · ·

· · ·+ 1

n!
Dn
b f(b)(x− b)(n) + θ(x− b)
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Proof. In the Taylor’s formula

f(x) = f(b) +
1

1!
Df(b)(x− b) + · · ·+ 1

n!
Dnf(b)(x− b)(n) + θ(x− b)

by the Proposition 12.7, replacing the derivatives

f(x) = f(b) + (S0(0) +
1

2!
S1(1) +

1

3!
S2(1, 2) + · · ·+ 1

n!
Sn−1(1, . . . , n− 1))Dbf(b)(x− b)

+ (
1

2!
S0(1) +

1

3!
S1(1, 2) +

1

4!
S2(1, 2, 3) + · · ·+ 1

n!
Sn−2(1, . . . , n− 1))D2

bf(b)(x− b)(2) + · · ·+ 1

n!
Dn
b f(b)(x− b)(n)

the new formula follows.

Example 12.9. For n = 2 it is f(x) = f(b) + 3
2
Dbf(b)(x− b) + 1

2
D2
bf(b)(x− b)(2) + θ(x− b) for n = 4

f(x) =f(b) +
25

12
Dbf(b)(x− b) +

35

24
D2
bf(b)(x− b)(2) +

10

24
D3
bf(b)(x− b)(3) +

1

24
D4
bf(b)(x− b)(4) + θ(x− b)

13. New Polynomial for f(x)

In this section, by the h-derivatives, a polynomial of degree n for f about the point b, is obtained. The following is a known

Lemma, see [6]

Proposition 13.1. Let f : U ⊆ <r → < be a function of class Cn in the open U , then a ξ exists, with 0 ≤ ξ ≤ 1, such that

f(1) =
∑n−1
ν=0

f(ν)(0)
ν!

+ f(n)(ξ)
n!

, where fν(t) = ( d
dt

)νf(t) and the closed unit interval 0 ≤ t ≤ 1 in U .

It follows

Theorem 13.2. Let f : U ⊆ <r → < be a function of class Cn in the open U , t ∈ [0, 1], and (x+ et(b− x)) ∈ U , then

f(x+ e(b− x)) = f(b) +

n−1∑
ν=1

H(ν)f(b)(b− x)(ν)

ν!
+ θ(b− x) (23)

where r ≥ 2, H(ν)f(b)(b− x)(ν) = h(ν)(t) with h(t) = f(x+ et(b− x)). For r = 1

f(x+
1

k
(e− 1)) = f(x) +

n−1∑
ν=1

h(ν)(0)

ν!
+ θ(x) (24)

where h(t) = f(x+ 1
k

(et − 1)), k ∈ {< − 0} and (x+ 1
k

(et − 1)) ∈ U .

Proof. By the lemma 13.1, applied to the function h(t) = f(x + et(b − x)) or, in the particular case, to the function

h(t) = f(x+ 1
k

(et − 1)) , it is h(1) = h(0) +
∑n−1
ν=1

h(ν)(0)
ν!

+ h(n)(ξ)
n!

then the polynomial 23 and 24.

By the 24, for t→ 0,

f(x+
1

k
(et − 1)) = f(x) + t

f ′(x))

k
+
t2

2!
(
f ′(x)

k
+
f ′′(x))

k2

+
t3

3!
(
f ′(x)

k
+ 3

f ′′(x)

k2
+
f (3)(x)

k3
) +

t4

4!
(
f ′(x)

k
+ 7

f ′′(x0)

k2
+ 6

f (3)(x)

k3
+
f (4)(x)

k4
) + ◦(t4)

or equivalently

f(x) = f(x0) + µ
f ′(x))

k
+
µ2

2!
(
f ′(x)

k
+
f ′′(x))

k2
)

+
µ3

3!
(
f ′(x)

k
+ 3

f ′′(x)

k2
+
f (3)(x)

k3
) +

µ4

4!
(
f ′(x)

k
+ 7

f ′′(x0)

k2
+ 6

f (3)(x)

k3
+
f (4)(x)

k4
)) + ◦(µ4)
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where µ = log(k(x−x0)−1). By a similar way, starting from h(t) = f(x−1+kt), k > 0, the same development is obtained.

It is log(k(x− x0)− 1) = O(k(x− x0)). Moreover, by the Leibtniz’s formula

D(n)r(t)s(t) =

n∑
i=0

(
n

i

)
r(n−i)s(k),

suppose r(t) = f ′(x0 + 1
k

(et − 1)) and s(t) = et, so

hn(t) =

n−1∑
i=0

(
n− 1

i

)
(f ′)(n−1−i)(et)(i) = et

n−1∑
i=0

(
n− 1

i

)
(f ′)(n−1−i)

and

hn(0) = (

n−1∑
i=0

(
n− 1

i

)
(f ′)(n−1−i)(t))t=0

then the final form

f(x) = f(x0) + f ′(x0)(x− x0) + (kf ′(x0) + f ′′(x0))
(x− x0)2

2!

+ (k2f ′(x0) + 3kf ′′(x0) + f (3)(x0))
(x− x0)3

3!
+ · · ·+ (

n−1∑
i=0

(
n− 1

i

)
(f ′)(n−1−i)(t))t=0

(x− x0)n

n!
+ ◦(x− x0)n

(25)

Example 13.3. Using the 25, with x0 = 0 , k = 1

ex = e0 + e0x+ (e0 + e0)
x2

2!
+ (e0 + 3e0 + e0)

x3

3!
+ (e0 + 6e0 + 7e0 + e0)

x4

4!
+ ◦(x4)

= 1 + x+ x2 +
5

6
x3 +

15

24
x4 + ◦(x4)

The pointwise convergence is slower with respect to the Taylor’ development, this is due to the choice k = 1.

14. Pointwise Convergence

In Numerical Analysis and other applications, it is useful to know a development of a differentiable function f with pointwise

convergence faster of the Taylor’ formula. The aim of this section is to make a such representation for f . Let h(t) be a

differentiable function of class Cn+1(U), where U is an open set with t0 ∈ U . By the Taylor’ formula it follows

h(t) =
n∑
i=0

h(i)(t0)

i!
+ ET,n(t)

it known that the remainder ET,n(t) may be written in the form ET,n(t) = 1
n!

∫ t
t0

(t− v)nh(n+1)(v) dv. The following known

theorem, see [1] , estimates the remainder.

Proposition 14.1. If h(n+1)(t) satisfies, in (t0 − δ, t0 + δ), δ > 0, the inequality m ≤ h(n+1)(t) ≤ M , then , in the same

interval, it is

m
(t− t0)n+1

(n+ 1)!
≤ ET,n(t) ≤M (t− t0)n+1

(n+ 1)!
for t > t0

m
(t0 − t)n+1

(n+ 1)!
≤ (−1)n+1ET,n(t) ≤M (t0 − t)n+1

(n+ 1)!
for t < t0

(26)
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In 25, the h-development of f , the remainder EH,n is given by

EH,n = f(x)− (f(x0) + f ′(x0)(x− x0) + (kf ′(x0) + f ′′(x0))
(x− x0)2

2!

+ (k2f ′(x0) + 3kf ′′(x0) + f (3)(x0))
(x− x0)3

3!
+ · · ·+ (

n−1∑
i=0

(
n− 1

i

)
(f ′)(n−1−i)(t))t=0

(x− x0)n

n!

= f(x)− (f(x0) + f ′(x0)(x− x0) + f ′′(x0
(x− x0)2

2!
+ f (3)(x0))

(x− x0)3

3!
+ · · · f (n)(x0))

(x− x0)n

n!
)

− (

n∑
i=2

ki(x− x0)i

i!
((

i−1∑
j=0

(
i− 1

j

)
(f ′)(i−1−j)(t))t=0 −

1

ki
f (i−1)(x0)))

= ET,n − (

n∑
i=2

ki(x− x0)i

i!
((

i−1∑
j=0

(
i− 1

j

)
(f ′)(i−1−j)(t))t=0 −

1

ki
f (i−1)(x0)))

= ET,n − rn

where rn denotes the sum in right side. In order to determinate a value of k such that 0 < |EH,n| < |ET,n|, consider the

two cases

(i) 0 < EH,n < ET,n, if ET,n > 0. By the 26, it follows 0 < rn < ET,n and this inequality is satisfied substituting for the

lower bound of ET,n, that is 
0 < rn < m (x−x0)n+1

(n+1)!
if x > x0

0 < (−1)n+1rn < m (x0−x)n+1

(n+1)!
if x < x0

(27)

(ii) ET,n < EH,n < 0 if ET,n < 0 in the same way, using the upper bound of ET,n
M (x−x0)n+1

(n+1)!
< rn < 0 if x > x0

M (x0−x)n+1

(n+1)!
< (−1)n+1rn < 0 if x < x0

(28)

If n+ 1 is odd, then 27 and 28 became an unique inequality. The following examples show how to use these inequalities.

Example 14.2. Consider the h-polynomial of degree two of f(x) = cosx about x0 = 2. The third derivative is sinx and

this satisfies the inequality 1
2
< sinx < 1 on the interval (1.8, 2.5). So the ET,2’ estimate is


1
2

(x−2)3

3!
< ET,2 < 1 (x−2)3

3!
if x > x0, where ET,2 > 0

1
2

(2−x)3
3!

< (−1)3ET,2 < 1 (x−2)3

3!
if x < x0, where ET,2 < 0

(29)

(i) ET,2 > 0 for x > 2, then

0 < EH,2 = (f(x)− f(x0)− (x− x0)f ′(x0)− (x− x0)2

2!
f ′′(x0))− k(x− x0)2

2
f ′(x0)

= ET,2 −
k(x− x0)2

2
f ′(x0) < ET,2

that is 0 < k(x−x0)2
2

f ′(x0) < ET,2. By the 29, it is 0 < k (x−2)2

2
f ′(2) < 1

12
(x − 2)3, so k > x−2

6(− sin 2)
. Considering together

the inequalities − x−2
5.4558

< k < 0. Then choose k = −x−2
6

, the h-polynomial is

cosx ≈ cos 2− (sin 2)(x− 2) +
(x− 2)2

2
(−x− 2

6
(− sin 2)− cos 2) for x > 2

(ii) ET,2 < 0 for x < 2, then

ET,2 < EH,2 = ET,2 −
k(x− x0)2

2
f ′(x0) < 0
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then 0 < − k(x−x0)
2

2
< −ET,2. By the 29, 0 < − k(x−x0)

2

2
< 1

12
(2 − x)3 and 0 < k < − 2−x

6f ′(x0)
, then choose k = 2−x

6
, the

h-polynomial is

cosx ≈ cos 2− (sin 2)(x− 2) +
(x− 2)2

2
(
2− x

6
(− sin 2)− cos 2) for x < 2

The following graph immediately verifies that the h-polynomial is faster in pointwise convergence.

(Computer-generated graph).

Example 14.3. Consider the h-polynomial of degree three of f(x) = x sinx about x0 = 0. The fourth derivative is

−4 cosx + x sinx and this satisfies the inequality −4 < −4 cosx + x sinx < −1.3 on the interval (−1, 1). So the ET,3’

estimate is 
−4x

4

4!
< ET,3(x) < −1.3x

4

4!
if x > 0, where ET,3 < 0

−4 (−x)4
4!

< (−1)4ET,3(x) < −1.3 (−x)4
4!

if x < 0, where ET,3 < 0

(30)

that this

−1

6
x4 < ET,3(x) < −1.3

24
x4 for x < 0 and x > 0

Because of ET,3 < 0, impose ET,3 < EH,3 < 0 and then

ET,3 <
k(x− x0)2

6
((3 + k(x− x0))f ′(x0) + 3(x− x0)f ′′(x0)) < 0 (31)

(i) For x > 2, by the second inequality of 31 it is

k((3 + k(x− x0))f ′(x0) + 3(x− x0)f ′′(x0)) < 0

in the example 6kx < 0 then k < 0 the first inequality of 31, using the upper bound of ET,3 becomes

k(x− x0)2

6
((3 + k(x− x0))f ′(x0) + 3(x− x0)f ′′(x0)) >

−1.3x4

24

that is

4k((3 + k(x− x0))(f ′(x0) + 3(x− x0)f ′′(x0)) + 1.3x2 > 0

in the example

24kx+ 1.3x2 > 0 then k > −0.054167x

so k has to satisfy −0.054167 < k < 0, choose k = −0.05x.
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(Computer-generated graph)

(ii) For x < 0, by the second inequality of 31, in the same way of (i), it follows

6 + 6kx < 0 then k > − 1

x

by the first inequality, in the same way of (i),

24kx+ 1.3x2 > 0 then k < −0.05417x (32)

Again choose k = −0.05x then the h-polynomial is

x sinx ≈ x2 − 0.05x4

The graph above verifies the pointwise convergence of the h-polynomial.

15. Convergence in Square Mean

For an integrable function f(x), with the h-polynomial Hn, the square error En in the interval (a, b), is defined by

En =

∫ b

a

(f(x)−Hn)2 dx

It is possible to minimize En suitably choosing the k value in the h-polynomial. Next example shows this algorithm and

confronts the result with the Taylor and Fourier polynomials.

(Computer-generated graph)

Example 15.1. Consider f(x) = ex and its H-polynomial to order two about the point x0 = 2. The square error, in the

interval (0, 5), is

E2 =

∫ b

a

(f(x)− (f(x0 + f ′(x0)(x− x0) +
(x− x0)2

2
(kf ′(x0) + f ′′(x0)))2dx
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that is

E2 =

∫ 5

0

(ex − (e2 + e2(x− 2) +
(x− 2)2

2
(ke2 + e2))2dx

=
1

4
(−2 + 2e10 + 8e2(3 + 5k)− 4e7(11 + 5k) +

5

3
e4(152 + 133k + 33k2))

Find the minimum of E2(k)

DkE2(k) =
1

4
(40e2 − 20e7 +

5

3
e4(133 + 66k)

and

DkE2(k) = 0 for k =
1

66e2
(−24− 133e2 + 12e5) = 1.5876

The h-polynomial, with k = 1.5876, is

e2(1 + (x− 2) +
(x− 2)2

2
(2.5876))

The Taylor’ polynomial is

e2(1 + (x− 2) +
(x− 2)2

2
)

The Fourier’ trigonometric polynomial is

e2π − 1

2π
+

2∑
h=1

1

π

e2π − 1

1 + h2
cos(hx) +

2∑
h=1

h

π

−e2π + 1

1 + h2
sin(hx)

The graph above shows that the h-polynomial is mean square convergent, in the interval (0, 5), better than the other

polynomials. As a numerical check :

by the Taylor’ polynomial, the square error is 2452

by the Fourier’ polynomial, the square error is 14338

by the H- polynomial, the square error is 559.919

16. Partial h-derivatives

The partial derivatives, by the h-derivation, have the following

Definition 16.1. Let f(x, y) be a function on an open set U which possess continuous partial h-derivatives, denoted by

H(α1,α2)f(x, y), then

H(α1,α2)f(x, y) = (
d

dt
)α2(((

d

dt
)α1h1(t))t=0(x, y − 1 + et))t=0

where h1(t) = f(x− 1 + et, y) and k = 1.

The definition may be extended to functions with more variables.

Example 16.2.

H(2,1)f(x, y) = (
d

dt
)1(((

d

dt
)2f(x− 1 + et, y))t=0(x, y − 1 + et))t=0

= (
d

dt
)1(f (1,0)(x, y − 1 + et) + f (2,0)(x, y − 1 + et))t=0

= f (1,1)(x, y) + f (2,1)(x, y)

With respect to the vector b− x, a new definition of partial derivatives is
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Definition 16.3. Let f(x, y) be a function of class Cn on an open set U , then

K(α1,α2)f(b1, b2) = (
d

dt
)α2(((

d

dt
)α1k1(0))(x, y + et(b2 − y)))t=0 where k1(t) = f(x+ et(b1 − x), y).

Example 16.4.

K(2,1)f(b1, b2) = (
d

dt
)1(((

d

dt
)2f(x+ et(b1 − x), y))t=0(x, y + et(b2 − y)))t=0

= (
d

dt
)1((b1 − x)f (1,0)(x, y + et(b2 − y)) + (b1 − x)2f (2,0)(x, y + et(b2 − y)))t=0

= (b1 − x)(b2 − y)f (1,1)(b1, b2) + (b1 − x)2(b2 − y)f (2,1)(b1, b2)

The h-derivative and the k-partials are related by the following statement

Proposition 16.5. Let U be an open set in <2 and let f ∈ Cn(U). Then

Hnf(b)(b− x)(n) =

n∑
i=0

(
n

i

)
K(n−i,i)f(b)

with x = (x1, x2), b = (b1, b2) ∈ U .

Proof. It is immediate H1f(b)(b− x) = K(1,0)f(b) +K(0,1)f(b) with h(t) = f(x+ et(b− x)), by induction

Hn+1f(b)(b− x)(n+1) =
d

dt
((
d

dt
)nh(t))t=0

=
d

dt
(

n∑
i=0

(
n

i

)
K(n−i,i)f(x+ et(b− x)))t=0

=

n∑
i=0

(
n

i

)
(K(n−i+1,i)f(b) +K(n−i,i+1)f(b))

=

n+1∑
i=0

(
n+ 1

i

)
K(n+1−i,i)f(b)

The proposition may be extended to functions with more variables.

Example 16.6. For n = 3

H3f(b)(b− x)(3) = K(3,0)f(b) + 3K(2,1)f(b) + 3K(1,2)f(b) +K(0,3)f(b)

By Definition 16.1, it is immediate to verify the Schwarz’s property, that is permissible to interchange the order of differen-

tiation

Example 16.7.

H(2,0)f(x, y) = f (1,0)(x, y) + f (2,0)(x, y),

(
d

dt
(f (1,0)(x, y − 1 + et) + f (2,0)(x, y − 1 + et))t=0 = f (1,1)(x, y) + f (2,1)(x, y) = H(2,1)f(x, y)

to the same result by

H(0,1)f(x, y) = f (0,1)(x, y),

((
d

dt
)2(f (0,1)(x− 1 + et, y))t=0 = f (1,1)(x, y) + f (2,1)(x, y)

= H(2,1)f(x, y)
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17. Homogeneous Complex Functions

The definition of h-derivative for a complex function f(z) may be rewritten in the form

Definition 17.1.

Hf(z) = h′(0) = lim
v→0

f(z + k(et+v − 1))− f(z)

v

where h(t) = f(z + k(et − 1)), t, v, k ∈ C.

It is immediate that f(z) is necessarily continuous. Indeed, by h(t+ v)− h(t) = k(h(t+ v)− h(t))/v, it follows

lim
v→0

(h(t+ v)− h(t)) = lim
v→0

(f(z + k(et+v − 1))− f(z + k(et − 1))

= 0 · h′(t) = 0

so, for t = 0, limv→0 f(z + k(ev − 1)) = f(z) and f is continuous at z. Let h(t) = f(z + k(et − 1)) be differentiable at t = 0

and let z = x+ iy, t = t1 + it2. By the Cauchy-Riemann equation, it follows

H(1,0)f(z) = (
∂h(t)

∂t1
)t=0 = k(

∂f(z + k(et − 1))

∂x
)t=0 = k

∂f(z)

∂x
= kf ′(z)

H(0,1)f(z) = (
∂h(t)

∂t2
)t=0 = k(

∂f(z + (et − 1))

∂y
)t=0 = k

∂f(z)

∂y
= kif ′(z)

that is Hf(z) = kf ′(z) and iH(1,0)f(z) = H(0,1)f(z).

Proposition 17.2. Let f(z) be analytic in a region Ω. Then

H(2,0)f(z) +H(0,2)f(z) = 0 (33)

Proof. By

H(2,0)f(z) = (
∂2

∂t21
f(z + k(et1+it2 − 1)))t=0 = kf ′(z) + k2f ′′(z) and

H(0,2)f(z) = (
∂2

∂t22
f(z + k(et1+it2 − 1)))t=0 = −kf ′(z)− k2f ′′(z)

the 33.

That is, the h-derivation satisfies the Laplace’s equation.

Example 17.3. Let f(z) = 4xy − i(x− iy)2, then H(2,0)f(z) = kf ′(z) + k2f ′′(z) = −2ik2 + k(−2i(x− iy) + 4y)

The theorem 9.1 has a version for complex homogeneous functions.

Proposition 17.4. Let ψ : C2 → C be the homogeneous function of class Cp, defined by (z1, z2) → ψ( z2
z1

), with z1 =

x1 + iy1, z2 = x2 + iy2. Then

(i)


Dkψ(x1, x2) (z1, z2)(k) = 0 k = 1, . . . , p

Dkψ(y1, y2) (z1, z2)(k) = 0 k = 1, . . . , p

(ii)


ψ(n−1,1,0,0)( z2

z1
) + (−i)nψ(1,n−1,0,0)( z2

z1
) = 0 for n ≥ 2

ψ(0,0,n−1,1)( z2
z1

) + (−i)nψ(0,0,1,n−1)( z2
z1

) = 0 for n ≥ 2

where ψ( z2
z1

) = ψ(x1, x2) = ψ(y1, y2) = ψ(x1, y1, x2, y2).
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Proof. (i) The partial derivatives with respect to x1 and x2 are

ψ(1,0,0,0)(
z2
z1

) =
1

z2
ψ′(

z2
z1

) and ψ(0,0,1,0)(
z2
z1

) = − z1
z22
ψ′(

z2
z1

)

then (ψ(1,0,0,0)( z2
z1

)) · z1 + (ψ(0,0,1,0)( z2
z1

)) · z2 = 0. By induction Dpψ(x1, x2) (z1, z2)(p) =

D(Dp−1ψ(x1, x2) (z1, z2)(p−1))(z1, z2) = 0. The second of (i) is proved by the same way.

(ii) The partial derivatives with respect to x1 and x2 are

ψ(n−1,1,0,0)(
z2
z1

) =
i

zn2
ψ(n)(

z2
z1

) and ψ(1,n−1,0,0)(
z2
z1

) = − (−i)1−n

zn2
ψ(n)(

z2
z1

)

summing the partial derivatives, the first of (ii) follows. By a same way, the second of (ii).

18. Power Series

The Cauchy’s Theorem has an extension by the h-derivation. Let H(Ω) be the ring of all holomorphic functions in the

region Ω.

Proposition 18.1. Let h(t) = f(z + 1
k

(et − 1)) ∈ H(Ω) and γ in Ω represents a circle a+ reiθ, 0 ≤ θ ≤ 2π, then

(i)
h(n)(a)

n!
=

1

2πi

∫
γ

h(t)

(t− a)n+1
dt (34)

supposing a = 0

(ii)
h(n)(0)

n!
=
H(n)f(z)

n!
=

1

2πi

∫
γ

f(z + 1
k

(et − 1))

tn+1
dt (35)

Proof. Immediate by the Cauchy’s formula.

Example 18.2. The 35, for n = 2, f(z) = z2, r = 1, t = eiθ and dt = ieiθdθ, is

1

2
(
2z

k
+

2

k2
) =

H2(z2)

2
=
h2(0)

2
=

1

2πi

∫
γ

(z + 1
k

(et − 1))2

t3
dt

=
1

2π

∫ 2π

0

(z + 1
k

(ee
iθ

− 1))2

(eiθ)2
dθ =

1

2π
· 2π(1 + kz)

k2
=
z

k
+

1

k2

The following result gives new power series for holomorphic functions, see [8]

Theorem 18.3. Let f(z) ∈ H(Ω) be a holomorphic function in a region Ω with z0 ∈ Ω. Then f can be represented in Ω as

the power series centered at z0

f(z) =
∑
n≥0

h(n)(0)

n!
(z − z0)n = f(z0) +

∑
n≥1

1

n!
(

n−1∑
k=0

(
n− 1

k

)
(f ′)(n−1−k)(z0))(z − z0)n (36)

where h(t) = f(z + 1
k

(et − 1)).

Proof. h(t) is a holomorphic function at t = 0, indeed it is the composition of two holomorphic functions . So

h(t) is represented by the power series h(t) = f(z + 1
k

(et − 1)) =
∑
n≥0

h(n)(0)
n!

(t)n . By a substitution, it is

f(z) =
∑
n≥0

h(n)(0)
n!

logn(z + 1 − z0), where log is a branch of the logarithm, and recalling log(z − 1 + z0) = O(z − z0) it

follows the 36

The next proposition gives a relation for holomorphic functions at each point of a close disk centered at 0.
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Theorem 18.4. Let γ be the counterclockwise circle with radius r centered at 0 and f(z+t) be holomorphic on γ and inside,

then there exists c, with 0 < c < 2π such that

f(z + reic) =
reicf(reic)

reic − z for all z inside γ (37)

Proof. By the Cauchy’s integral formula it follows f(z + w) = 1
2πi

∫
γ

f(z+t)
t−w dt then, for w = 0, supposing t = reiθ, with

dt = ireiθdθ, and 0 ≤ θ ≤ 2π

f(z) =
1

2π

∫ 2π

0

f(z + reiθ) dθ

Again, by the Cauchy’s integral formula, f(z) = 1
2πi

∫
γ

f(v)
v−z dv with z inside γ , supposing v = reiθ

f(z) =
1

2πi

∫ 2π

0

f(reiθ)

reiθ − z ire
iθ dθ

=
1

2π

∫ 2π

0

f(reiθ)

reiθ − z re
iθ dθ z inside γ

comparing the two forms for f(z)

∫ 2π

0

(f(z + reiθ)− reiθf(reiθ)

reiθ − z ) dθ = 0 z inside γ

as the function in the integral is continuous, by the mean value theorem, there is at least one point c, with 0 < c < 2π, such

that 37.

Example 18.5. Suppose f(z) = z2 and r = 1, the 37 becomes (z + reic)2 = (reic)2

reic−z . Solving the equation by eic it follows

eic = 1
2
z(1±

√
5), then the identity (z + 1

2
z(1±

√
5)2 =

( 1
2
z(1±

√
5)2

1
2
z(1±

√
5)−z .
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