International Journal of Mathematics And its Applications

Locally Linear Convex Maps and H-derivation

Franco Fineschi ${ }^{1 *}$
1 Department DISAG, University of Siena, Piazza S.Francesco, 53100 Siena, Italy.

Abstract

Linear convex maps are considered. The linearity of a map is related to a point. The space of functions with this property and the analytic form is obtained. A new polynomial for a function improves the convergence.

Keywords: Linearity, convex, h-derivation.
(c) JS Publication.

1. Introduction

A map $\phi: \Re^{n} \rightarrow \Re^{m}$ is said to be affine, see [9], when $\phi\left(\lambda x_{1}+(1-\lambda) x_{2}\right)=\lambda \phi\left(x_{1}\right)+(1-\lambda) \phi\left(x_{2}\right)$ for all $x_{1}, x_{2} \in \Re^{n}$ and all $\lambda \in \Re$. If $0 \leq \lambda \leq 1$, then ϕ is said a linear convex (l.c.) map. Applications of l.c. maps are in game theory and convex analysis, see [4] or [2]. Some algebraic properties of the class of the affine and 1.c. maps are considered. In order to show a complete description, some propositions, without proofs, are recalled from the paper [2].

It is possible to reduce the linearity of a map to the neighborhood of a fixed point. This new definition allows to considerate a wide class, really a linear space, $L c(b)$, of maps which satisfy this property. The analytic form of these functions is obtained as solution of a first order PDE. As an important obtained result, the space of the continuous linear functionals on \Re^{n} is a subspace of $L c(b)$, this opens the way to many extensions of known properties. The study of the topological properties of the l.c. maps, with respect to a point, is only started because of dimensiononal limit of the paper.
By l.c. maps a wider definition of differentiability is obtained. Functions, not differentiable at a point, may be l.c. differentiable at the same point. The l.c. maps have a geometrical meaning as cones. The derivatives in a Taylor's polynomial are multilinear functions so that the Taylor's formula may be written by cones.

A new definition for derivatives allows to consider a new development for functions, denoted by h-polynomial. Pointwise and mean square convergence of the h-polynomial are studied in order to improve the known developments. Applications of the new derivatives are considered in complex analysis.

2. Multilinear Convex Maps

Definition 2.1. Let A be a subset of \Re^{n} and let $C \subset \Re^{m}$, a k-linear convex mapping $\phi: A^{k} \rightarrow C$, for $a_{i} \in A$, is defined by $\phi\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)=\phi\left(a_{1}, \ldots, \sum_{i=1}^{r} \lambda_{i} b_{i}, \ldots, a_{k}\right)=\sum_{i=1}^{r} \lambda_{i} \phi\left(a_{1}, \ldots, b_{i}, \ldots, a_{k}\right)$, where $\lambda_{i} \geq 0, \sum_{i=1}^{r} \lambda_{i}=1$, $a_{i}=$ $\sum_{i=1}^{r} \lambda_{i} b_{i}$, and $b_{i} \in \Re^{n}$.

[^0]Note that if a vector b_{j}, in the convex combination $a_{i}=\sum_{i=1}^{r} \lambda_{i} b_{i}$, is not at A, then $\phi\left(a_{1}, \ldots, b_{j}, \ldots, a_{k}\right)$ is not defined.
Proposition 2.2. Let $\phi:\left(\Re^{n}\right)^{k} \rightarrow C$ be a k-linear map, then the restriction of ϕ to the bounded subset $A^{k} \subset\left(\Re^{n}\right)^{k}$ with $A=\left\{\left(a_{1 i}, \ldots, a_{j i}, \ldots, a_{n i}\right): s_{j i} \leq a_{j i} \leq r_{j i}, j=1, \ldots, n\right\}$ is not k-linear, instead the restricted map ϕ is k-linear convex.

Proof. Let $\frac{s_{j i}}{2}<v_{j i}<w_{j i}<r_{j i}, j=1, \ldots, n$, then there exist $\phi\left(\left(a_{1}, \ldots, v_{i}, \ldots, a_{k}\right)\right.$ and $\phi\left(a_{1}, \ldots, w_{i}, \ldots, a_{k}\right)$ even if $\phi\left(a_{1}, \ldots, v_{i}+w_{i}, \ldots, a_{k}\right)$ does not exist. So ϕ is not k-linear. Instead, with $\lambda \in[0,1]$,

$$
\phi\left(a_{1}, \ldots, \lambda v_{i}+(1-\lambda) w_{i}, \ldots, a_{k}\right)=\lambda \phi\left(a_{1}, \ldots, v_{i}, \ldots, a_{k}\right)+(1-\lambda) \phi\left(a_{1}, \ldots, w_{i}, \ldots, a_{k}\right)
$$

and ϕ is k-linear convex.
Example 2.3. Consider the function $f(x, y)=2 x y \quad 0 \leq x \leq a, \quad 0 \leq y \leq b$, let $\frac{a}{2}<x_{1}<x_{2}<a$, then $f\left(x_{1}, y\right)=2 x_{1} y$ and $f\left(x_{2}, y\right)=2 x_{2} y$, even if $f\left(x_{1}+x_{2}, y\right)$ does not exist, so $f(x, y)$ is not a bilinear function. Whereas, for $0 \leq \lambda \leq 1$,

$$
\begin{aligned}
f\left(\lambda x_{1}+(1-\lambda) x_{2}, y\right) & =2\left(\lambda x_{1}+(1-\lambda) x_{2}\right) y \\
& =2 \lambda x_{1} y+2(1-\lambda) x_{2} y \\
& =\lambda f\left(x_{1}, y\right)+(1-\lambda) f\left(x_{2}, y\right)
\end{aligned}
$$

that is, $f(x, y)$ is a convex linear function of each variable separately.
Some elementary properties of the k-linear convex maps follow. Let X be a convex subset of $\Re^{n}, \forall a_{i} \in X, \alpha \in[0,1]$, $\alpha a_{i}+(1-\alpha) \underline{0}=\alpha a_{i} \in X$. In particular $\alpha a_{i} \in X$. Moreover

$$
\begin{align*}
\Phi\left(a_{1}, \ldots, \alpha a_{i}, \ldots, a_{k}\right) & =\Phi\left(a_{1}, \ldots, \alpha a_{i}+(1-\alpha) \underline{0}, \ldots, a_{k}\right) \\
& =\alpha \Phi\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)+(1-\alpha) \Phi\left(a_{1}, \ldots, \underline{0}, \ldots, a_{k}\right) \tag{1}
\end{align*}
$$

where $\underline{0}, a_{1}, \ldots, a_{k}$ are vectors in X.
Proposition 2.4. Let $\lambda \in \Re^{+}\left(\lambda \in \Re^{-}\right)$and $\lambda x \in X$, then $\alpha x \in X(-\alpha x \in X)$, for $\alpha \in[0,1]$.
Proof. If $0<\beta<1$ satisfies $\alpha=\beta \cdot \lambda$, then $\alpha x=\beta(\lambda x)+(1-\beta) \underline{0}$, so $\alpha x \in X$. If $-\alpha=\beta \cdot \lambda$ then $-\alpha x=\beta(\lambda x)+(1-\beta) \underline{0}$ and $-\alpha x \in X$.

Proposition 2.5. Let $\phi: A^{k} \rightarrow C$ be a k-linear convex map and let ϕ defined on the vectors $\underline{0}, a_{1}, \ldots, a_{i}, \ldots, a_{k}$. Then, with $\lambda \in[0,1]$,
(i) $\phi\left(a_{1}, \ldots, \lambda a_{i}, \ldots, a_{k}\right)+\phi\left(a_{1}, \ldots,(1-\lambda) a_{i}, \ldots, a_{k}\right)=\phi\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)+\phi\left(a_{1}, \ldots, \underline{0}, \ldots, a_{k}\right)$.
(ii) $2 \phi\left(a_{1}, \ldots, \frac{1}{2} a_{i}, \ldots, a_{k}\right)=\phi\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)+\phi\left(a_{1}, \ldots, \underline{0}, \ldots, a_{k}\right)$.
(iii) $\phi\left(a_{1}, \ldots, \underline{0}, \ldots, a_{k}\right)=\frac{1}{2}\left(\left(\phi\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)+\phi\left(a_{1}, \ldots,-a_{i}, \ldots, a_{k}\right)\right.\right.$.

Proof. (i)

$$
\begin{aligned}
\phi\left(a_{1}, \ldots, \lambda a_{i}, \ldots, a_{k}\right) & =\phi\left(a_{1}, \ldots, \lambda a_{i}+(1-\lambda) \underline{0}, \ldots, a_{k}\right) \\
& =\lambda \phi\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)+(1-\lambda) \phi\left(a_{1}, \ldots, \underline{0}, \ldots, a_{k}\right) \\
\phi\left(a_{1}, \ldots,(1-\lambda) a_{i}, \ldots, a_{k}\right) & =\phi\left(a_{1}, \ldots,(1-\lambda) a_{i}+\lambda \underline{0}, \ldots, a_{k}\right) \\
& =(1-\lambda) \phi\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)+\lambda \phi\left(a_{1}, \ldots, \underline{0}, \ldots, a_{k}\right)
\end{aligned}
$$

(i) is obtained summing the two relations.
(ii) The (i) for $\lambda=\frac{1}{2}$.
(iii)

$$
\begin{aligned}
\phi\left(a_{1}, \ldots, \underline{0}, \ldots, a_{k}\right) & =\phi\left(a_{1}, \ldots,\left(\frac{1}{2} a_{i}+\frac{1}{2}\left(-a_{i}\right)\right), \ldots, a_{k}\right) \\
& =\frac{1}{2} \phi\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)+\frac{1}{2} \phi\left(a_{1}, \ldots,-a_{i}, \ldots, a_{k}\right)
\end{aligned}
$$

3. Free Convex Sets

A first application of k-linear convex maps is the definition of a convex free set. This concept is useful in order to define algebraic structures as free modules, vector spaces and so on.

Definition 3.1. Let K be a subset of a convex set X in \Re^{n} and let $j: K \rightarrow X$ be the insertion of K in X. Denote by A a subset of \Re^{m}, then X is free over K if, for every function $f: K \rightarrow A$, an unique linear convex mapping $\phi: X \rightarrow A$ exists such that $\phi \circ j=f$, as in the following commutative diagram

The next proposition, recalled from [2], extends the 1 and defines a linear convex mapping if an its argument is outside the body.

Proposition 3.2. Let $x_{1}, \ldots, x_{i}, \ldots, x_{k}$ be vectors in X and $\delta \in \Re$, then a linear convex mapping $\phi: X^{k} \rightarrow A$ satisfies

$$
\begin{equation*}
\phi\left(x_{1}, \ldots, \delta x_{i}, \ldots, x_{k}\right)=\delta \phi\left(x_{1}, \ldots, x_{i}, \ldots, x_{k}\right)+(1-\delta) \phi\left(x_{1}, \ldots, \underline{0}, \ldots, x_{k}\right) \tag{2}
\end{equation*}
$$

Theorem 3.3. Let $\phi: X^{k} \rightarrow Y$ be a k-linear convex function and X a convex set with $\underline{0} \in X$, then $\phi\left(a_{1}, \ldots, a_{k}\right)$ may be expressed by a linear combination of $\phi\left(x_{j_{1}}, \ldots, x_{j_{k}}\right)$, where $x_{j_{i}} \in X$ span the vectors $a_{i} \in X$.

In the n-dimensional vector space \Re^{n}, denote by S_{n} the convex hull of the vectors $\left\{e_{1}, \ldots, e_{n}\right\}$ of the standard basis. S_{n} is a compact, connected, convex set and its elements may be expressed by convex combinations of the unit vectors $\left\{e_{1}, \ldots, e_{n}\right\}$.

Theorem 3.4. The set S_{n} is free over the standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of \Re^{n}.

By the Fenchel-Bunt' theorem, any element a of a compact, connected, convex set A is expressed as a convex combination of the sequence a_{1}, \ldots, a_{n} of vectors of A, that is $a=\xi_{1} a_{1}+\cdots+\xi_{n} a_{n}$. By the theorem 3.4 exists an unique linear convex function ϕ such that $\phi\left(\xi_{1} e_{1}+\cdots+\xi_{n} e_{n}\right)=\sum \xi_{i} a_{i}=a=\sum \xi_{i} \phi\left(e_{i}\right)$ so, any element $a \in A$ may be expressed as a convex combination of the vectors $\phi\left(e_{i}\right), \ldots, \phi\left(e_{n}\right)$. In other words, any $a \in A$ determines a linear convex function ϕ such that $\sum \xi_{i} \phi\left(e_{i}\right)=a$.

Example 3.5. Let A be a convex, connected set in \Re^{2}. If $a=\xi_{1} a_{1}+\xi_{2} a_{2}, \xi_{i} \geq 0, \sum \xi_{i}=1, a_{i}=\left(a_{i 1}, a_{i 2}\right)$ is an element of A, then, by the theorem 3.4, it follows $a=\phi\left(\xi_{1} e_{1}+\xi_{2} e_{2}\right)=\xi_{1} a_{1}+\xi_{2} a_{2}=\xi_{1} \phi\left(e_{1}\right)+\xi_{2} \phi\left(e_{2}\right)$, where $\phi: S_{2} \rightarrow A$ is linear convex. This implies $\phi\left(e_{1}\right)=a_{1}, \phi\left(e_{2}\right)=a_{2}$, and so

$$
\phi(x)=\left(\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right)(x) \quad x \in S_{2}
$$

4. Affine and Linear Convex Maps with Respect to a Fixed Point

For an affine or linear convex (l.c.) map, the differentiability condition is showed by the next expression.
Proposition 4.1. An affine or l. c. map $\phi: \Re^{n} \rightarrow C$, defined in some neighborhood of a, is differentiable at a if

$$
\begin{equation*}
\phi(a)=\phi(b)-(b-a) \cdot \nabla \phi(a)-\|b-a\| \epsilon(t(b-a)) \tag{3}
\end{equation*}
$$

where $a+t(b-a)$ is a point in the neighborhood of $a, 0<t<1$, and $\nabla \phi(a)$ the gradient vector. The function $\epsilon(t(b-a)) \rightarrow 0$ as $t \rightarrow 0$.

Proof. By the differentiability condition is $\phi(a+t(b-a))-\phi(a)=t(b-a) \cdot \nabla \phi(a)+\|t(b-a)\| \epsilon(t(b-a))$ by the convex linearity of ϕ

$$
\begin{aligned}
\phi((1-t) a+t b)-\phi(a) & =t(b-a) \cdot \nabla \phi(a)+\|t(b-a)\| \epsilon(t(b-a)) \\
(1-t) \phi(a)+t \phi(b)-\phi(a) & =t(b-a) \cdot \nabla \phi(a)+t\|b-a\| \epsilon(t(b-a)) \\
-\phi(a)+\phi(b) & =(b-a) \cdot \nabla \phi(a)+\|b-a\| \epsilon(t(b-a))
\end{aligned}
$$

that is, the 3 .

The aim of the next definition is to reduce the linearity of a map to a neighborhood of a fixed point, that is, the property becomes local.

Definition 4.2. Let A be a subset of \Re^{n} and let $C \subset \Re^{m}$, a k-affine mapping $\phi: A^{k} \rightarrow C$ with respect to the fixed point $b=$ $\left(b_{1}, \ldots, b_{n}\right)$, for $a_{i}, b \in A$, is defined by $\phi\left(a_{1}, \ldots,(1-\lambda) a_{i}+\lambda b, \ldots, a_{k}\right)=(1-\lambda) \phi\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)+\lambda \phi\left(a_{1}, \ldots, b, \ldots, a_{k}\right)$, where $\lambda \in \Re$. A k-linear convex mapping $\phi: A^{k} \rightarrow C$, with respect to the fixed point b, for $a_{i}, b \in A$, is defined by $\phi\left(a_{1}, \ldots,(1-\lambda) a_{i}+\lambda b, \ldots, a_{k}\right)=(1-\lambda) \phi\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)+\lambda \phi\left(a_{1}, \ldots, b, \ldots, a_{k}\right)$, where $0 \leq \lambda \leq 1$.

The line segment connecting the points a_{i} and b can be represented in the parametric form $a_{i}+\lambda\left(b-a_{i}\right)=(1-\lambda) a_{i}+\lambda b$, $0 \leq \lambda \leq 1$. So the definition 4.2 imposes the linearity for any direction at b, that is, ϕ is linear in a neighborhood of b. By the above definition, the affinity and the convex linearity is restricted to an arbitrary fixed point, nevertheless a wide class of maps exists satisfying this property.

Example 4.3. Consider the function $f(x, y)=\left(x-b_{1}\right)\left(\left(\frac{y-b_{2}}{x-b_{1}}\right)^{2}+k\right) \quad b_{1}, b_{2}, k \in \Re$ then, it is an affine or l.c. function with respect to the point $\left(b_{1}, b_{2}\right)$. In fact

$$
\begin{aligned}
f\left((1-t) x+t b_{1},(1-t) y+t b_{2}\right) & =(1-t) \frac{\left(k\left(x-b_{1}\right)^{2}+\left(y-b_{2}\right)^{2}\right)}{x-b_{1}} \\
& =(1-t) f(x, y)+t f\left(b_{1}, b_{2}\right)
\end{aligned}
$$

The affine and l. c. maps, with respect to a fixed point, satisfy an analytic property that characterizes themselves. Let E, F be normed vector spaces, and let $d=b-x$ be a direction at a fixed point $b \in E$. The directional derivative of $\phi: E \rightarrow F$ in that direction is denoted by $D \phi(x)(d)$, see, for example, [5], then

Theorem 4.4. Let $\phi: U \subseteq E \rightarrow F$ be an affine or l. c. map, with respect to the point b, of class C^{p} in the open U, with $\|b-x\|=1$, satisfies the relations
(i)

$$
\begin{equation*}
\phi(x)=\phi(b)-D \phi(x)(b-x) \tag{4}
\end{equation*}
$$

where the $D \phi(x)$ is the derivative of ϕ.
(ii)

$$
\begin{equation*}
D^{k} \phi(x)(b-x)^{(k)}=0 \quad k=2, \ldots, p-1 \tag{5}
\end{equation*}
$$

where $D^{k} \phi(x)$ is the k-th derivative of ϕ at the point x.
(iii) $D \phi(x) b-D \phi(x) x=\phi(b)-\phi(x)$.

Proof. (i) With $0<t<1$ and by the convex linearity

$$
\begin{aligned}
D \phi(x) d & =\lim _{t \rightarrow 0} \frac{1}{t}(\phi(x+t(b-x))-\phi(x) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}(\phi((1-t) x+t b)-\phi(x) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}(-t \phi(x)+t \phi(b)) \\
& =-\phi(x)+\phi(b)
\end{aligned}
$$

(ii) The Taylor's formula of ϕ is $\phi(b)=\phi(x)+\frac{1}{1!} D \phi(x)(b-x)+\cdots+\frac{1}{(p-1)!} D^{p-1} \phi(x)(b-x)^{(p-1)}+\theta(b-x)$, where $(b-x)^{(k)}$ denotes the k-tuple $(b-x, \ldots, b-x)$. Comparing 4 and the Taylor's formula the (ii) follows.
(iii) It is well known, see [5], that the derivative mapping $D f(x): E \rightarrow F$ is linear.

Later it is showed that a l.c. function with respect to a point has a non null Hessian matrix even if it satisfies 5 . The following example shows that a linear function satisfies the 4 .

Example 4.5. The function $\phi(x, y)=k(x, y)$, with $k \in \Re$, is linear on \Re^{2} and

$$
\begin{aligned}
\phi\left(b_{1}, b_{2}\right)=k\left(b_{1}, b_{2}\right) & =\phi(x, y)+\phi_{x}(x, y)\left(b_{1}-x\right)+\phi_{y}(x, y)\left(b_{2}-y\right) \\
& =k(x, y)+k(1,0)\left(b_{1}-x\right)+k(0,1)\left(b_{2}-y\right) \\
& =k(x, y)+\left(k b_{1}-k x, 0\right)+\left(0, k b_{2}-k y\right) \\
& =k\left(b_{1}, b_{2}\right)
\end{aligned}
$$

5. Real-valued Affine and Linear Convex Functions of a Real Variable

For functions of one real variable, the theorem 4.4 becomes the following proposition

Proposition 5.1. The affine and l. c. derivable function $f: A \subset \Re \rightarrow \Re$, with respect to a fixed point $x_{0} \in A$, satisfies

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+f^{\prime}(x)\left(x-x_{0}\right) \tag{6}
\end{equation*}
$$

Proof. By the convex linearity, with $0<t<1$,

$$
\begin{aligned}
f^{\prime}(x)\left(x_{0}-x\right) & =\lim _{t \rightarrow 0} \frac{1}{t}\left(f\left(x+t\left(x_{0}-x\right)\right)-f(x)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(f\left((1-t) x+t x_{0}\right)-f(x)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left((1-t) f(x)+t f\left(x_{0}\right)-f(x)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(-t f(x)+t f\left(x_{0}\right)\right) \\
& =-f(x)+f\left(x_{0}\right)
\end{aligned}
$$

By $x_{0}=x+h$, the 6 may be written as $f(x+h)-f(x)=f^{\prime}(x) h$, that is, the affine and l.c. functions, of one variable, with respect to a point, satisfy $\Delta f(x)=d f(x)$. The relation 6 is a simple ODE and its solution is

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) k \tag{7}
\end{equation*}
$$

with k an arbitrary real constant. The relation 7 characterizes the affine and l.c. functions, so these coincide with the affine and l.c. functions with respect to a point.

6. Affine and l. c. Functions of Two Variables, with Respect to a Point

The relation 4 is a very useful tool in order to determinate the wide class of the affine and l. c. maps with respect to a point. The simplest set of these maps is obtained by two variable functions. For a differentiable function $f: \Re^{2} \rightarrow \Re$, the 4 becomes

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=f\left(b_{1}, b_{2}\right)-\left(b_{1}-x_{1}\right) f_{x_{1}}\left(x_{1}, x_{2}\right)-\left(b_{2}-x_{2}\right) f_{x_{2}}\left(x_{1}, x_{2}\right) \tag{8}
\end{equation*}
$$

the 8 is a first order PDE, see, for example, [7], and the general integral may be written as

$$
\begin{equation*}
\psi\left(\frac{f\left(x_{1}, x_{2}\right)-f\left(b_{1}, b_{2}\right)}{x_{1}-b_{1}}, \frac{f\left(x_{1}, x_{2}\right)-f\left(b_{1}, b_{2}\right)}{x_{2}-b_{2}}\right)=0 \tag{9}
\end{equation*}
$$

where ψ is an arbitrary function. Another form for the solution is

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=f\left(b_{1}, b_{2}\right)+\left(x_{1}-b_{1}\right) \psi\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right) \tag{10}
\end{equation*}
$$

and again ψ is an arbitrary function. The solutions 9 or 10 are linear convex functions with respect to the arbitrary point $\left(b_{1}, b_{2}\right)$. This means that the solutions satisfy the relation of affine or convex linearity for every combination written in the form $\lambda_{1}\left(x_{1}, x_{2}\right)+\lambda_{2}\left(b_{1}, b_{2}\right), \forall x_{1}, x_{2}, b_{1}, b_{2} \in \Re, \lambda_{1}+\lambda_{2}=1$ and $\left(b_{1}, b_{2}\right)$ is a critical point of $f\left(x_{1}, x_{2}\right)$.

Example 6.1. Choose the function ψ as $\frac{f\left(x_{1}, x_{2}\right)-f\left(b_{1}, b_{2}\right)}{x_{1}-b_{1}}+\frac{f\left(x_{1}, x_{2}\right)-f\left(b_{1}, b_{2}\right)}{x_{2}-b_{2}}+1=0$ expressing with respect to $f\left(x_{1}, x_{2}\right)$, a solution of 8 is

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=f\left(b_{1}, b_{2}\right)-\frac{\left(x_{1}-b_{1}\right)\left(x_{2}-b_{2}\right)}{x_{1}+x_{2}-\left(b_{1}+b_{2}\right)} \tag{11}
\end{equation*}
$$

It is straightforward to verify the linear convexity of 11, that is $f\left((1-t)\left(x_{1}, x_{2}\right)+t\left(b_{1}, b_{2}\right)\right)=f\left(b_{1}, b_{2}\right)-\frac{(1-t)\left(x_{1}-b_{1}\right)\left(x_{2}-b_{2}\right)}{x_{1}+x_{2}-\left(b_{1}+b_{2}\right)}$ is equal to $(1-t) f\left(x_{1}, x_{2}\right)+t f\left(b_{1}, b_{2}\right)$.

Example 6.2. Using the solution of 8 in the form 10, choose as a solution $f\left(x_{1}, x_{2}\right)=f\left(b_{1}, b_{2}\right)+\left(x_{1}-b_{1}\right) e^{\frac{x_{2}-b_{2}}{x_{1}-b_{1}}}$ then $f\left((1-t)\left(x_{1}, x_{2}\right)+t\left(b_{1}, b_{2}\right)\right)=f\left(b_{1}, b_{2}\right)+(1-t)\left(x_{1}-b_{1}\right) e^{\frac{x_{2}-b_{2}}{x_{1}-b_{1}}}$ is equal to $(1-t) f\left(x_{1}, x_{2}\right)+t f\left(b_{1}, b_{2}\right)$.

Example 6.3. The graph of the l.c. function $f\left(x_{1}, x_{2}\right)=\frac{\left(x_{2}-4\right)^{2}}{x_{1}-3}$ with respect to the point $(3,4)$ is

(Computer-generated graph).

The following proposition proves (ii) of 4.4 for two variable functions .
Proposition 6.4. The affine or l.c. function set, with respect to the point $\left(b_{1}, b_{2}\right), f\left(x_{1}, x_{2}\right)=f\left(b_{1}, b_{2}\right)+\left(x_{1}-b_{1}\right) \psi\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right)$, with ψ an arbitrary, twice differentiable, function, satisfies

$$
\begin{equation*}
\left(b_{1}-x_{1}, b_{2}-x_{2}\right)^{T} H\left(x_{1}, x_{2}\right)\left(b_{1}-x_{1}, b_{2}-x_{2}\right)=0 \tag{12}
\end{equation*}
$$

where H is the Hessian matrix of f.
Proof. By

$$
\begin{aligned}
f_{x_{1}} & =\psi\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right)+\left(\frac{b_{2}-x_{2}}{x_{1}-b_{1}}\right) \psi^{\prime}\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right), & f_{x_{2}} & =\psi^{\prime}\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right) \text { and } \\
f_{x_{1} x_{1}} & =\frac{\left(x_{2}-b_{2}\right)^{2}}{\left(x_{1}-b_{1}\right)^{3}} \psi^{\prime \prime}\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right), & f_{x_{1} x_{2}} & =\frac{-x_{2}+b_{2}}{\left(x_{1}-b_{1}\right)^{2}} \psi^{\prime \prime}\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right) \\
f_{x_{2} x_{2}} & =\frac{1}{x_{1}-b_{1}} \psi^{\prime \prime}\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right) & H\left(x_{1}, x_{2}\right) & =\frac{1}{x_{1}-b_{1}} \psi^{\prime \prime}\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right)\left(\begin{array}{cc}
\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right)^{2} & \frac{-x_{2}+b_{2}}{x_{1}-b_{1}} \\
\frac{-x_{2}+b_{2}}{x_{1}-b_{1}} & 1
\end{array}\right)
\end{aligned}
$$

it follows 12 .
Observe that the relation $\left(b_{1}-x_{1}, b_{2}-x_{2}\right)^{T} H\left(x_{1}, x_{2}\right)\left(b_{1}-x_{1}, b_{2}-x_{2}\right)=0$ is true for every $\psi^{\prime \prime}\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right)$.

7. Affine and l. c. Functions of n Variables, with Respect to a Point

For a function $f: \Re^{3} \rightarrow \Re$, the 4 becomes

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=f\left(b_{1}, b_{2}, b_{3}\right)-\left(b_{1}-x_{1}\right) f_{x_{1}}\left(x_{1}, x_{2}, x_{3}\right)-\left(b_{2}-x_{2}\right) f_{x_{2}}\left(x_{1}, x_{2}, x_{3}\right)-\left(b_{3}-x_{3}\right) f_{x_{3}}\left(x_{1}, x_{2}, x_{3}\right) \tag{13}
\end{equation*}
$$

the 13 is a first order PDE, and the solution may be written as

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=f\left(b_{1}, b_{2}, b_{3}\right)+\left(x_{1}-b_{1}\right) \psi\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}, \frac{x_{3}-b_{3}}{x_{1}-b_{1}}\right) \tag{14}
\end{equation*}
$$

where ψ is an arbitrary function.

Example 7.1. The function $f\left(x_{1}, x_{2}, x_{3}\right)=\frac{\left(x_{2}-b_{2}\right)\left(x_{3}-b_{3}\right)}{x_{1}-b_{1}}$ is l.c. with respect to the point $\left(b_{1}, b_{2}, b_{3}\right), f\left((1-t)\left(x_{1}, x_{2}, x_{3}\right)+\right.$ $\left.t\left(b_{1}, b_{2}, b_{3}\right)\right)=\left(x_{1}-b_{1}\right)^{-1}\left((1-t)\left(x_{2}-b_{2}\right)\left(x_{3}-b_{3}\right)\right)$ is equal to $(1-t) f\left(x_{1}, x_{2}, x_{3}\right)+t f\left(b_{1}, b_{2}, b_{3}\right)$

A result similar to the proposition 6.4 can be proved.
More in general, let $f: U \subset \Re^{n} \rightarrow \Re$ be a differentiable affine or l.c. function with respect to the point b, U an open set, then the 4 is

$$
\begin{equation*}
f(x)=f(b)-\nabla f(x)(b-x) \tag{15}
\end{equation*}
$$

where $x=x_{1}, \ldots, x_{n}, b=b_{1}, \ldots, b_{n} \in U$.

Theorem 7.2. The set $\operatorname{Lc}(b)\left(\Re^{n}, \Re\right)$ of the affine or l.c. functions, with respect to b, is given by

$$
\begin{equation*}
f(x)=f(b)+\left(x_{1}-b_{1}\right) \psi\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}, \ldots, \frac{x_{n}-b_{n}}{x_{1}-b_{1}}\right) \tag{16}
\end{equation*}
$$

where ψ is an arbitrary differentiable function.
Proof. The set $L c(b)$ is the solution of the PDE 15, in fact, being

$$
\begin{gathered}
f_{x_{1}}=\psi\left(z_{2}, \ldots, z_{n}\right)-z_{2} \psi_{z_{2}}\left(z_{2}, \ldots, z_{n}\right)-\cdots-z_{n} \psi_{z_{n}}\left(z_{2}, \ldots, z_{n}\right) \\
f_{x_{2}}=\psi_{z_{2}}\left(z_{2}, \ldots, z_{n}\right), f_{x_{3}}=\psi_{z_{3}}\left(z_{2}, \ldots, z_{n}\right), \ldots, f_{x_{n}}=\psi_{z_{n}}\left(z_{2}, \ldots, z_{n}\right)
\end{gathered}
$$

where $z_{i}=\frac{x_{i}-b_{i}}{x_{1}-b_{1}}$, and replacing in equation 15 it follows the identity

$$
\begin{aligned}
f(x)-f(b)= & \left(x_{1}-b_{1}\right)\left(\psi\left(z_{2}, \ldots, z_{n}\right)-z_{2} \psi_{z_{2}}\left(z_{2}, \ldots, z_{n}\right)-\cdots-z_{n} \psi_{z_{n}}\left(z_{2}, \ldots, z_{n}\right)\right) \\
& +\left(x_{2}-b_{2}\right) \psi_{z_{2}}\left(z_{2}, \ldots, z_{n}\right)+\cdots+\left(x_{n}-b_{n}\right) \psi_{z_{n}}\left(z_{2}, \ldots, z_{n}\right) \\
= & \left(x_{1}-b_{1}\right) \psi\left(z_{2}, \ldots, z_{n}\right)
\end{aligned}
$$

The solution 16 is in $L c(b)$, indeed

$$
\begin{aligned}
f((1-t) x+t b) & =f\left((1-t) x_{1}+t b_{1}, \ldots,(1-t) x_{n}+t b_{n}\right) \\
& =f(b)+\left((1-t) x_{1}+t b_{1}-b_{1}\right) \psi\left(\frac{(1-t) x_{2}+t b_{2}-b_{2}}{(1-t) x_{1}+t b_{1}}, \ldots, \frac{(1-t) x_{n}+t b_{n}-b_{n}}{(1-t) x_{1}+t b_{1}}\right) \\
& =f(b)+(1-t)\left(x_{1}-b_{1}\right) \psi\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}, \ldots, \frac{x_{n}-b_{n}}{x_{1}-b_{1}}\right) \\
& =(1-t)\left(f(b)+\left(x_{1}-b_{1}\right) \psi\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}, \ldots, \frac{x_{n}-b_{n}}{x_{1}-b_{1}}\right)+t f(b)\right. \\
& =(1-t) f(x)+t f(b)
\end{aligned}
$$

By the $f(1-t) x+t b)=t f(b)+(1-t)\left(x_{1}-b_{1}\right) \psi\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}, \ldots, \frac{x_{n}-b_{n}}{x_{1}-b_{1}}\right)$, setting $t=0$, it follows $f(x)=\left(x_{1}-\right.$ $\left.b_{1}\right) \psi\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}, \ldots, \frac{x_{n}-b_{n}}{x_{1}-b_{1}}\right)$.

Proposition 7.3. The set $L c(b)$ is a linear space.

Proof. Let $\phi_{1}, \phi_{2} \in L c(b)$, then $\phi=\phi_{1}+\phi_{2} \in L c(b)$, indeed

$$
\begin{aligned}
\phi((1-t) x+t b) & =\phi_{1}((1-t) x+t b)+\phi_{2}((1-t) x+t b) \\
& =(1-t) \phi_{1}(x)+t \phi_{1}(b)+(1-t) \phi_{2}(x)+t \phi_{2}(b) \\
& =(1-t)\left(\phi_{1}(x)+\phi_{2}(x)\right)+t\left(\phi_{1}(x)+\phi_{2}(x)\right) \\
& =(1-t) \phi(x)+t \phi(b)
\end{aligned}
$$

If $\lambda \in \Re, \phi \in L c(b)$, then $\lambda \phi((1-t) x+t b)=\lambda(1-t) \phi(x)+\lambda t \phi(b)=(1-t)(\lambda \phi(x))+t(\lambda \phi(b))$ that is $\lambda \phi \in L c(b)$.

Proposition 7.4. Let E, F be normed linear spaces. If $D \phi(x): E \rightarrow F$, with $\phi \in L c(b)(E, F)$, is injective, then ϕ is injective too.

Proof. Let $x_{1}, x_{2} \in E$, with $x_{1} \neq x_{2}$. It is $D \phi(x)\left(x_{1}\right)=\phi\left(x_{1}\right)-\phi(0)$ and $D \phi(x)\left(x_{2}\right)=\phi\left(x_{2}\right)-\phi(0)$ and subtracting $D \phi(x)\left(x_{1}\right)-D \phi(x)\left(x_{2}\right)=\phi\left(x_{1}\right)-\phi\left(x_{2}\right)$. Then $D \phi(x)\left(x_{1}\right) \neq D \phi(x)\left(x_{2}\right)$ implies $\phi\left(x_{1}\right) \neq \phi\left(x_{2}\right)$.

Proposition 7.5. Let $\phi_{1} \in L_{c}(b)$ and $\phi_{2} \in L_{c}\left(\phi_{1}(b)\right)$, then $\phi_{2} \circ \phi_{1} \in L_{c}\left(\phi_{2} \circ \phi_{1}(b)\right)$.
Proof.

$$
\begin{aligned}
\phi_{2} \circ \phi_{1}((1-t) x+t b) & =\phi_{2}\left((1-t) \phi_{1}(x)+t \phi_{1}(b)\right) \\
& =(1-t) \phi_{2} \circ \phi_{1}(x)+t \phi_{2} \circ \phi_{1}(b)
\end{aligned}
$$

8. Some Topological Properties of Lc(b)

Let E, F be normed vector spaces. The continuity definition of a map $f: E \rightarrow F$ at a point $x_{0} \in E$ may be rewritten as $\forall \epsilon>0, \forall x \in I\left(x_{0}, \delta\right) \subset E, \exists t_{\epsilon}, 0<t_{\epsilon} \leq 1$, such that $0<t<t_{\epsilon}$ implies $\left|f\left(x_{0}+t\left(x-x_{0}\right)\right)-f\left(x_{0}\right)\right|<\epsilon$. If the map f is l.c. with respect to the point x_{0}, then

$$
\begin{aligned}
\left|f\left(x_{0}+t\left(x-x_{0}\right)\right)-f\left(x_{0}\right)\right| & =\left|(1-t) f\left(x_{0}\right)+t f(x)-f\left(x_{0}\right)\right|=\left|t f(x)-t f\left(x_{0}\right)\right| \\
& =t\left|f\left(x_{0}\right)-f(x)\right|=t\left|D f(x)\left(x_{0}-x\right)\right|<\epsilon
\end{aligned}
$$

that is, by restricting enough the open ball $I\left(x_{0}, \delta\right)$, the derivative is close to zero. The dual space of \Re^{n}, that is the space of the continuous linear functionals on \Re^{n}, is denoted by $L\left(\Re^{n}, \Re\right)$, see [5]. The link with the space $L_{c}(b)\left(\Re^{n}, \Re\right)$ is the following property

Proposition 8.1. $L\left(\Re^{n-1}, \Re\right)$ is a subspace of $L_{c}(b)$.

Proof. It is immediate, for any $\lambda \in L\left(\Re^{n}, \Re\right)$, by $\lambda((1-t) x+t b)=(1-t) \lambda(x)+t \lambda(b)$.
Moreover, for any $\lambda \in L\left(\Re^{n-1}, \Re\right)$, let $\lambda\left(b_{2}, \ldots, b_{n}\right)=k$ with $k \in \Re$, then

$$
\begin{aligned}
\lambda\left(x_{2}, \ldots, x_{n}\right) & =k-\lambda\left(b_{2}, \ldots, b_{n}\right)+\lambda\left(x_{2}, \ldots, x_{n}\right) \\
& =k+\left(x_{1}-b_{1}\right) \lambda\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}, \ldots, \frac{x_{n}-b_{n}}{x_{1}-b_{1}}\right)
\end{aligned}
$$

So the functional λ may have the form of the elements of $L_{c}(b)$. It is known, see [5], that a linear map $\lambda: E \rightarrow F$ is continuous if and only if there exists $C>0$ such that $|\lambda x| \leq C|x|$ for all $x \in E$. The following proposition extends a similar property to the l.c. maps with respect to a point.

Proposition 8.2. The l.c. map $\phi: E \rightarrow F$, with respect to the point b, is continuous if and only if there exists $C>0$ such that $|D \phi(x) x| \leq C|x|$, for all $x \in E$.

Proof. Let $\phi \in L c(b)$. By the equation 4, it follows $D \phi(x)\left(b-x_{0}\right)=\phi(b)-\phi\left(x_{0}\right)$ and subtracting with the 4 it is $D \phi(x)\left(x-x_{0}\right)=\phi(x)-\phi\left(x_{0}\right)$. For $\left|x-x_{0}\right|<\delta$, with $x, x_{0} \in E$, it is $\left|D \phi(x)\left(x-x_{0}\right)\right|=\left|\phi(x)-\phi\left(x_{0}\right)\right| \leq C\left|x-x_{0}\right|<C \delta<\epsilon$, where $\delta<\frac{\epsilon}{C}$ then $\phi(x)$ is continuous at x_{0}.

Conversely, by the continuity of ϕ, there exists δ such that, for $\left|x-x_{0}\right| \leq \delta$, it follows $\left|\phi x-\phi x_{0}\right|=\left|D \phi(x)\left(x-x_{0}\right)\right|<\epsilon<1$.
Then $\left|D \phi(x)\left(\frac{\delta\left(x-x_{0}\right)}{\left|x-x_{0}\right|}\right)\right|=\left|\frac{\delta}{\left|x-x_{0}\right|} D \phi(x)\left(x-x_{0}\right)\right|<1 \quad$ for all $x-x_{0} \in E$, with $\left|x-x_{0}\right| \leq \delta$, namely $|D \phi(x) x| \leq C|x|$.
Definition 8.3. Let $\phi \in L c(b)$, then $|\phi|$, the norm of ϕ, is defined by $|\phi|=|D \phi(x)|$, where $|D \phi(x)|$ is the usual norm of the linear map $D \phi(x)$ with $|D \phi(x)| \leq C|x|, C>0$.

Proposition 8.4. If $\phi_{1} \in L c(b)$ and $\phi_{2} \in L c\left(\phi_{1}(b)\right)$, then $\left|\phi_{2} \circ \phi_{1}\right| \leq \mid\left(D \phi_{2}(x)| | \phi_{1}| | x \mid\right.$.
Proof. $\quad\left|\phi_{2} \circ \phi_{1}(x)\right|=\left|D \phi_{2}(x)\left(\phi_{1}(x)\right)\right| \leq\left|D \phi_{2}(x)\right|\left|\phi_{1}(x)\right| \leq\left|D \phi_{2}(x)\right|\left|\phi_{1}\right||x|$.
Let $\phi: F \rightarrow G$, with $\phi \in L c(b)$ and F a subspace of E. Since $\phi(x)=\phi(0)+D \phi(x)(x)$, with $D \phi(x) x: E \rightarrow G$, then there exists the extension of ϕ to the space E, defined by the same $\phi(x)=\phi(0)+D \phi(x) x$. Let $E^{\star \star}=\operatorname{Lc}(b)(L c(b)(E, \Re), \Re)$ be the double dual space of E with respect to the space $L c(b)$. Functions $\Phi_{x}: E^{\star} \rightarrow \Re$ are defined by $\Phi_{x}(\phi)=\phi(x)$ for any $\phi \in E^{\star}, x \in E$.

Proposition 8.5. The map of $E \rightarrow E^{\star \star}$ defined by $x \mapsto \Phi_{x}$ is linear, injective and norm preserving, that is $|x|=\left|\Phi_{x}\right|$.
Proof. Let $x_{1}, x_{2} \in E$ with $x_{1} \neq x_{2}$, so $x_{1}-x_{2} \neq 0$. By the Hahn-Banach theorem there exists $D \phi(x) \in L(E$, $\Re)$, with $\phi \in L c(E, \Re)$, such that $D \phi(x)\left(x_{1}-x_{2}\right) \neq 0$, then $D \phi(x)\left(x_{1}\right) \neq D \phi(x)\left(x_{2}\right)$ so $D \phi(x)$ is injective. By the proposition 7.4 also ϕx is injective, that is $\phi x_{1} \neq \phi x_{2}$, this implies that the map $x \mapsto \Phi_{x}$ is injective. By $|\phi x| \leq|\phi||x|$ and $\left|\Phi_{x}(\phi)\right| \leq\left|\Phi_{x}\right||\phi|$, since $|\phi(x)|=\left|\Phi_{x}(\phi)\right|$ it follows $|\phi||x|=\left|\Phi_{x}\right||\phi|$ and $\left|\Phi_{x}\right|=|x|$.

The Linear Extension Theorem, see [5], for a linear map $\lambda: F \rightarrow G$, where E is a normed vector space, F a subspace of E and G a Banach space, proves that there exists a unique extension of λ to a continuous linear map $\bar{\lambda}: \bar{F} \rightarrow G$. Where \bar{F} is the closure of F and $\lambda, \bar{\lambda}$ have the same norm. The next theorem is a similar result for the space $L c(b)$.

Theorem 8.6. Let $\phi: F \rightarrow G$, with $\phi \in L c(b), E$ a normed vector space and F a subspace of E, G a Banach space. The norm of ϕ is $C . \bar{F}$ denotes the closure of F in E. Then there exists a unique extension of ϕ to a continuous $\bar{\phi}: \bar{F} \rightarrow G$, with $\bar{\phi} \in L c(b)$, and $\bar{\phi}$ has the same norm C.

Proof. Uniqueness. Suppose $x=\lim x_{n}$, with $x \in \bar{F}$ and $x_{n} \in F$. By the continuity of ϕx it follows $\lim \phi\left(x_{n}\right)=\bar{\phi} x \in G$, in fact G is complete. So

$$
\left\{\begin{array}{l}
\bar{\phi} x=\phi x \text { if } x \in F \\
\bar{\phi} x=\bar{\phi} x \text { if } x \in \bar{F}
\end{array}\right.
$$

is an extension of ϕ. If δ is again an extension, it follows

$$
\left\{\begin{array}{l}
\delta x=\phi x \text { if } x \in F \\
\delta x=\bar{\phi} x \text { if } x \in \bar{F}
\end{array}\right.
$$

so $\delta=\bar{\phi}$. Existence. Suppose $x=\lim x_{n}$, with $x \in \bar{F}, x_{n} \in F, \phi \in L c(b), b \in F$. Then

$$
\begin{gathered}
\left|\phi\left(x_{n}\right)-\phi\left(x_{m}\right)\right|=\left|\phi b+D \phi(x)\left(x_{n}-b\right)-\phi b-D \phi(x)\left(x_{m}-b\right)\right| \\
=\left|D \phi(x)\left(x_{n}-b\right)-D \phi(x)\left(x_{m}-b\right)\right|=\left|D \phi(x)\left(x_{n}-x_{m}\right)\right| \leq C\left|x_{n}-x_{m}\right|
\end{gathered}
$$

so $\left\{\phi\left(x_{n}\right)\right\}$ is a Cauchy sequence in the Banach space G. Denote $\lim \phi\left(x_{n}\right)=\bar{\phi} x$. It is immediate that $\bar{\phi} x$ is independent of the sequence $x_{n} \rightarrow x$. If $x \in F$ and $x=\lim x$, then $\bar{\phi} x=\phi x$. This implies $\phi b=\bar{\phi} b$ because $b \in F$ and $\bar{\phi}$ is an extension of ϕ. Now one must prove that $\bar{\phi} \in L c(b)$.

$$
\begin{gathered}
\bar{\phi}((1-t) x+t b)=\lim \phi\left((1-t) x_{n}+t b\right)=\lim \left((1-t) \phi\left(x_{n}\right)+t \phi b\right) \\
=(1-t) \lim \phi\left(x_{n}\right)+t \phi b=(1-t) \bar{\phi} x+t \bar{\phi} b
\end{gathered}
$$

so $\bar{\phi}$ is 1.c. with respect to b. The norm is a continuous function, then $|\bar{\phi} x|=\lim \left|\phi\left(x_{n}\right)\right|$ and by $\left|\phi\left(x_{n}\right)\right| \leq C\left|x_{n}\right|$, it is $|\bar{\phi} x|=\lim \left|\phi x_{n}\right| \leq C\left|\lim x_{n}\right|=C|x|$, hence $|\bar{\phi}|=|\phi|$.

9. The Function $\psi\left(\frac{x_{2}}{x_{1}}, \ldots, \frac{x_{n}}{x_{1}}\right)$

The $x_{1} \psi\left(\frac{x_{2}}{x_{1}}, \ldots, \frac{x_{n}}{x_{1}}\right)$, with ψ an arbitrary C^{n} function, is l.c. with respect to the point zero. Then it holds $x_{1} \psi=$ $x_{1} \frac{\partial x_{1} \psi}{\partial x_{1}}+\cdots+x_{n} \frac{\partial x_{1} \psi}{\partial x_{n}}$ and this implies

$$
\begin{equation*}
x_{1} \frac{\partial \psi}{\partial x_{1}}+\cdots+x_{n} \frac{\partial \psi}{\partial x_{n}}=0 \tag{17}
\end{equation*}
$$

this is a known result by the Euler's theorem, since the function ψ is homogeneous of degree 0 , that is $\psi(t x)=\psi(x), t>0$. The next theorem states a stronger property of ψ.

Theorem 9.1. Let $\psi: \Re^{n} \rightarrow \Re$ be the homogeneous function of class C^{p}, defined by $x \rightarrow \psi\left(\frac{x_{2}}{x_{1}}, \ldots, \frac{x_{n}}{x_{1}}\right)$, with arbitrary ψ. Then

$$
\begin{equation*}
D^{k} \psi(x) x^{(k)}=0 \quad k=1, \ldots, p \tag{18}
\end{equation*}
$$

Proof. Denote by $\psi^{(0,0, \ldots, i, \ldots, 0)}(x)$ the partial derivative with respect to the i-th variable.

$$
\begin{aligned}
D \psi(x) x & =\left(-\frac{x_{2}}{x_{1}} \psi^{(1,0, \ldots, 0)}-\frac{x_{3}}{x_{1}} \psi^{(0,1, \ldots, 0)}-\cdots\right. \\
& \left.-\frac{x_{n}}{x_{1}} \psi^{(0,0, \ldots, 1)}\right)+\left(\frac{1}{x_{1}} \psi^{(1,0, \ldots, 0)}\right) x_{2}+\left(\frac{1}{x_{1}} \psi^{(0,1, \ldots, 0)}\right) x_{3}+\cdots+\left(\frac{1}{x_{1}} \psi^{(0,0, \ldots, 1)}\right) x_{n} \\
& =0
\end{aligned}
$$

and $D^{p} \psi(x) x^{(p)}=D\left(D^{p-1} \psi(x) x^{(p-1)}\right) x$, so, by induction, it follows 18

10. Linear Convex Differentiability

The l.c. maps allow an extension of the differentiability's definition .
Definition 10.1. Let U open in E, and $b \in U$. Let $f: U \rightarrow F$ be a map. Then f is linear convex differentiable at b if there exists a continuous l.c. $\phi \in L c(b)$, defined for all sufficiently small h in E, such that $\lim _{h \rightarrow 0} \frac{1}{|h|}(f(b+h)-f(b)-\phi(b+h))=0$

Proposition 10.2. If f is l.c. differentiable at b, then it has derivative for every direction at b.

Proof. Suppose $h=t(x-b), x-b \in U$ and observing that $\phi(b+t(x-b))=t \phi(x)$ it follows

$$
\begin{aligned}
D f(b)(x-b) & =\lim _{t \rightarrow 0} \frac{1}{|t|}(f(b+t(x-b))-f(b)-\phi(b+t(x-b)) \\
& =\lim _{t \rightarrow 0} \frac{1}{|t|}(f(b+t(x-b))-f(b)-t \phi(x)) \\
& =\lim _{t \rightarrow 0} \frac{1}{|t|}(f(b+t(x-b))-f(b))=\phi(x)
\end{aligned}
$$

In particular if $x-b=e_{i}, i=1, \ldots, n$, it is $D f(b) e_{i}=\psi\left(b+e_{i}\right)$. The definition 10.1 becomes especially useful if a map is not differentiable at a point.

Example 10.3. The function

$$
f(x, y)= \begin{cases}\frac{x^{2} y(y+1)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

is not differentiable at the point $(0,0)$, in fact, with $d=\left(d_{1}, d_{2}\right)$,

$$
\begin{aligned}
D f(0,0) d= & \lim _{t \rightarrow 0} \frac{1}{t}(f(0+t d)-f(0)) \\
& =\frac{d_{1}^{2} d_{2}}{d_{1}^{2}+d_{2}^{2}} \\
& \neq D f(0,0) e_{1} d_{1}+D f(0,0) e_{2} d_{2} \\
& =0 d_{1}+0 d_{2}
\end{aligned}
$$

In order to $f(x, y)$ is l.c. differentiable at $(0,0), a \phi(x, y) \in L c(0,0)$ has to exist such that $D f(0,0)((x, y)-(0,0))=\phi(x, y)$, that is

$$
\begin{aligned}
\phi(x, y) & =\frac{1}{t}(f(0+t(x-0))-f(0)) \\
& =\frac{1}{t}(f(t(x), t(y))-f(0)) \\
& =\frac{1}{t}(f(t(x), t(y))) \\
& =\frac{x^{2} y}{x^{2}+y^{2}}
\end{aligned}
$$

Then $\phi(x, y)=x \frac{x y}{x^{2}+y^{2}}=x \frac{\frac{y}{x}}{1+\frac{y^{2}}{x^{2}}}=x \psi\left(\frac{y}{x}\right)$. So the $f(x, y)$ is a l.c. differentiable function at $(0,0)$. Observe that $f(x, y) \notin$ $L c(0,0)$.

Proposition 10.4. The continuous functions of the space Lc(b) are l.c. differentiable at b.
Proof. By $f \in L c(b)$,

$$
\begin{aligned}
D f(b)(x-b) & =\lim _{t \rightarrow 0} \frac{1}{|t|}(f(b+t(x-b))-f(b)) \\
& =\lim _{t \rightarrow 0} \frac{1}{|t|}(f(b(1-t)+t x))-f(b)-\phi(b+t(x-b)) \\
& =\lim _{t \rightarrow 0} \frac{1}{|t|}((1-t) f(b)+t f(x)-f(b)) \\
& =f(x)-f(b)
\end{aligned}
$$

and by $f \in L c(b)$ it follows $\phi(x)=f(x)-f(b) \in L c(b)$, so f is l.c. differentiable at b.

Example 10.5. The function

$$
f(x, y)= \begin{cases}(x-1) \sin \left(\frac{x-1}{y-1}+1\right) & \text { if }(x, y) \neq(1,1) \\ 0 & \text { if }(x, y)=(1,1)\end{cases}
$$

is not differentiable at the point $(1,1)$, in fact, with $d=\left(d_{1}, d_{2}\right), D f(1,1) d=d_{1} \sin \left(\frac{d_{1}}{d_{2}}+1\right)$ but $D f(1,1) e_{1}$ is indeterminate. Since $\operatorname{Df}(1,1)((x, y)-(1,1))=(x-1) \sin \left(\frac{x-1}{y-1}+1\right)=(x-1) \psi\left(\frac{x-1}{y-1}\right)=\phi(x, y)$. So the function $f(x, y)$ is l.c. differentiable at $(1,1)$.

Proposition 10.6. If f is differentiable at b then f is l.c. differentiable at the same point.
Proof. In the definition 10.1, if f is differentiable at b then $\phi(b+h)=D f(b)(x-b)$ is linear, so $D f(b)(x-b)=\phi(x)$ and f is l.c. differentiable.

Example 10.7. Let the function $f(x, y)=y \log \left((x+1)^{3} y\right)$, with $x>-1, y>0$, be differentiable at $b=\left(b_{1}, b_{2}\right)$. The f is l.c. differentiable at b if there exists $\phi \in L c(b)$ such that $D f\left(b_{1}, b_{2}\right)\left((x, y)-\left(b_{1}, b_{2}\right)\right)=\phi(x, y)$, that is $D f\left(b_{1}, b_{2}\right)\left((x, y)-\left(b_{1}, b_{2}\right)\right)=$ $\lim _{t \rightarrow 0} \frac{1}{t}\left(f\left(\left(b_{1}, b_{2}\right)+t\left(x-b_{1}, y-b_{2}\right)\right)-f\left(b_{1}, b_{2}\right)\right.$.

$$
\begin{aligned}
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(b_{1}+t x+t b_{1}\right) \log \frac{b_{1}+t x+t b_{1}}{b_{2}+t y+t b_{2}}-b_{1} \log \frac{b_{1}}{b_{2}}\right. \\
& =\log \left(\left(1+b_{1}\right)^{3} b_{2}\right)\left(y-b_{2}\right)+\frac{1}{1+b_{1}}\left(y+b_{1}\left(y-4 b_{2}\right)+(-1+3 x) b_{2}\right) \\
& =\left(x-b_{1}\right)\left(\frac{1}{1+b_{1}}\left(3 b_{2}+\frac{y-b_{2}}{x-b_{1}}\left(\left(1+b_{1}\right) \log \left(\left(1+b_{1}\right)^{3} b_{2}\right)+1+b_{1}\right)\right)\right) \\
& =\left(x-b_{1}\right) \psi\left(\frac{y-b_{2}}{x-b_{1}}\right) \\
& =\phi(x, y)
\end{aligned}
$$

then $\phi(x, y) \in L c(b)$ and f is l.c. differentiable at b.
Proposition 10.8. If $f(x)$ is l.c.differentiable at b, then it is continuous at b.
Proof. By the l.c. differentiability $\lim _{t \rightarrow 0} \frac{1}{t}\left(f(b+t(x-b)-f(b))=\phi(x)\right.$ with $\phi(x)$ a bounded function. Set $\frac{1}{|t|}(f(b+t(x-$ $b)-f(b))=\phi(x)+\theta(t)$, then $\lim _{t \rightarrow 0}\left(f(b+t(x-b)-f(b))=\lim _{t \rightarrow 0}(|t| \phi(x)+|t| \theta(t))=0\right.$, so $\lim _{t \rightarrow 0} f(b+t(x-b))=f(b)$.

11. Cones and Derivatives

Recall the known cone's definition, and apply this to $\phi^{(\alpha)}(x)=\left(x_{1}-b_{1}\right)^{\alpha} \psi_{\alpha}\left(\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right)^{\alpha}, \ldots,\left(\frac{x_{n}-b_{n}}{x_{1}-b_{1}}\right)^{\alpha}\right)=0$, where $\alpha \in \Re-\{0\}$, ψ is an arbitrary function, with $\phi^{(\alpha)}(a)=0$. Then $\phi^{(\alpha)}(x)$ is a cone if the straight line $r=a+t(a-b), t \in \Re$, joining the two points $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$, is completely contained in $\phi^{(\alpha)}(x)$. Since

$$
\begin{aligned}
\left.\phi^{(\alpha)}(a+t(a-b))\right) & =\left(a_{1}+t\left(a_{1}-b_{1}\right)\right)^{\alpha} \psi\left(\left(\frac{a_{2}+t\left(a_{2}-b_{2}\right)-b_{2}}{a_{1}+t\left(a_{1}-b_{1}\right)-b_{1}}\right)^{\alpha}, \ldots,\left(\frac{a_{n}+t\left(a_{n}-b_{n}\right)-b_{n}}{a_{1}+t\left(a_{1}-b_{1}\right)-b_{1}}\right)^{\alpha}\right) \\
& \left.=(1+t)^{\alpha}\left(a_{1}-b_{1}\right)^{\alpha} \psi\left(\frac{a_{2}-b_{2}}{a_{1}-b_{1}}\right)^{\alpha}, \ldots,\left(\frac{a_{n}-b_{n}}{a_{1}-b_{1}}\right)^{\alpha}\right) \\
& =(1+t)^{\alpha} \phi^{(\alpha)}(a)=0
\end{aligned}
$$

then the line r is in $\phi^{(\alpha)}(x)$. The Taylor's formula may be written by the cones $\phi^{(i)}(x), i \in N-\{0\}$
Proposition 11.1. Let $f: U \subseteq \Re^{n} \rightarrow \Re$ be a function of class C^{p} in the open U, with $\|x-b\|=1$, then its Taylor's formula may be set in the form

$$
\begin{equation*}
f(x)=f(b)+\frac{1}{1!} \phi^{(1)}(x)+\cdots+\frac{1}{(p-1)!} \phi^{(p-1)}(x)+\theta(x-b) . \tag{19}
\end{equation*}
$$

Proof. Since $D^{i} f(b)(x-b)^{(i)}$ is multilinear, then $D^{i} f(b)(x-b)^{(i)}=\phi^{(i)}(x)=\left(x_{1}-b_{1}\right)^{i} \psi_{i}\left(\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right)^{i}, \ldots,\left(\frac{x_{n}-b_{n}}{x_{1}-b_{1}}\right)^{i}\right)$ with $i=1, \ldots, p-1$.

Example 11.2. The function $f(x, y)=x^{4}+(y-2)^{3}$, with respect to the point $b=\left(b_{1}, b_{2}\right)$, has the Taylor's formula

$$
\begin{aligned}
x^{4}+(y-2)^{3} & =b_{1}^{4}+\left(b_{2}-2\right)^{3}+\frac{1}{1!}\left(x-b_{1}\right)\left(4 b_{1}^{3}+3\left(\frac{y-b_{2}}{x-b_{1}}\right)\left(b_{2}-2\right)^{2}\right) \\
& +\frac{1}{2!}\left(x-b_{1}\right)^{2} 6\left(2 b_{1}^{2}+\left(\frac{y-b_{2}}{x-b_{1}}\right)^{2}\left(b_{2}-2\right)\right)+\frac{1}{3!}\left(x-b_{1}\right)^{3} 6\left(4 b_{1}+\left(\frac{y-b_{2}}{x-b_{1}}\right)^{3}\right)+\frac{1}{4!}\left(x-b_{1}\right)^{4} 24
\end{aligned}
$$

Let $c=x+t(x-b)$, with $t \in \Re$, be a point on the straight line connecting x and b, then
Proposition 11.3. Let $f: U \subseteq \Re^{n} \rightarrow \Re$ be a function of class C^{p} in the open U, it holds

$$
\begin{equation*}
f(c)=f(b)+(1+t) \phi^{(1)}(x)+\frac{1}{2!}(1+t)^{2} \phi^{(2)}(x)+\cdots+\frac{1}{(p-1)!}(1+t)^{p-1} \phi^{(p-1)}(x)+\theta_{1}(x-b) . \tag{20}
\end{equation*}
$$

Proof. The function $\phi^{(\alpha)}(x)=\left(x_{1}-b_{1}\right)^{\alpha} \psi_{\alpha}\left(\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right)^{\alpha}, \ldots,\left(\frac{x_{n}-b_{n}}{x_{1}-b_{1}}\right)^{\alpha}\right)$ satisfies

$$
\begin{aligned}
\phi^{(\alpha)}(c) & =\phi^{(\alpha)}\left((1+t) x_{1}-t b_{1}, \ldots,(1+t) x_{n}-t b_{n}\right) \\
& =(1+t)^{\alpha}\left(x_{1}-b_{1}\right)^{\alpha} \psi_{\alpha}\left(\left(\frac{(1+t)\left(x_{2}-b_{2}\right)}{(1+t)\left(x_{1}-b_{1}\right)}\right)^{\alpha}+\cdots+\left(\frac{(1+t)\left(x_{n}-b_{n}\right)}{(1+t)\left(x_{1}-b_{1}\right)}\right)^{\alpha}\right) \\
& =(1+t)^{\alpha} \phi^{(\alpha)}(x)
\end{aligned}
$$

so, substituting for 19 , it follows the 20 .
The derivatives of a function f may be expressed by the cones $\phi^{(i)}$ of the Taylor's formula 19.
Proposition 11.4. Let $f: U \subseteq \Re^{n} \rightarrow \Re$ be a function of class C^{p} in the open U, then

$$
\begin{equation*}
1 \frac{1}{i!} D^{i} f(x)(x-b)^{(i)}=\frac{1}{i!}\binom{i}{i} \phi^{(i)}(x)+\frac{1}{(i+1)!}\binom{i+1}{i} \phi^{(i+1)}(x)+\cdots+\frac{1}{(p-1)!}\binom{p-1}{i} \phi^{(p-1)}(x) \tag{21}
\end{equation*}
$$

for $i=1, \ldots, p-1$ and $n \geq 2$.
Proof. By the Taylor's formula, it is

$$
\begin{equation*}
1 f(x+t(x-b))=f(x)+t D f(x)(x-b)+\frac{t^{2}}{2!} D^{2} f(x)(x-b)^{(2)}+\cdots+\frac{t^{p-1}}{(p-1)!} D^{p-1} f(x)(x-b)^{(p-1)}+\theta_{2}(x-b) \tag{22}
\end{equation*}
$$

comparing the right sides of 20 and 22 , it follows

$$
\begin{aligned}
& f(x)=f(b)+\frac{1}{1!} \phi^{(1)}(x)+\cdots+\frac{1}{(p-1)!} \phi^{(p-1)}(x)+\theta_{1}(x-b) \\
& \left.+\left(\frac{t}{1!} \phi^{(1)}(x)+\frac{2 t}{2!} \phi^{(2)}(x)+\cdots+\frac{(p-1) t}{(p-1)!} \phi^{(p-1)}(x)\right)-t D f(x)(x-b)+\theta_{1}(x-b)\right) \\
& +\left(\frac{t^{2}}{2!}\binom{2}{2} \phi^{(2)}(x)+\frac{t^{2}}{3!}\binom{3}{2} \phi^{(3)}(x)+\cdots+\frac{t^{2}}{(p-1)!}\binom{p-1}{2} \phi^{(p-1)}(x)\right. \\
& \left.-\frac{t^{2}}{2!} D f(x)(x-b)^{(2)}+\theta_{1}(x-b)\right) \\
& +\left(\frac{t^{i}}{i!}\binom{i}{i} \phi^{(i)}(x)+\frac{t^{i}}{(i+1)!}\binom{i+1}{i} \phi^{(i+1)}(x)+\cdots+\frac{t^{i}}{(p-1)!}\binom{p-1}{i} \phi^{(p-1)}(x)\right. \\
& \left.-\frac{t^{i}}{i!} D^{i} f(x)(x-b)^{(i)}+\theta_{1}(x-b)\right) \\
& +\frac{t^{p-1}}{(p-1)!}\binom{p-1}{p-1} \phi^{(p-1)}(x)-\frac{t^{p-1}}{(p-1)!} D^{p-1} f(x)(x-b)^{(p-1)}+\theta_{1}(x-b)-\theta_{2}(x-b)
\end{aligned}
$$

then the 22 .

A corollary of the Proposition 11.4 is

Proposition 11.5. Let $f: U \subseteq \Re^{n} \rightarrow \Re$ be a function of class C^{p} in the open U, then

$$
\begin{aligned}
\frac{1}{i!} D^{i} f(x)(x-b)^{(i)}= & \frac{1}{i!}\binom{i}{i} D^{i} f(b)(x-b)^{(i)}+\frac{1}{(i+1)!}\binom{i+1}{i} D^{i+1} f(x)(x-b)^{(i+1)} \\
& \cdots+\frac{1}{(p-1)!}\binom{p-1}{i} D^{p-1} f(b)(x-b)^{(p-1)}
\end{aligned}
$$

for $i=1, \ldots, p-1$ and $x, b \in U$.
Proof. Immediate by $\phi^{(i)}(x)=D^{i} f(b)(x-b)^{(i)}$ if $f: U \subseteq \Re^{n} \rightarrow \Re$.
The derivatives of the functions $\phi^{(i)}(x)$ satisfy some properties
Proposition 11.6. Let $\phi^{(i)}: \Re^{n} \rightarrow \Re$ be a function defined by $\phi^{(i)}(x)=\left(x_{1}-b_{1}\right)^{i} \psi\left(\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right)^{i}, \ldots,\left(\frac{x_{n}-b_{n}}{x_{1}-b_{1}}\right)^{i}\right)$ for an arbitrary C^{k} differentiable ψ, with $x, b \in \Re^{n}$, then
(i) $D \phi^{(i)}(x)(x-b)=i \phi^{(i)}(x) \quad i=1,2, \ldots$
(ii) $D^{k} \phi^{(i)}(x)(x-b)^{(i)}=i(i-1) \cdots(i-(k-1)) \phi^{(i)}(x) \quad 0<k \leq i$
(iii) $D^{k} \phi^{(i)}(x)(x-b)^{(k)}=0 \quad k=i+1, \ldots$.

Proof. (i) By the $\phi^{(i)}(x+t(x-b))=(1+t)^{i} \phi^{(i)}$ it follows

$$
\begin{aligned}
D \phi^{(i)}(x)(x-b) & =\lim _{t \rightarrow 0} \frac{1}{t}\left(\phi^{(i)}(x+t(x-b))-\phi^{(i)}(x)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left((1+t)^{i} \phi^{(i)}(x)-\phi^{(i)}(x)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(1+i t+\frac{i(i-1)}{2} t^{2}+\cdots+t^{i}\right) \phi^{(i)}(x)-\phi^{(i)}(x)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(i t+\frac{i(i-1)}{2} t^{2}+\cdots+t^{i}\right) \phi^{(i)}(x)\right) \\
& =i \phi^{(i)}(x)
\end{aligned}
$$

(ii) by induction on k. (iii)For $i=1$. The first step is to prove $D^{2} \phi^{(1)}(x)(x-b)^{(2)}=0$. Denote $\psi\left(\left(\frac{x_{2}-b_{2}}{x_{1}-b_{1}}\right), \ldots,\left(\frac{x_{n}-b_{n}}{x_{1}-b_{1}}\right)\right)$ by $\psi(z)$ and $\psi^{(1,0, \ldots, 0)}(z)$ be the partial derivative with respect to the first variable, then

$$
\begin{aligned}
D^{2} \phi^{(1)}(x)(x-b)^{(2)}= & \left.\phi_{x_{1} x_{1}}^{(1)}\right)(x)\left(x_{1}-b_{1}\right)^{2}+\cdots+\phi_{x_{1} x_{n}}^{(1)}(x)\left(x_{1}-b_{1}\right)\left(x_{n}-b_{n}\right)+ \\
& \cdots+\phi_{x_{n} x_{n}}^{(1)}(x)\left(x_{n}-b_{n}\right)^{2} \\
= & \psi^{(2,0, \ldots, 0)}(z)\left(\frac{\left(x_{2}-b_{2}\right)^{2}}{x_{1}-b_{1}}-2 \frac{\left(x_{2}-b_{2}\right)^{2}}{x_{1}-b_{1}}+\frac{\left(x_{2}-b_{2}\right)^{2}}{x_{1}-b_{1}}\right)+ \\
& \cdots+\psi^{(0,0, \ldots, 2)}(z)\left(\frac{\left(x_{n}-b_{n}\right)^{2}}{x_{1}-b_{1}}-2 \frac{\left(x_{n}-b_{n}\right)^{2}}{x_{1}-b_{1}}+\frac{\left(x_{n}-b_{n}\right)^{2}}{x_{1}-b_{1}}\right) \\
& +4 \psi^{(1,1, \ldots, 0)}(z)\left(\frac{\left(x_{2}-b_{2}\right)\left(x_{3}-b_{3}\right)}{x_{1}-b_{1}}-\frac{\left(x_{2}-b_{2}\right)\left(x_{3}-b_{3}\right)}{x_{1}-b_{1}}\right)+ \\
& \cdots+4 \psi^{(0, \ldots, 1,1)}(z)\left(\frac{\left(x_{n-1}-b_{n-1}\right)\left(x_{n}-b_{n}\right)}{x_{1}-b_{1}}-\frac{\left(x_{n-1}-b_{n-1}\right)\left(x_{n}-b_{n}\right)}{x_{1}-b_{1}}\right) \\
& =0
\end{aligned}
$$

Now, by induction, $D^{k-1} \phi(x)(x-b)=0$ so $D^{k} \phi(x)(x-b)=D\left(D^{k-1} \phi(x)(x-b)\right)=0$.

12. h-derivatives

Let $f: U \subseteq \Re^{2} \rightarrow \Re$ be a function of class C^{p} in the open U and suppose the point $c=(b+t(x-b)) \in U$, with $t \in \Re$, then the function $g(t)=f(b+t(x-b))$ is defined and it is known that $g^{n}(t)=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k, k)}(b+t(x-$ $b))\left(x_{1}-b_{1}\right)^{(n-k)}\left(x_{2}-b_{2}\right)^{k}$, where $f^{(n-k, k)}$ denote the partial derivative $\frac{\partial^{n} f}{\partial x_{1}^{n-k} \partial x_{2}^{k}}$. In general, if $f: U \subseteq \Re^{r} \rightarrow \Re$, then $g^{n}(t)=\sum_{k_{1}, \ldots, k_{r}=n}\binom{n}{k_{1}, \ldots, k_{r}} f^{\left(k_{1}, \ldots, k_{r}\right)}(b+t(x-b)) \prod_{i=1}^{r}\left(x_{i}-b_{i}\right)^{k_{i}}$, where $\binom{n}{k_{1}, \ldots, k_{r}}=\frac{n!}{\prod_{i=1}^{r} k_{i}!}$ and $\sum_{k_{1}, \ldots, k_{r}=n}$ denote the sum over all subsets of nonnegative integer indices k_{1} through k_{r} such that the sum of all k_{i} is n. By a similar way, for the function f, it is possible to define new "derivatives". In the simplest case of a differentiable $f: \Re \rightarrow \Re$, the first derivative may be defined by the finite $\lim _{t \rightarrow 0} \frac{f(x+k(t))-f(x)}{t}$. This limit has value $f^{\prime}(x)$ if $k(t)$ is a differentiable function with $\lim _{t \rightarrow 0} k(t)=0$ and $\lim _{t \rightarrow 0} k^{\prime}(t)=1$. Among the functions with this property, the next definition chooses $k(t)=e^{t}-1$.

Definition 12.1.

(i) The h-derivative of the function $f: U \subseteq \Re^{r} \rightarrow \Re$, $r \geq 2$, of class C^{p}, at the point b, is defined by $H^{n} f(b)(b-x)^{(n)}=$ $\left(\frac{d}{d t}\right)^{n} h(0) \quad n=1,2, \ldots, p$, where $h(t)=f\left(x+e^{t}(b-x)\right)$ and $\left(x+e^{t}(b-x)\right) \in U$.
(ii) In the special case $f: U \subseteq \Re \rightarrow \Re$, the h-derivative at the point x is $H^{n} f(x)=\left(\frac{d}{d t}\right)^{n} h(0) \quad n=1,2, \ldots, p$, where $h(t)=f\left(x-1+e^{t}\right)$, with $\left(x-1+e^{t}\right) \in U$.

Next example stresses (i) as a particular case of (ii).
Example 12.2. By the (i), for $f(x)$ at a point $b=\left(b_{1}, b_{2}\right)$, setting $(x-b)=e_{1}=(1,0)$, is $H^{4} f(b) e_{1}^{(4)}=f^{\prime}(b)+7 f^{(2)}(b)+$ $6 f^{(3)}(b)+f^{(4)}(b)$. By the (ii), with $f: \Re \rightarrow \Re H^{4} f(x)=f^{\prime}(x)+7 f^{(2)}(x)+6 f^{(3)}(x)+f^{(4)}(x)$. Then, the derivatives are equal.

Example 12.3. For the elementary function x^{α},

$$
\begin{aligned}
& H x^{\alpha}=\alpha x^{\alpha-1}, \quad H^{2} x^{\alpha}=\alpha(\alpha-1) x^{\alpha-2}+\alpha x^{\alpha-1} \\
& H^{3} x^{\alpha}=\alpha(\alpha-1)(\alpha-2) x^{\alpha-2}+3 \alpha(\alpha-1) x^{\alpha-2}+\alpha x^{\alpha-1}
\end{aligned}
$$

that is, $H^{n} x^{\alpha}$ is a polynomial with n addend and degree $\alpha-1$.
It is immediate that
(i) $h^{\prime}(0)=D_{b} f(b)(b-x)=-D f(b)(x-b)=-g^{\prime}(0)$
(ii) $h^{\prime \prime}(0)=D_{b}^{2} f(b)(b-x)^{(2)}=D^{2} f(b)(b-x)^{(2)}+D f(b)(b-x)=-\left(g^{2}(0)+g^{\prime}(0)\right)$
where D_{b} denotes the derivative with respect to the vector variable b. The higher n-th derivative will be denoted by $h^{n}(0)=D_{b}^{n} f(b)(b-x)^{(n)}=H^{n} f(b)(b-x)^{(n)}$.

Proposition 12.4. Let $\psi: \Re^{n} \rightarrow \Re$ be the homogeneous function of class C^{p}, defined by $x \rightarrow \psi\left(\frac{x_{2}}{x_{1}}, \ldots, \frac{x_{n}}{x_{1}}\right)$, with arbitrary ψ. Then $H^{k} \psi(x) x^{(k)}=0 \quad k=1, \ldots$.

Proof. By the Theorem 9.1

$$
H^{k} \psi(x) x^{(k)}=\frac{d}{d t} \psi\left(\frac{x_{2}+e^{t} x_{2}}{x_{1}+e^{t} x_{1}}, \ldots, \frac{x_{n}+e^{t} x_{n}}{x_{1}+e^{t} x_{1}}\right)_{t=0}=D^{k} \psi(x) x^{(k)}=0
$$

Proposition 12.5. Let $f: U \subseteq \Re^{r} \rightarrow \Re$ be a function of class C^{n} in the open U, then
(i) $D_{b} g^{n}(t)(x-b)=(1-t) g^{n+1}(t)-n g^{n}(t) \quad c=b+t(x-b) \in U$
(ii) $D_{t}\left(D_{b} g^{n-1}(t)(x-b)\right)=D_{b} g^{n}(t)(x-b)$
(iii) $D^{n} f(b)(x-b)^{(n)}=\phi^{(n)}(x)=g^{n}(0)=D_{b} \phi^{(n-1)}(x)(x-b)+(n-1) \phi^{(n-1)}(x)$
where $n=1, \ldots, p$ and $\phi^{(0)}(x)=f(b)$.
Proof. (i) In order to reduce the proof, only two variables x_{1}, x_{2} are considered

$$
\begin{aligned}
D_{b} g^{n}(t)(x-b) & =D_{b}\left(\sum_{k=0}^{n}\binom{n}{k} f^{(n-k, k)}(c)\left(x_{1}-b_{1}\right)^{n-k}\left(x_{2}-b_{2}\right)^{k}\right)(x-b) \\
& =\left(x_{1}-b_{1}\right) \sum_{k=0}^{n}\left(\binom{n}{k}\left(-(n-k)\left(x_{1}-b_{1}\right)^{n-k-1}\left(x_{2}-b_{2}\right)^{k} f^{(n-k, k)}(c)\right)\right. \\
& \left.+\binom{n}{k} f^{(n-k+1, k)}(c)(1-t)\left(x_{1}-b_{1}\right)^{n-k}\left(x_{2}-b_{2}\right)^{k}\right) \\
& +\left(x_{2}-b_{2}\right) \sum_{k=0}^{n}\left(\binom{n}{k}\left(-k\left(x_{2}-b_{2}\right)^{k-1}\left(x_{1}-b_{1}\right)^{n-k} f^{(n-k, k)}(c)\right)+\right. \\
& \left.+\binom{n}{k} f^{(n-k, k+1)}(c)(1-t)\left(x_{1}-b_{1}\right)^{n-k}\left(x_{2}-b_{2}\right)^{k}\right) \\
& =-\sum_{k=0}^{n}\left(\binom{n}{k}\left((n-k)\left(x_{1}-b_{1}\right)^{n-k}\left(x_{2}-b_{2}\right)^{k} f^{(n-k, k)}(c)\right)\right. \\
& \left.+\binom{n}{k} k\left(x_{1}-b_{1}\right)^{n-k}\left(x_{2}-b_{2}\right)^{k} f^{(n-k, k)}(c)\right) \\
& +\sum_{k=0}^{n}\left(\binom{n}{k} f^{(n-k+1, k)}(c)\left(x_{1}-b_{1}\right)^{n-k-1}\left(x_{2}-b_{2}\right)^{k}\right) \\
& \left.+\binom{n}{k} f^{(n-k, k+1)}(c)(1-t)\left(x_{1}-b_{1}\right)^{n-k}\left(x_{2}-b_{2}\right)^{k+1}\right)(1-t) \\
& =-\sum_{k=0}^{n}\left(n\binom{n}{k}\left(x_{1}-b_{1}\right)^{n-k}\left(x_{2}-b_{2}\right)^{k} f^{(n-k, k)}(c)\right) \\
& +\sum_{k=0}^{n}\binom{n}{k}\left(\left(x_{1}-b_{1}\right)^{n-k+1}\left(x_{2}-b_{2}\right)^{k} f^{(n-k+1, k)}(c)\right. \\
& \left.+\left(x_{1}-b_{1}\right)^{n-k}\left(x_{2}-b_{2}\right)^{k+1} f^{(n-k, k+1)}(c)\right)(1-t) \\
& =-n g^{n}(t)+\left(\sum_{k=0}^{n+1}\binom{n+1}{k}\left(x_{1}-b_{1}\right)^{n+1-k}\left(x_{2}-b_{2}\right)^{k} f^{(n+1-k, k)}(c)\right)(1-t) \\
& =(1-t) g^{n+1}(t)-n g^{n}(t)
\end{aligned}
$$

(ii) By $(i) D_{b} g^{n-1}(t)(x-b)=(1-t) g^{n}(t)-(n-1) g^{n-1}(t)$, then

$$
\begin{aligned}
D_{t}\left(D_{b} g^{n-1}(t)(x-b)\right) & =D_{t}\left((1-t) g^{n}(t)-(n-1) g^{n-1}(t)\right) \\
& =-g^{n}(t)+(1-t) g^{n+1}(t)-(n-1) g^{n}(t) \\
& =(1-t) g^{n+1}(t)-n g^{n}(t) \\
& =D_{b} g^{n}(t)(x-b)
\end{aligned}
$$

(iii) It is a special case of (i) by $t=0$.

Recall the known functions

Definition 12.6. The k-th elementary symmetric function on the n numbers $\lambda_{1}, \ldots, \lambda_{n}$ is $S_{k}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=$ $\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \Pi_{j=1}^{k} \lambda_{i_{j}}$ the sum of all $\binom{n}{k} k$-fold products of distinct items from $\lambda_{1}, \ldots, \lambda_{n}$.

Particular cases are $S_{1}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\lambda_{1}+\cdots+\lambda_{n}$ and $S_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\lambda_{1} \cdots \lambda_{n}$.

Proposition 12.7. Let $f: U \subseteq \Re^{r} \rightarrow \Re$ be a function of class C^{n} in the open U, then

$$
\begin{aligned}
D^{n} f(b)(x-b)^{(n)} & =D_{b}^{n} f(b)(x-b)^{(n)}+S_{1}(1, \ldots, n-1) D_{b}^{n-1} f(b)(x-b)^{(n-1)} \\
& +S_{2}(1, \ldots, n-1) D_{b}^{n-2} f(b)(x-b)^{(n-2)}+\cdots+S_{n-1}(1, \ldots, n-1) D_{b} f(b)(x-b) \\
& =\left(D_{b} f(b)(x-b)+1\right) \circ\left(D_{b} f(b)(x-b)+2\right) \circ \cdots \circ\left(D_{b} f(b)(x-b)+n-1\right)+D_{b}^{n} f(b)(x-b)^{(n)}
\end{aligned}
$$

where $D_{b} f(b)(x-b) \circ D_{b} f(b)(x-b)=D_{b}^{2} f(b)(x-b)^{(2)}$.
Proof. If $n=1$ it immediate that $D f(b)(x-b)=D_{b} f(b)(x-b)$. By induction and using (iii) of Proposition 12.4

$$
\begin{aligned}
D^{n+1} f(b)(x-b)^{(n+1)} & =g^{(n+1)}(0)=n g^{n}(0)+D_{b} g^{n}(0)(x-b) \\
& =n\left(D_{b}^{n} f(b)(x-b)^{(n)}+S_{1}(1, \ldots, n-1) D_{b}^{n-1} f(b)(x-b)^{(n-1)}+\cdots\right. \\
& \left.\cdots+S_{n-1}(1, \ldots, n-1) D_{b} f(b)(x-b)\right)+D_{b}\left(D_{b}^{n} f(b)(x-b)^{(n)}\right. \\
& +S_{1}(1, \ldots, n-1) D_{b}^{n-1} f(b)(x-b)^{(n-1)}+\cdots \\
& \left.\cdots+S_{n-1}(1, \ldots, n-1) D_{b} f(b)(x-b)\right)(x-b) \\
& =D_{b}^{n+1} f(b)(x-b)^{(n+1)}+\left(n+S_{1}(1, \ldots, n-1)\right) D_{b}^{n} f(b)(x-b)^{(n)} \\
& +\left(n S_{1}(1, \ldots, n-1)+S_{2}(1, \ldots, n-1)\right) D_{b}^{n-1} f(b)(x-b)^{(n-1)}+\cdots \\
& \cdots+\left(n S_{n-2}(1, \ldots, n-1)+S_{n-1}(1, \ldots, n-1)\right) D_{b}^{2} f(b)(x-b)^{(2)} \\
& +n S_{n-1}(1, \ldots, n-1) D_{b} f(b)(x-b) \\
& =D_{b}^{n+1} f(b)(x-b)^{(n+1)}+S_{1}(1, \ldots, n) D_{b}^{n} f(b)(x-b)^{(n)} \\
& +S_{2}(1, \ldots, n) D_{b}^{n-1} f(b)(x-b)^{(n-1)}+\cdots+S_{n}(1, \ldots, n) D_{b} f(b)(x-b)
\end{aligned}
$$

By the h-derivatives the Taylor's formula has the following form

Proposition 12.8. Let $f: U \subseteq \Re^{r} \rightarrow \Re$ be a function of class C^{n} in the open U and $b+t(x-b) \in U$, then

$$
\begin{aligned}
f(x) & =f(b)+\left(\frac{1}{1!}+\sum_{i=1}^{n-1} \frac{1}{(i+1)!} S_{i}(1, \ldots, i)\right) D_{b} f(b)(x-b) \\
& +\left(\frac{1}{2!}+\sum_{i=1}^{n-2} \frac{1}{(i+2)!} S_{i}(1, \ldots, i, i+1)\right) D_{b}^{2} f(b)(x-b)^{(2)}+\cdots \\
& \cdots+\left(\frac{1}{j!}+\sum_{i=1}^{n-j} \frac{1}{(i+j)!} S_{i}(1, \ldots, i, i+1, \ldots, i+j-1)\right) D_{b}^{j} f(b)(x-b)^{(j)}+\cdots \\
& \cdots+\frac{1}{n!} D_{b}^{n} f(b)(x-b)^{(n)}+\theta(x-b)
\end{aligned}
$$

Proof. In the Taylor's formula

$$
f(x)=f(b)+\frac{1}{1!} D f(b)(x-b)+\cdots+\frac{1}{n!} D^{n} f(b)(x-b)^{(n)}+\theta(x-b)
$$

by the Proposition 12.7, replacing the derivatives

$$
\begin{aligned}
f(x) & =f(b)+\left(S_{0}(0)+\frac{1}{2!} S_{1}(1)+\frac{1}{3!} S_{2}(1,2)+\cdots+\frac{1}{n!} S_{n-1}(1, \ldots, n-1)\right) D_{b} f(b)(x-b) \\
& +\left(\frac{1}{2!} S_{0}(1)+\frac{1}{3!} S_{1}(1,2)+\frac{1}{4!} S_{2}(1,2,3)+\cdots+\frac{1}{n!} S_{n-2}(1, \ldots, n-1)\right) D_{b}^{2} f(b)(x-b)^{(2)}+\cdots+\frac{1}{n!} D_{b}^{n} f(b)(x-b)^{(n)}
\end{aligned}
$$

the new formula follows.
Example 12.9. For $n=2$ it is $f(x)=f(b)+\frac{3}{2} D_{b} f(b)(x-b)+\frac{1}{2} D_{b}^{2} f(b)(x-b)^{(2)}+\theta(x-b)$ for $n=4$

$$
f(x)=f(b)+\frac{25}{12} D_{b} f(b)(x-b)+\frac{35}{24} D_{b}^{2} f(b)(x-b)^{(2)}+\frac{10}{24} D_{b}^{3} f(b)(x-b)^{(3)}+\frac{1}{24} D_{b}^{4} f(b)(x-b)^{(4)}+\theta(x-b)
$$

13. New Polynomial for $f(x)$

In this section, by the h-derivatives, a polynomial of degree n for f about the point b, is obtained. The following is a known Lemma, see [6]

Proposition 13.1. Let $f: U \subseteq \Re^{r} \rightarrow \Re$ be a function of class C^{n} in the open U, then a ξ exists, with $0 \leq \xi \leq 1$, such that $f(1)=\sum_{\nu=0}^{n-1} \frac{f^{(\nu)}(0)}{\nu!}+\frac{f^{(n)}(\xi)}{n!}$, where $f^{\nu}(t)=\left(\frac{d}{d t}\right)^{\nu} f(t)$ and the closed unit interval $0 \leq t \leq 1$ in U.

It follows
Theorem 13.2. Let $f: U \subseteq \Re^{r} \rightarrow \Re$ be a function of class C^{n} in the open $U, t \in[0,1]$, and $\left(x+e^{t}(b-x)\right) \in U$, then

$$
\begin{equation*}
f(x+e(b-x))=f(b)+\sum_{\nu=1}^{n-1} \frac{H^{(\nu)} f(b)(b-x)^{(\nu)}}{\nu!}+\theta(b-x) \tag{23}
\end{equation*}
$$

where $r \geq 2, H^{(\nu)} f(b)(b-x)^{(\nu)}=h^{(\nu)}(t)$ with $h(t)=f\left(x+e^{t}(b-x)\right)$. For $r=1$

$$
\begin{equation*}
f\left(x+\frac{1}{k}(e-1)\right)=f(x)+\sum_{\nu=1}^{n-1} \frac{h^{(\nu)}(0)}{\nu!}+\theta(x) \tag{24}
\end{equation*}
$$

where $h(t)=f\left(x+\frac{1}{k}\left(e^{t}-1\right)\right), k \in\{\Re-0\}$ and $\left(x+\frac{1}{k}\left(e^{t}-1\right)\right) \in U$.
Proof. By the lemma 13.1, applied to the function $h(t)=f\left(x+e^{t}(b-x)\right)$ or, in the particular case, to the function $h(t)=f\left(x+\frac{1}{k}\left(e^{t}-1\right)\right)$, it is $h(1)=h(0)+\sum_{\nu=1}^{n-1} \frac{h^{(\nu)}(0)}{\nu!}+\frac{h^{(n)}(\xi)}{n!}$ then the polynomial 23 and 24.

By the 24 , for $t \rightarrow 0$,

$$
\begin{aligned}
f\left(x+\frac{1}{k}\left(e^{t}-1\right)\right)= & f(x)+t \frac{\left.f^{\prime}(x)\right)}{k}+\frac{t^{2}}{2!}\left(\frac{f^{\prime}(x)}{k}+\frac{\left.f^{\prime \prime}(x)\right)}{k^{2}}\right. \\
& +\frac{t^{3}}{3!}\left(\frac{f^{\prime}(x)}{k}+3 \frac{f^{\prime \prime}(x)}{k^{2}}+\frac{f^{(3)}(x)}{k^{3}}\right)+\frac{t^{4}}{4!}\left(\frac{f^{\prime}(x)}{k}+7 \frac{f^{\prime \prime}\left(x_{0}\right)}{k^{2}}+6 \frac{f^{(3)}(x)}{k^{3}}+\frac{f^{(4)}(x)}{k^{4}}\right)+\circ\left(t^{4}\right)
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+\mu \frac{\left.f^{\prime}(x)\right)}{k}+\frac{\mu^{2}}{2!}\left(\frac{f^{\prime}(x)}{k}+\frac{\left.f^{\prime \prime}(x)\right)}{k^{2}}\right) \\
& \left.+\frac{\mu^{3}}{3!}\left(\frac{f^{\prime}(x)}{k}+3 \frac{f^{\prime \prime}(x)}{k^{2}}+\frac{f^{(3)}(x)}{k^{3}}\right)+\frac{\mu^{4}}{4!}\left(\frac{f^{\prime}(x)}{k}+7 \frac{f^{\prime \prime}\left(x_{0}\right)}{k^{2}}+6 \frac{f^{(3)}(x)}{k^{3}}+\frac{f^{(4)}(x)}{k^{4}}\right)\right)+\circ\left(\mu^{4}\right)
\end{aligned}
$$

where $\mu=\log \left(k\left(x-x_{0}\right)-1\right)$. By a similar way, starting from $h(t)=f\left(x-1+k^{t}\right), k>0$, the same development is obtained. It is $\log \left(k\left(x-x_{0}\right)-1\right)=O\left(k\left(x-x_{0}\right)\right)$. Moreover, by the Leibtniz's formula

$$
D^{(n)} r(t) s(t)=\sum_{i=0}^{n}\binom{n}{i} r^{(n-i)} s^{(k)},
$$

suppose $r(t)=f^{\prime}\left(x_{0}+\frac{1}{k}\left(e^{t}-1\right)\right)$ and $s(t)=e^{t}$, so

$$
h^{n}(t)=\sum_{i=0}^{n-1}\binom{n-1}{i}\left(f^{\prime}\right)^{(n-1-i)}\left(e^{t}\right)^{(i)}=e^{t} \sum_{i=0}^{n-1}\binom{n-1}{i}\left(f^{\prime}\right)^{(n-1-i)}
$$

and

$$
h^{n}(0)=\left(\sum_{i=0}^{n-1}\binom{n-1}{i}\left(f^{\prime}\right)^{(n-1-i)}(t)\right)_{t=0}
$$

then the final form

$$
\begin{align*}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\left(k f^{\prime}\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\right) \frac{\left(x-x_{0}\right)^{2}}{2!} \\
& +\left(k^{2} f^{\prime}\left(x_{0}\right)+3 k f^{\prime \prime}\left(x_{0}\right)+f^{(3)}\left(x_{0}\right)\right) \frac{\left(x-x_{0}\right)^{3}}{3!}+\cdots+\left(\sum_{i=0}^{n-1}\binom{n-1}{i}\left(f^{\prime}\right)^{(n-1-i)}(t)\right)_{t=0} \frac{\left(x-x_{0}\right)^{n}}{n!}+\circ\left(x-x_{0}\right)^{n} \tag{25}
\end{align*}
$$

Example 13.3. Using the 25, with $x_{0}=0, k=1$

$$
\begin{aligned}
e^{x} & =e^{0}+e^{0} x+\left(e^{0}+e^{0}\right) \frac{x^{2}}{2!}+\left(e^{0}+3 e^{0}+e^{0}\right) \frac{x^{3}}{3!}+\left(e^{0}+6 e^{0}+7 e^{0}+e^{0}\right) \frac{x^{4}}{4!}+\circ\left(x^{4}\right) \\
& =1+x+x^{2}+\frac{5}{6} x^{3}+\frac{15}{24} x^{4}+\circ\left(x^{4}\right)
\end{aligned}
$$

The pointwise convergence is slower with respect to the Taylor' development, this is due to the choice $k=1$.

14. Pointwise Convergence

In Numerical Analysis and other applications, it is useful to know a development of a differentiable function f with pointwise convergence faster of the Taylor' formula. The aim of this section is to make a such representation for f. Let $h(t)$ be a differentiable function of class $C^{n+1}(U)$, where U is an open set with $t_{0} \in U$. By the Taylor' formula it follows

$$
h(t)=\sum_{i=0}^{n} \frac{h^{(i)}\left(t_{0}\right)}{i!}+E_{T, n}(t)
$$

it known that the remainder $E_{T, n}(t)$ may be written in the form $E_{T, n}(t)=\frac{1}{n!} \int_{t_{0}}^{t}(t-v)^{n} h^{(n+1)}(v) d v$. The following known theorem, see [1], estimates the remainder.

Proposition 14.1. If $h^{(n+1)}(t)$ satisfies, in $\left(t_{0}-\delta, t_{0}+\delta\right), \delta>0$, the inequality $m \leq h^{(n+1)}(t) \leq M$, then, in the same interval, it is

$$
\begin{array}{rlr}
m \frac{\left(t-t_{0}\right)^{n+1}}{(n+1)!} \leq E_{T, n}(t) & \leq M \frac{\left(t-t_{0}\right)^{n+1}}{(n+1)!} & \text { for } t>t_{0} \\
m \frac{\left(t_{0}-t\right)^{n+1}}{(n+1)!} \leq(-1)^{n+1} E_{T, n}(t) \leq M \frac{\left(t_{0}-t\right)^{n+1}}{(n+1)!} & \text { for } t<t_{0} \tag{26}
\end{array}
$$

In 25 , the h-development of f, the remainder $E_{H, n}$ is given by

$$
\begin{aligned}
E_{H, n} & =f(x)-\left(f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\left(k f^{\prime}\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\right) \frac{\left(x-x_{0}\right)^{2}}{2!}\right. \\
& +\left(k^{2} f^{\prime}\left(x_{0}\right)+3 k f^{\prime \prime}\left(x_{0}\right)+f^{(3)}\left(x_{0}\right)\right) \frac{\left(x-x_{0}\right)^{3}}{3!}+\cdots+\left(\sum_{i=0}^{n-1}\binom{n-1}{i}\left(f^{\prime}\right)^{(n-1-i)}(t)\right)_{t=0} \frac{\left(x-x_{0}\right)^{n}}{n!} \\
& \left.=f(x)-\left(f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f^{\prime \prime}\left(x_{0} \frac{\left(x-x_{0}\right)^{2}}{2!}+f^{(3)}\left(x_{0}\right)\right) \frac{\left(x-x_{0}\right)^{3}}{3!}+\cdots f^{(n)}\left(x_{0}\right)\right) \frac{\left(x-x_{0}\right)^{n}}{n!}\right) \\
& -\left(\sum_{i=2}^{n} \frac{k^{i}\left(x-x_{0}\right)^{i}}{i!}\left(\left(\sum_{j=0}^{i-1}\binom{i-1}{j}\left(f^{\prime}\right)^{(i-1-j)}(t)\right)_{t=0}-\frac{1}{k^{i}} f^{(i-1)}\left(x_{0}\right)\right)\right) \\
& =E_{T, n}-\left(\sum_{i=2}^{n} \frac{k^{i}\left(x-x_{0}\right)^{i}}{i!}\left(\left(\sum_{j=0}^{i-1}\binom{i-1}{j}\left(f^{\prime}\right)^{(i-1-j)}(t)\right)_{t=0}-\frac{1}{k^{i}} f^{(i-1)}\left(x_{0}\right)\right)\right) \\
& =E_{T, n}-r_{n}
\end{aligned}
$$

where r_{n} denotes the sum in right side. In order to determinate a value of k such that $0<\left|E_{H, n}\right|<\left|E_{T, n}\right|$, consider the two cases
(i) $0<E_{H, n}<E_{T, n}$, if $E_{T, n}>0$. By the 26, it follows $0<r_{n}<E_{T, n}$ and this inequality is satisfied substituting for the lower bound of $E_{T, n}$, that is

$$
\begin{cases}0<r_{n}<m \frac{\left(x-x_{0}\right)^{n+1}}{(n+1)!} & \text { if } x>x_{0} \tag{27}\\ 0<(-1)^{n+1} r_{n}<m \frac{\left(x_{0}-x\right)^{n+1}}{(n+1)!} & \text { if } x<x_{0}\end{cases}
$$

(ii) $E_{T, n}<E_{H, n}<0$ if $E_{T, n}<0$ in the same way, using the upper bound of $E_{T, n}$

$$
\begin{cases}M \frac{\left(x-x_{0}\right)^{n+1}}{(n+1)!}<r_{n}<0 & \text { if } x>x_{0} \tag{28}\\ M \frac{\left(x_{0}-x\right)^{n+1}}{(n+1)!}<(-1)^{n+1} r_{n}<0 & \text { if } x<x_{0}\end{cases}
$$

If $n+1$ is odd, then 27 and 28 became an unique inequality. The following examples show how to use these inequalities.

Example 14.2. Consider the h-polynomial of degree two of $f(x)=\cos x$ about $x_{0}=2$. The third derivative is $\sin x$ and this satisfies the inequality $\frac{1}{2}<\sin x<1$ on the interval $(1.8,2.5)$. So the $E_{T, 2}$ ' estimate is

$$
\begin{cases}\frac{1}{2} \frac{(x-2)^{3}}{3!}<E_{T, 2}<1 \frac{(x-2)^{3}}{3!} & \text { if } x>x_{0}, \text { where } E_{T, 2}>0 \tag{29}\\ \frac{1}{2} \frac{(2-x)^{3}}{3!}<(-1)^{3} E_{T, 2}<1 \frac{(x-2)^{3}}{3!} & \text { if } x<x_{0}, \text { where } E_{T, 2}<0\end{cases}
$$

(i) $E_{T, 2}>0$ for $x>2$, then

$$
\begin{aligned}
0<E_{H, 2} & =\left(f(x)-f\left(x_{0}\right)-\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)-\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)\right)-\frac{k\left(x-x_{0}\right)^{2}}{2} f^{\prime}\left(x_{0}\right) \\
& =E_{T, 2}-\frac{k\left(x-x_{0}\right)^{2}}{2} f^{\prime}\left(x_{0}\right)<E_{T, 2}
\end{aligned}
$$

that is $0<\frac{k\left(x-x_{0}\right)^{2}}{2} f^{\prime}\left(x_{0}\right)<E_{T, 2}$. By the 29, it is $0<k \frac{(x-2)^{2}}{2} f^{\prime}(2)<\frac{1}{12}(x-2)^{3}$, so $k>\frac{x-2}{6(-\sin 2)}$. Considering together the inequalities $-\frac{x-2}{5.4558}<k<0$. Then choose $k=-\frac{x-2}{6}$, the h-polynomial is

$$
\cos x \approx \cos 2-(\sin 2)(x-2)+\frac{(x-2)^{2}}{2}\left(-\frac{x-2}{6}(-\sin 2)-\cos 2\right) \quad \text { for } x>2
$$

(ii) $E_{T, 2}<0$ for $x<2$, then

$$
E_{T, 2}<E_{H, 2}=E_{T, 2}-\frac{k\left(x-x_{0}\right)^{2}}{2} f^{\prime}\left(x_{0}\right)<0
$$

then $0<-\frac{k\left(x-x_{0}\right)^{2}}{2}<-E_{T, 2}$. By the 29, $0<-\frac{k\left(x-x_{0}\right)^{2}}{2}<\frac{1}{12}(2-x)^{3}$ and $0<k<-\frac{2-x}{6 f^{\prime}\left(x_{0}\right)}$, then choose $k=\frac{2-x}{6}$, the h-polynomial is

$$
\cos x \approx \cos 2-(\sin 2)(x-2)+\frac{(x-2)^{2}}{2}\left(\frac{2-x}{6}(-\sin 2)-\cos 2\right) \quad \text { for } x<2
$$

The following graph immediately verifies that the h-polynomial is faster in pointwise convergence.

Example 14.3. Consider the h-polynomial of degree three of $f(x)=x \sin x$ about $x_{0}=0$. The fourth derivative is $-4 \cos x+x \sin x$ and this satisfies the inequality $-4<-4 \cos x+x \sin x<-1.3$ on the interval $(-1,1)$. So the $E_{T, 3}$, estimate is

$$
\left\{\begin{array}{lr}
-4 \frac{x^{4}}{4!}<E_{T, 3}(x)<-1.3 \frac{x^{4}}{4!} & \text { if } x>0 \text {, where } E_{T, 3}<0 \tag{30}\\
-4 \frac{(-x)^{4}}{4!}<(-1)^{4} E_{T, 3}(x)<-1.3 \frac{(-x)^{4}}{4!} & \text { if } x<0, \text { where } E_{T, 3}<0
\end{array}\right.
$$

that this

$$
-\frac{1}{6} x^{4}<E_{T, 3}(x)<-\frac{1.3}{24} x^{4} \quad \text { for } x<0 \text { and } x>0
$$

Because of $E_{T, 3}<0$, impose $E_{T, 3}<E_{H, 3}<0$ and then

$$
\begin{equation*}
E_{T, 3}<\frac{k\left(x-x_{0}\right)^{2}}{6}\left(\left(3+k\left(x-x_{0}\right)\right) f^{\prime}\left(x_{0}\right)+3\left(x-x_{0}\right) f^{\prime \prime}\left(x_{0}\right)\right)<0 \tag{31}
\end{equation*}
$$

(i) For $x>2$, by the second inequality of 31 it is

$$
k\left(\left(3+k\left(x-x_{0}\right)\right) f^{\prime}\left(x_{0}\right)+3\left(x-x_{0}\right) f^{\prime \prime}\left(x_{0}\right)\right)<0
$$

in the example $6 k x<0$ then $k<0$ the first inequality of 31, using the upper bound of $E_{T, 3}$ becomes

$$
\frac{k\left(x-x_{0}\right)^{2}}{6}\left(\left(3+k\left(x-x_{0}\right)\right) f^{\prime}\left(x_{0}\right)+3\left(x-x_{0}\right) f^{\prime \prime}\left(x_{0}\right)\right)>\frac{-1.3 x^{4}}{24}
$$

that is

$$
4 k\left(\left(3+k\left(x-x_{0}\right)\right)\left(f^{\prime}\left(x_{0}\right)+3\left(x-x_{0}\right) f^{\prime \prime}\left(x_{0}\right)\right)+1.3 x^{2}>0\right.
$$

in the example

$$
24 k x+1.3 x^{2}>0 \quad \text { then } \quad k>-0.054167 x
$$

so k has to satisfy $-0.054167<k<0$, choose $k=-0.05 x$.

(ii) For $x<0$, by the second inequality of 31, in the same way of (i), it follows

$$
6+6 k x<0 \quad \text { then } \quad k>-\frac{1}{x}
$$

by the first inequality, in the same way of (i),

$$
\begin{equation*}
24 k x+1.3 x^{2}>0 \quad \text { then } \quad k<-0.05417 x \tag{32}
\end{equation*}
$$

Again choose $k=-0.05 x$ then the h-polynomial is

$$
x \sin x \approx x^{2}-0.05 x^{4}
$$

The graph above verifies the pointwise convergence of the h-polynomial.

15. Convergence in Square Mean

For an integrable function $f(x)$, with the h-polynomial H_{n}, the square error E_{n} in the interval (a, b), is defined by

$$
E_{n}=\int_{a}^{b}\left(f(x)-H_{n}\right)^{2} d x
$$

It is possible to minimize E_{n} suitably choosing the k value in the h-polynomial. Next example shows this algorithm and confronts the result with the Taylor and Fourier polynomials.

Example 15.1. Consider $f(x)=e^{x}$ and its H-polynomial to order two about the point $x_{0}=2$. The square error, in the interval $(0,5)$, is

$$
E_{2}=\int_{a}^{b}\left(f(x)-\left(f\left(x_{0}+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2}\left(k f^{\prime}\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\right)\right)^{2} d x\right.\right.
$$

that is

$$
\begin{aligned}
E_{2} & =\int_{0}^{5}\left(e^{x}-\left(e^{2}+e^{2}(x-2)+\frac{(x-2)^{2}}{2}\left(k e^{2}+e^{2}\right)\right)^{2} d x\right. \\
& =\frac{1}{4}\left(-2+2 e^{10}+8 e^{2}(3+5 k)-4 e^{7}(11+5 k)+\frac{5}{3} e^{4}\left(152+133 k+33 k^{2}\right)\right)
\end{aligned}
$$

Find the minimum of $E_{2}(k)$

$$
D_{k} E_{2}(k)=\frac{1}{4}\left(40 e^{2}-20 e^{7}+\frac{5}{3} e^{4}(133+66 k)\right.
$$

and

$$
D_{k} E_{2}(k)=0 \quad \text { for } \quad k=\frac{1}{66 e^{2}}\left(-24-133 e^{2}+12 e^{5}\right)=1.5876
$$

The h-polynomial, with $k=1.5876$, is

$$
e^{2}\left(1+(x-2)+\frac{(x-2)^{2}}{2}(2.5876)\right)
$$

The Taylor' polynomial is

$$
e^{2}\left(1+(x-2)+\frac{(x-2)^{2}}{2}\right)
$$

The Fourier' trigonometric polynomial is

$$
\frac{e^{2 \pi}-1}{2 \pi}+\sum_{h=1}^{2} \frac{1}{\pi} \frac{e^{2 \pi}-1}{1+h^{2}} \cos (h x)+\sum_{h=1}^{2} \frac{h}{\pi} \frac{-e^{2 \pi}+1}{1+h^{2}} \sin (h x)
$$

The graph above shows that the h-polynomial is mean square convergent, in the interval $(0,5)$, better than the other polynomials. As a numerical check :
by the Taylor' polynomial, the square error is 2452
by the Fourier' polynomial, the square error is 14338
by the H - polynomial, the square error is 559.919

16. Partial h-derivatives

The partial derivatives, by the h -derivation, have the following
Definition 16.1. Let $f(x, y)$ be a function on an open set U which possess continuous partial h-derivatives, denoted by $H^{\left(\alpha_{1}, \alpha_{2}\right)} f(x, y)$, then

$$
H^{\left(\alpha_{1}, \alpha_{2}\right)} f(x, y)=\left(\frac{d}{d t}\right)^{\alpha_{2}}\left(\left(\left(\frac{d}{d t}\right)^{\alpha_{1}} h_{1}(t)\right)_{t=0}\left(x, y-1+e^{t}\right)\right)_{t=0}
$$

where $h_{1}(t)=f\left(x-1+e^{t}, y\right)$ and $k=1$.

The definition may be extended to functions with more variables.

Example 16.2.

$$
\begin{aligned}
H^{(2,1)} f(x, y) & =\left(\frac{d}{d t}\right)^{1}\left(\left(\left(\frac{d}{d t}\right)^{2} f\left(x-1+e^{t}, y\right)\right)_{t=0}\left(x, y-1+e^{t}\right)\right)_{t=0} \\
& =\left(\frac{d}{d t}\right)^{1}\left(f^{(1,0)}\left(x, y-1+e^{t}\right)+f^{(2,0)}\left(x, y-1+e^{t}\right)\right)_{t=0} \\
& =f^{(1,1)}(x, y)+f^{(2,1)}(x, y)
\end{aligned}
$$

With respect to the vector $b-x$, a new definition of partial derivatives is

Definition 16.3. Let $f(x, y)$ be a function of class C^{n} on an open set U, then

$$
K^{\left(\alpha_{1}, \alpha_{2}\right)} f\left(b_{1}, b_{2}\right)=\left(\frac{d}{d t}\right)^{\alpha_{2}}\left(\left(\left(\frac{d}{d t}\right)^{\alpha_{1}} k_{1}(0)\right)\left(x, y+e^{t}\left(b_{2}-y\right)\right)\right)_{t=0} \text { where } k_{1}(t)=f\left(x+e^{t}\left(b_{1}-x\right), y\right) .
$$

Example 16.4.

$$
\begin{aligned}
K^{(2,1)} f\left(b_{1}, b_{2}\right) & =\left(\frac{d}{d t}\right)^{1}\left(\left(\left(\frac{d}{d t}\right)^{2} f\left(x+e^{t}\left(b_{1}-x\right), y\right)\right)_{t=0}\left(x, y+e^{t}\left(b_{2}-y\right)\right)\right)_{t=0} \\
& =\left(\frac{d}{d t}\right)^{1}\left(\left(b_{1}-x\right) f^{(1,0)}\left(x, y+e^{t}\left(b_{2}-y\right)\right)+\left(b_{1}-x\right)^{2} f^{(2,0)}\left(x, y+e^{t}\left(b_{2}-y\right)\right)\right)_{t=0} \\
& =\left(b_{1}-x\right)\left(b_{2}-y\right) f^{(1,1)}\left(b_{1}, b_{2}\right)+\left(b_{1}-x\right)^{2}\left(b_{2}-y\right) f^{(2,1)}\left(b_{1}, b_{2}\right)
\end{aligned}
$$

The h-derivative and the k-partials are related by the following statement
Proposition 16.5. Let U be an open set in \Re^{2} and let $f \in C^{n}(U)$. Then

$$
H^{n} f(b)(b-x)^{(n)}=\sum_{i=0}^{n}\binom{n}{i} K^{(n-i, i)} f(b)
$$

with $x=\left(x_{1}, x_{2}\right), b=\left(b_{1}, b_{2}\right) \in U$.
Proof. It is immediate $H^{1} f(b)(b-x)=K^{(1,0)} f(b)+K^{(0,1)} f(b)$ with $h(t)=f\left(x+e^{t}(b-x)\right)$, by induction

$$
\begin{array}{rl}
H^{n+1} & f(b)(b-x)^{(n+1)}=\frac{d}{d t}\left(\left(\frac{d}{d t}\right)^{n} h(t)\right)_{t=0} \\
\quad= & \frac{d}{d t}\left(\sum_{i=0}^{n}\binom{n}{i} K^{(n-i, i)} f\left(x+e^{t}(b-x)\right)\right)_{t=0} \\
& =\sum_{i=0}^{n}\binom{n}{i}\left(K^{(n-i+1, i)} f(b)+K^{(n-i, i+1)} f(b)\right) \\
& =\sum_{i=0}^{n+1}\binom{n+1}{i} K^{(n+1-i, i)} f(b)
\end{array}
$$

The proposition may be extended to functions with more variables.
Example 16.6. For $n=3$

$$
H^{3} f(b)(b-x)^{(3)}=K^{(3,0)} f(b)+3 K^{(2,1)} f(b)+3 K^{(1,2)} f(b)+K^{(0,3)} f(b)
$$

By Definition 16.1, it is immediate to verify the Schwarz's property, that is permissible to interchange the order of differentiation

Example 16.7.

$$
\begin{aligned}
& H^{(2,0)} f(x, y)=f^{(1,0)}(x, y)+f^{(2,0)}(x, y) \\
& \left(\frac{d}{d t}\left(f^{(1,0)}\left(x, y-1+e^{t}\right)+f^{(2,0)}\left(x, y-1+e^{t}\right)\right)_{t=0}=f^{(1,1)}(x, y)+f^{(2,1)}(x, y)=H^{(2,1)} f(x, y)\right.
\end{aligned}
$$

to the same result by

$$
\begin{aligned}
& H^{(0,1)} f(x, y)=f^{(0,1)}(x, y) \\
& \left(\left(\frac{d}{d t}\right)^{2}\left(f^{(0,1)}\left(x-1+e^{t}, y\right)\right)_{t=0}=f^{(1,1)}(x, y)+f^{(2,1)}(x, y)\right. \\
& =H^{(2,1)} f(x, y)
\end{aligned}
$$

17. Homogeneous Complex Functions

The definition of h-derivative for a complex function $f(z)$ may be rewritten in the form

Definition 17.1.

$$
H f(z)=h^{\prime}(0)=\lim _{v \rightarrow 0} \frac{f\left(z+k\left(e^{t+v}-1\right)\right)-f(z)}{v}
$$

where $h(t)=f\left(z+k\left(e^{t}-1\right)\right), t, v, k \in C$.
It is immediate that $f(z)$ is necessarily continuous. Indeed, by $h(t+v)-h(t)=k(h(t+v)-h(t)) / v$, it follows

$$
\begin{aligned}
\lim _{v \rightarrow 0}(h(t+v)-h(t)) & =\lim _{v \rightarrow 0}\left(f\left(z+k\left(e^{t+v}-1\right)\right)-f\left(z+k\left(e^{t}-1\right)\right)\right. \\
& =0 \cdot h^{\prime}(t)=0
\end{aligned}
$$

so, for $t=0, \lim _{v \rightarrow 0} f\left(z+k\left(e^{v}-1\right)\right)=f(z)$ and f is continuous at z. Let $h(t)=f\left(z+k\left(e^{t}-1\right)\right)$ be differentiable at $t=0$ and let $z=x+i y, \quad t=t_{1}+i t_{2}$. By the Cauchy-Riemann equation, it follows

$$
\begin{aligned}
& H^{(1,0)} f(z)=\left(\frac{\partial h(t)}{\partial t_{1}}\right)_{t=0}=k\left(\frac{\partial f\left(z+k\left(e^{t}-1\right)\right)}{\partial x}\right)_{t=0}=k \frac{\partial f(z)}{\partial x}=k f^{\prime}(z) \\
& H^{(0,1)} f(z)=\left(\frac{\partial h(t)}{\partial t_{2}}\right)_{t=0}=k\left(\frac{\partial f\left(z+\left(e^{t}-1\right)\right)}{\partial y}\right)_{t=0}=k \frac{\partial f(z)}{\partial y}=k i f^{\prime}(z)
\end{aligned}
$$

that is $H f(z)=k f^{\prime}(z)$ and $i H^{(1,0)} f(z)=H^{(0,1)} f(z)$.
Proposition 17.2. Let $f(z)$ be analytic in a region Ω. Then

$$
\begin{equation*}
H^{(2,0)} f(z)+H^{(0,2)} f(z)=0 \tag{33}
\end{equation*}
$$

Proof. By

$$
\begin{aligned}
& H^{(2,0)} f(z)=\left(\frac{\partial^{2}}{\partial t_{1}^{2}} f\left(z+k\left(e^{t_{1}+i t_{2}}-1\right)\right)\right)_{t=0}=k f^{\prime}(z)+k^{2} f^{\prime \prime}(z) \quad \text { and } \\
& H^{(0,2)} f(z)=\left(\frac{\partial^{2}}{\partial t_{2}^{2}} f\left(z+k\left(e^{t_{1}+i t_{2}}-1\right)\right)\right)_{t=0}=-k f^{\prime}(z)-k^{2} f^{\prime \prime}(z)
\end{aligned}
$$

the 33 .

That is, the h-derivation satisfies the Laplace's equation.
Example 17.3. Let $f(z)=4 x y-i(x-i y)^{2}$, then $H^{(2,0)} f(z)=k f^{\prime}(z)+k^{2} f^{\prime \prime}(z)=-2 i k^{2}+k(-2 i(x-i y)+4 y)$
The theorem 9.1 has a version for complex homogeneous functions.
Proposition 17.4. Let $\psi: C^{2} \rightarrow C$ be the homogeneous function of class C^{p}, defined by $\left(z_{1}, z_{2}\right) \rightarrow \psi\left(\frac{z_{2}}{z_{1}}\right)$, with $z_{1}=$ $x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$. Then

$$
\begin{aligned}
& \text { (i) } \begin{cases}D^{k} \psi\left(x_{1}, x_{2}\right)\left(z_{1}, z_{2}\right)^{(k)}=0 & k=1, \ldots, p \\
D^{k} \psi\left(y_{1}, y_{2}\right)\left(z_{1}, z_{2}\right)^{(k)}=0 & k=1, \ldots, p\end{cases} \\
& \text { (ii) } \begin{cases}\psi^{(n-1,1,0,0)}\left(\frac{z_{2}}{z_{1}}\right)+(-i)^{n} \psi^{(1, n-1,0,0)}\left(\frac{z_{2}}{z_{1}}\right)=0 & \text { for } n \geq 2 \\
\psi^{(0,0, n-1,1)}\left(\frac{z_{2}}{z_{1}}\right)+(-i)^{n} \psi^{(0,0,1, n-1)}\left(\frac{z_{2}}{z_{1}}\right)=0 & \text { for } n \geq 2\end{cases}
\end{aligned}
$$

where $\psi\left(\frac{z_{2}}{z_{1}}\right)=\psi\left(x_{1}, x_{2}\right)=\psi\left(y_{1}, y_{2}\right)=\psi\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$.

Proof. (i) The partial derivatives with respect to x_{1} and x_{2} are

$$
\psi^{(1,0,0,0)}\left(\frac{z_{2}}{z_{1}}\right)=\frac{1}{z_{2}} \psi^{\prime}\left(\frac{z_{2}}{z_{1}}\right) \quad \text { and } \quad \psi^{(0,0,1,0)}\left(\frac{z_{2}}{z_{1}}\right)=-\frac{z_{1}}{z_{2}^{2}} \psi^{\prime}\left(\frac{z_{2}}{z_{1}}\right)
$$

then $\left(\psi^{(1,0,0,0)}\left(\frac{z_{2}}{z_{1}}\right)\right) \cdot z_{1}+\left(\psi^{(0,0,1,0)}\left(\frac{z_{2}}{z_{1}}\right)\right) \cdot z_{2}=0 . \quad$ By induction $\quad D^{p} \psi\left(x_{1}, x_{2}\right) \quad\left(z_{1}, z_{2}\right)^{(p)} \quad=$ $D\left(D^{p-1} \psi\left(x_{1}, x_{2}\right)\left(z_{1}, z_{2}\right)^{(p-1)}\right)\left(z_{1}, z_{2}\right)=0$. The second of (i) is proved by the same way.
(ii) The partial derivatives with respect to x_{1} and x_{2} are

$$
\psi^{(n-1,1,0,0)}\left(\frac{z_{2}}{z_{1}}\right)=\frac{i}{z_{2}^{n}} \psi^{(n)}\left(\frac{z_{2}}{z_{1}}\right) \quad \text { and } \quad \psi^{(1, n-1,0,0)}\left(\frac{z_{2}}{z_{1}}\right)=-\frac{(-i)^{1-n}}{z_{2}^{n}} \psi^{(n)}\left(\frac{z_{2}}{z_{1}}\right)
$$

summing the partial derivatives, the first of (ii) follows. By a same way, the second of (ii).

18. Power Series

The Cauchy's Theorem has an extension by the h-derivation. Let $H(\Omega)$ be the ring of all holomorphic functions in the region Ω.

Proposition 18.1. Let $h(t)=f\left(z+\frac{1}{k}\left(e^{t}-1\right)\right) \in H(\Omega)$ and γ in Ω represents a circle $a+r e^{i \theta}, 0 \leq \theta \leq 2 \pi$, then

$$
\begin{equation*}
\frac{h^{(n)}(a)}{n!}=\frac{1}{2 \pi i} \int_{\gamma} \frac{h(t)}{(t-a)^{n+1}} d t \tag{i}
\end{equation*}
$$

supposing $a=0$

$$
\begin{equation*}
\frac{h^{(n)}(0)}{n!}=\frac{H^{(n)} f(z)}{n!}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f\left(z+\frac{1}{k}\left(e^{t}-1\right)\right)}{t^{n+1}} d t \tag{ii}
\end{equation*}
$$

Proof. Immediate by the Cauchy's formula.
Example 18.2. The 35, for $n=2, f(z)=z^{2}, r=1, t=e^{i \theta}$ and $d t=i e^{i \theta} d \theta$, is

$$
\begin{aligned}
\frac{1}{2}\left(\frac{2 z}{k}+\frac{2}{k^{2}}\right) & =\frac{H^{2}\left(z^{2}\right)}{2}=\frac{h^{2}(0)}{2}=\frac{1}{2 \pi i} \int_{\gamma} \frac{\left(z+\frac{1}{k}\left(e^{t}-1\right)\right)^{2}}{t^{3}} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(z+\frac{1}{k}\left(e^{e^{i \theta}}-1\right)\right)^{2}}{\left(e^{i \theta}\right)^{2}} d \theta=\frac{1}{2 \pi} \cdot \frac{2 \pi(1+k z)}{k^{2}}=\frac{z}{k}+\frac{1}{k^{2}}
\end{aligned}
$$

The following result gives new power series for holomorphic functions, see [8]
Theorem 18.3. Let $f(z) \in H(\Omega)$ be a holomorphic function in a region Ω with $z_{0} \in \Omega$. Then f can be represented in Ω as the power series centered at z_{0}

$$
\begin{equation*}
f(z)=\sum_{n \geq 0} \frac{h^{(n)}(0)}{n!}\left(z-z_{0}\right)^{n}=f\left(z_{0}\right)+\sum_{n \geq 1} \frac{1}{n!}\left(\sum_{k=0}^{n-1}\binom{n-1}{k}\left(f^{\prime}\right)^{(n-1-k)}\left(z_{0}\right)\right)\left(z-z_{0}\right)^{n} \tag{36}
\end{equation*}
$$

where $h(t)=f\left(z+\frac{1}{k}\left(e^{t}-1\right)\right)$.
Proof. $h(t)$ is a holomorphic function at $t=0$, indeed it is the composition of two holomorphic functions . So $h(t)$ is represented by the power series $h(t)=f\left(z+\frac{1}{k}\left(e^{t}-1\right)\right)=\sum_{n \geq 0} \frac{h^{(n)}(0)}{n!}(t)^{n}$. By a substitution, it is $f(z)=\sum_{n \geq 0} \frac{h^{(n)}(0)}{n!} \log ^{n}\left(z+1-z_{0}\right)$, where \log is a branch of the logarithm, and recalling $\log \left(z-1+z_{0}\right)=O\left(z-z_{0}\right)$ it follows the 36

The next proposition gives a relation for holomorphic functions at each point of a close disk centered at 0 .

Theorem 18.4. Let γ be the counterclockwise circle with radius r centered at 0 and $f(z+t)$ be holomorphic on γ and inside, then there exists c, with $0<c<2 \pi$ such that

$$
\begin{equation*}
f\left(z+r e^{i c}\right)=\frac{r e^{i c} f\left(r e^{i c}\right)}{r e^{i c}-z} \quad \text { for all } z \text { inside } \gamma \tag{37}
\end{equation*}
$$

Proof. By the Cauchy's integral formula it follows $f(z+w)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z+t)}{t-w} d t$ then, for $w=0$, supposing $t=r e^{i \theta}$, with $d t=i r e^{i \theta} d \theta$, and $0 \leq \theta \leq 2 \pi$

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z+r e^{i \theta}\right) d \theta
$$

Again, by the Cauchy's integral formula, $f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(v)}{v-z} d v$ with z inside γ, supposing $v=r e^{i \theta}$

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(r e^{i \theta}\right)}{r e^{i \theta}-z} i r e^{i \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(r e^{i \theta}\right)}{r e^{i \theta}-z} r e^{i \theta} d \theta \quad \quad z \text { inside } \gamma
\end{aligned}
$$

comparing the two forms for $f(z)$

$$
\int_{0}^{2 \pi}\left(f\left(z+r e^{i \theta}\right)-\frac{r e^{i \theta} f\left(r e^{i \theta}\right)}{r e^{i \theta}-z}\right) d \theta=0 \quad z \text { inside } \gamma
$$

as the function in the integral is continuous, by the mean value theorem, there is at least one point c, with $0<c<2 \pi$, such that 37 .

Example 18.5. Suppose $f(z)=z^{2}$ and $r=1$, the 37 becomes $\left(z+r e^{i c}\right)^{2}=\frac{\left(r e^{i c}\right)^{2}}{r e^{i c}-z}$. Solving the equation by $e^{i c}$ it follows $e^{i c}=\frac{1}{2} z(1 \pm \sqrt{5})$, then the identity $\left(z+\frac{1}{2} z(1 \pm \sqrt{5})^{2}=\frac{\left(\frac{1}{2} z(1 \pm \sqrt{5})^{2}\right.}{\frac{1}{2} z(1 \pm \sqrt{5})-z}\right.$.

References

[1] T.M.Apostol, Calculus, J.Wiley\&S., (1969).
[2] F.Fineschi and G.Quaranta, A convex hull' characterization, Pure and Applied Mathematics Journal, 3(2)(2014), 40-48.
[3] J.B.Hiriart-Urruty and C.Lemaréchal, Fundamentals of Convex Analysis, Springer-Verlag, (2001).
[4] S.Karlin, Mathematical Methods and Theory in Games, Programming, and Economics - The Theory of Infinite Games, Addison-Wesley, (1959).
[5] S.Lang, Real and Functional Analysis, Springer-Verlag, (1993).
[6] R.Narasimhan, Analysis on Real and Complex Manifolds, North-Holland Publishing Company, (1973).
[7] Y.Pinchover and J.Rubinstein, An Introduction to Partial Differential Equations, Cambridge, (2005).
[8] W.Rudin, Real and Complex Analysis, McGraw-Hill Book C., (1987).
[9] E.Snapper, R.J.Troyer, Metric Affine Geometry, Dover Publications, Inc. New York, (1989).

[^0]: * E-mail: franco.fineschi@unisi.it

