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1. Introduction

The notion of Kenmotsu manifolds was defined and studied by Kenmotsu [13] in 1972. They set up one of the three classes

of almost contact metric manifolds M whose automorphism group attains the maximum dimension [17]. For such a manifold,

the sectional curvature of plane sections containing ξ is a constant, say c.

(i) If c > 0, M is a homogeneous Sasakian manifold of constant ϕ-sectional curvature. (ii) If c = 0, M is global Riemannian

product of a line or a circle with a Kahler manifold of constant holomorphic sectional curvature. (iii) If c < 0, M is a warped

product space R ×f C
n. Kenmotsu [13] characterized the differential geometric properties of manifolds of class. (iv) The

structure so obtained is now known as Kenmotsu structure. A Kenmotsu structure is not Sasakian.

In 1924, Friedman and Schouten [9] introduced the notion of semi-symmetric linear connection on a differentiable manifold.

Then in 1932, Hayden [10] introduced the idea of metric connection with a torsion on a Riemannain manifold. In 1970, A

systematic study of semi-symmetric metric connection on a Riemannian manifold has been given by Yano and later studied

by K. Amur and S.S.Pujar [1], M. Prvanovic [15], U.C. De and S.C. Biswas [7], A. Sharfuddin and S.I. Hussain [16], T.Q.

Binh [2], F. O Zengin and S.A. Uysal and S.A. Demirbag [24], S.K. Chaubey and R.H. Ojha ([5, 6]), H.B. Yilmaz [21] and

others.

Let M be an n-dimensional Riemannian manifold of class C∞ endowed with the Riemannian metric g and O be the Levi-

Civita connection on (Mn, g). A linear connection Õ defined on (Mn, g) is said to be semi-symmetric [9] if its torsion tensor

T is of the form

T (X,Y ) = η(Y )X − η(X)Y (1)
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where η is a 1-form and ξ is a vector field given by

η(X) = g(X, ξ) (2)

for all vector fields X ∈ χ(Mn), χ(Mn) is the set of all differentiable vector fields on Mn. A semi-symmetric connection Õ

is called a semi-symmetric metric connection [10] if it further satisfies

Õg = 0 (3)

A relation between the semi-symmetric metric connection Õ and the Levi-Civita connection O on (Mn, g) has been obtained

by K.Yano [18] which is given by

ǑXY = OXY + η(Y )X − g(X,Y )ξ (4)

we also have

(ǑXη)Y = (OXη)Y − η(Y )η(X) + η(ξ)g(X,Y ) (5)

Further, a relation between the curvature tensor R of the semi-symmetric metric connection Õ and the curvature tensor K

of the Levi-Civita connection O is given by

R(X,Y )Z = K(X,Y )Z + α(X,Z)Y − α(Y,Z)X + g(X,Z)Y − g(Y,Z)X (6)

where α is a tensor field of type (0, 2) and Q is a tensor field of type (1, 1) which is given by

α(Y,Z) = g(QY,Z) = (OY η)Z − η(Y )η(Z) +

(
1

2

)
η(ξ)g(Y,Z) (7)

from (6) and (7), we obtain

′R(X,Y, Z,W ) =′ K(X,Y, Z,W ) + α(X,Z)g(Y,W )− α(Y,Z)g(X,W ) + g(X,Z)α(Y,W )− g(Y,Z)α(X,W ) (8)

Where

′R(X,Y, Z,W ) = g(R(X,Y )Z,W ),

′K(X,Y, Z,W ) = g(K(X,Y )Z,W ) (9)

In an almost contact manifold M, the M-projective curvature tensor P with respect to semi-symmetric metric connection Õ

is given by

P (X,Y )Z = R(X,Y )Z −
(

1

4n

)
S(Y,Z)X − S(X,Z) + g(Y,Z)QX − g(X,Z)QY (10)

for X,Y, Z ∈ χ(M), where R,S and Q are the Riemannian curvature tensor, Ricci tensor and the Ricci operator with respect

to the connection Õ, respectively. From (10), it follows that

′P (X,Y, Z,W ) = R(X,Y, Z,W )−
(

1

4n

)
[S(Y,Z)g(X,W )− S(X,Z)g(Y,W ) + g(Y,Z)S(X,W )− g(X,Z)S(Y,W )] (11)

And

′P (X,Y, Z,W ) = g(P (X,Y )Z,W ) (12)
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for all vector fields X, Y, Z on M. Where S is the Ricci tensor with respect to the Semi-symmetric metric connection.

In the present paper, we study M-projective curvature tensor on a Kenmotsu manifold with respect to the semi-symmetric

metric connection. The organization of this paper is as follows:

First section contains basic concepts of semi-symmetric metric connection. In section 2, we give a brief account of the

Kenmotsu manifolds and we also give curvature tensor and Ricci tensor of a Kenmotsu manifold with respect to the

semi-symmetric metric connection. In section 3, we study the M-projectively flat Kenmotsu manifold with respect to

the semi-symmetric metric connection and proved that it is Einstein manifold. Also, an example for M-projectively flat

Kenmotsu manifold with respect to the semi-symmetric metric connection is given. Further, we shown quasi-M-projectively

flat Kenmotsu manifold with respect to the semi-symmetric metric connection and we shown that the manifold is an η-

Einstein manifold. In section 4, we investigate ξ-M-projectively flat Kenmotsu manifold with respect to the semi-symmetric

metric connection. Section 4 is devoted to the studyof φ-M-projectively flat Kenmotsu manifold with respect to the semi-

symmetric metric connection. In the last section 5, we investigate P.S = 0, in a Kenmotsu manifold with respect to the

semi-symmetric metric connection.

2. Kenmotsu Manifolds

Let M be an (2n + 1−dimensional almost contact metric manifold with an almost contact metric structure (φ, ξ, η, g)

consisting of a (1, 1) tensor field φ, a vector field ξ , a 1−form η and a Riemannian metric g on M satisfying [3]

ϕ2(X) = −X + η(X)ξ, g(X, ξ) = η(X) (13)

η(ξ) = 1, ϕ(ξ) = 0, η(ϕ(X)) = 0 (14)

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ) (15)

for all vector fields X, Y on M. If an almost contact metric manifold satisfies

(OXϕ)(Y ) = g(ϕX, Y )ξ − η(Y )φX (16)

then M is called a Kenmotsu manifold [13]. From the above relations, it follows that

OXξ = X − η(X)ξ (17)

(OXη)(Y ) = g(X,Y )ξ − η(X)η(Y ) (18)

Moreover the curvature tensor K and the Ricci tensor S of the Kenmotsu manifold with respect to the Levi-Civita connection

satisfies

K(X,Y )ξ = η(X)Y − η(Y )X, (19)

K(ξ, Y )X = η(X)Y − g(X,Y )ξ, (20)

K(X, ξ)Y = g(X,Y )ξ − η(Y )X, (21)

S̃(ϕX,ϕY ) = S̃(X,Y ) + 2nη(X)η(Y ), (22)

S(X, ξ) = −2nη(X) (23)

we state the following lemma which will be used in the next section:

Lemma 2.1 ([13]). Let M be an η−Einstein Kenmotsu manifold of the form S(X,Y ) = ag(X,Y ) + bη(X)η(Y ). If

b =constant (or,a =constant), then M is an Einstein manifold.
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3. M-projectively Flat and Quasi–M–Projectively Flat Kenmotsu
Manifolds with Respect to the Semi-symmetric Metric Connection

Definition 3.1. A Kenmotsu manifold is said to be M−projectively flat with respect to semi-symmetric metric connection

if

P (X,Y )Z = 0. (24)

Definition 3.2. A Kenmotsu manifold is said to be M−projectively flat with respect to semi-symmetric metric connection

if

g(P (X,Y )Z, φW ) = 0. (25)

Definition 3.3. A Kenmotsu manifold is said to be an η-Einstein manifold if its Ricci tensor S of the Levi-Civita connection

is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (26)

where a and b are smooth functions on the manifold.

Using (7), (14) and (18) in (6), we obtain

R(X,Y )Z = K(X,Y )Z − 3g(Y,Z)X + 3g(X,Z)Y + 2η(Y )η(Z)X − 2η(X)η(Z)Y + 2g(Y,Z)η(X)ξ − 2g(X,Z)η(Y ) (27)

using (9) in (27), we obtain

′R(X,Y, Z,W ) =′ K(X,Y, Z,W )− 3g(Y,Z)g(X,W ) + 3g(X,Z)g(Y,W )

+ 2η(Y )η(Z)g(X,W )− 2η(X)η(Z)g(Y,W )

+ 2g(Y,Z)η(X)η(W )− 2g(X,Z)η(Y )η(W ) (28)

Contracting X in (27), we obtain

S(Y,Z) = S(Y,Z)− 2(3n− 1)g(Y,Z) + 2(2n− 1)η(Y )η(Z). (29)

Substituting Z = ξ in (29) and using (23), (13) and (14), we get

S(Y, ξ) = −4nη(Y ) (30)

Again contracting Y and Z in (29), we get

r = r − 2n(6n− 1). (31)

where r and r̃ are the scalar curvature with respect to the semi-symmetric metric connection and the Levi-Civita connection

respectively.

Assume that M is M-projectively flat Kenmotsu manifold with respect to the connection Õ. i.e., P (X,Y )Z = 0. Then from

(10), we get

R(X,Y )Z = (
1

4n
)S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY (32)

putting Z = ξ in (26) and using (13) and (14), we get

R(X,Y )ξ = K(X,Y )ξ + η(X)Y − η(Y )X (33)
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using (19) in (33), we obtain

R(X,Y )ξ = 2{η(X)Y − η(Y )X} (34)

putting Z = ξ in (32) and taking inner product with W of (32) and using (34), we get

{η(X)g(Y,W )− η(Y )g(X,W )} =

(
1

4n

)
{η(Y )S(X,W )− η(X)S(Y,W )} (35)

putting Y = ξ in (35) and using (14) and (30), we get

S(X,W ) = −
(

1

4n

)
g(X,W ) (36)

Hence (36) leads the following:

Theorem 3.4. A M-projectively flat Kenmotsu manifold with respect to semi-symmetric metric connection is an Einstein

manifold with respect to semi-symmetric metric connection.

3.1. Example for M-projectively Flat Kenmotsu Manifold with Respect to Semi-
symmetric Metric Connection

Let us consider a 5-dimensional manifold M = {(x1, x2, y1, y2, z) ∈ R5 : z 6= 0}, where (x1, x2, y1, y2, z) are the standard

coordinates in R5. Let e1 = e−z( ∂
∂x1 ), e2 = e−z( ∂

∂x2 ), e3 = e−z( ∂
∂y1 ), e4 = e−z( ∂

∂y2 ), e5 = e−z( ∂
∂z

), which are linearly

independent vector fields at each point of M. Define a Riemannian metric g on M as

g = e2z(dx⊗ dx+ dy ⊗ dy) + η ⊗ η

where η is the 1-form defined by η(X) = g(X, e5) for any vector X on M. Hence, {e1, e2, e3, e4, e5} is an orthonormal basis

of M and φ be the tensor field of type (1, 1) defined as

ϕ

n∑
i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+ Z

∂

∂z
=

n∑
i=1

(
Yi

∂

∂xi
−Xi

∂

∂yi

)

Thus, we have ϕ(e1) = e3, ϕ(e2) = e4, ϕ(e3) = −e1, ϕ(e4) = −e2, ϕ(e5) = 0. Then by applying linearity of ϕ and g, we

have η(e5) = 1, ϕ2X = −X + η(X)e5, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), for any vector fields X, Y on M. Hence for e5 = ξ,

M(ϕ, ξ, η, g) defines an almost contact metric manifold. The 1-form η is closed. In addition, we have

ϕ

(
∂

∂x
,
∂

∂y

)
= g

(
∂

∂x
, ϕ

∂

∂y

)
= g

(
∂

∂x
,− ∂

∂x

)
= −e2z

Thus, we obtain ϕ = −e2zdx ∧ dy. Hence dϕ = −e2zdz ∧ dx ∧ dy = 2η ∧ ϕ. Therefore, M(ϕ, ξ, η, g) is an almost Kenmostu

manifold. It can be seen that M(ϕ, ξ, η, g) is normal. So, it is a Kenmotsu manifold. Moreover, we get

[Xi, ξ] = Xi, [Yi, ξ] = Yi, [Xi, Xj ] = 0,

[Xi, Yi] = 0, [Xi, Yj ] = 0, [Yi, Yj ] = 0, 1 ≤ i, j ≥ 2

The Riemannian connection O of the metric is given by

2g(OXY,Z) = Xg(Y,Z) + Y g(X,Z)− Zg(X,Y ) + g([X,Y ], Z)− g([Y,Z], X) + g([Z,X], Y ).
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By using Koszul’s Formula, we get OXiXi = ξ, OYiYi = ξ, OXiXj = OYiYj = OXiYi = OXiYj = 0, OXiξ = Xi, OYiξ = Yi,

1 ≤ i, j ≥ 2. Therefore, the semi-symmetric metric connection on M is given by OXiXi = 0, OYiYi = 0, OXiXj = OYiYj =

OXiYi = OXiYj = 0, OXiξ = 2Xi, OYiξ = 2Yi, 1 ≤ i, j ≥ 2.

So, it can be seen that R = 0. Thus, M(ϕ, ξ, η, g) is a M-projectively flat Kenmotsu manifold with respect to semi-

symmetric metric connection. From above theorem, M(ϕ, ξ, η, g) is an Einstein manifold with respect to semi-symmetric

metric connection. Next, Substituting X = ϕX and Y = ϕY in (10) and using (12), we get

g(P (ϕX, Y )Z,ϕW ) = ′R(ϕX, Y, Z, ϕW )−
(

1

4n

)
[S(Y,Z)g(ϕX,ϕW )− S(ϕX,Z)g(Y, ϕW )

+ g(Y,Z)S(ϕX,ϕW )− g(ϕX,Z)S(Y, ϕW ) (37)

we begin with the following:

Lemma 3.5. Let M be a (2n+ 1)−demensional Kenmotsu manifold. If M satisfies

g(P (ϕX, Y )Z,ϕW ) = 0, X, Y, Z,W ∈ χ(M), (38)

then M is an η−Einstein manifold.

Proof. Using (38) in (37), we have

′R(ϕX, Y, Z, ϕW ) =

(
1

4n

)
[S(Y,Z)g(ϕX,ϕW )− S(ϕX,Z)g(Y, ϕW ) + g(Y,Z)S(ϕX,ϕW )− g(ϕX,Z)S(Y, ϕW ) (39)

Again using (27) and (28) in (39), we get

′K(ϕX, Y, Z, ϕW ) =

(
1

n

)
g(Y,Z)g(ϕX,ϕW )−

(
1

n

)
g(ϕX,Z)g(Y, ϕW )

−
(

(2n+ 1)

2n

)
η(Y )η(Z)g(ϕX,ϕW )−

(
1

4n

)
[S(Y,Z)g(ϕX,ϕW )

− S(ϕX,Z)g(Y, ϕW ) + g(Y,Z)S(ϕX,ϕW )− g(ϕX,Z)S(Y, ϕW )] (40)

Let {e1, e2, e3, . . . , e2n, ξ} be a local orthonormal basis of vector fields in M, then {ϕe1, ϕe2, ϕe3, . . . , ϕe2n, ξ} is also a local

orthonormal basis. Putting X = W = ei in (40) and summing over = 1, . . . , 2n, we get

2n∑
i=1

‘K(ϕei, Y, Z, ϕei) =
1

n

2n∑
i=1

g(Y,Z)g(ϕei, ϕei)−
1

n

2n∑
i=1

g(ϕei, Z)g(Y, ϕei)

−
(

(2n+ 1)

2n

) 2n∑
i=1

η(Y )η(Z)g(ϕei, ϕei)−
(

1

4n

) 2n∑
i=1

[S(Y,Z)g(ϕei, ϕei)

− S(ϕei, Z)g(Y, ϕei) + g(Y,Z)S(ϕei, ϕei)− g(ϕei, Z)S(Y, ϕei)] (41)

from (41), we get

S(Y,Z) = (
(10− n+ r)

2(n+ 1)
)g(Y,Z)− (

2n+ 1

2(n+ 1)
)η(Y )η(Z) (42)

Therefore, S(Y,Z) = ag(Y,Z) + bη(Y )η(Z), where

a =

(
(10− n+ r̃)

2(n+ 1)

)
, b =

(
2n+ 1

2(n+ 1)

)
η(Y )η(Z)

This result shows that the manifold is an η−Einstein manifold. This proves the lemma.
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In view of Lemma 3.5, we can state the following theorem:

Theorem 3.6. If a Kenmotsu manifold is quasi-M-projectively flat with respect to the semi-symmetric metric connection,

then the manifold is an η-Einstein manifold.

Since a and b are both constant, by Lemma 2.1, we get following:

Corollary 3.7. If a Kenmotsu manifold is quasi-M-projectively flat with respect to the semi-symmetric metric connection,

then the manifold is an Einstein manifold.

4. ξ-M-Projectively Flat and ϕ-M-Projectively Flat Kenmotsu Man-
ifolds With Respect to Semi-Symmetric Metric Connection

Let W ∗ be the Weyl conformal curvature tensor of a (2n + 1)−dimensional manifold M. Since at each point p ∈ M the

tangent space χp(M) can be decomposed into the direct sum χp(M) = ϕ(χp(M))⊕L(ξp), where L(ξp) is an 1−dimensional

linear subspace of χp(M) generated by ξp. Then we have a map

W ∗ : χp(M)× χp(M)→ ϕ(χp(M))⊕ L(ξp),

Let us consider the following particular cases:

(1) W ∗ : χp(M)× χp(M)× χp(M)→ L(ξp), i.e., the projection of the image of W ∗ in ϕ(χp(M)) is zero.

(2) W ∗ : χp(M)× χp(M)× χp(M)→ ϕ(χp(M)), i.e., the projection of the image of W ∗ in L(ξp) is zero.

W ∗(X,Y )ξ = 0 (43)

(3) W ∗ : ϕ(χp(M)) × ϕ(χp(M)) × ϕ(χp(M)) → L(ξp), i.e., when W ∗ is restricted to ϕ(χp(M)) × ϕ(χp(M)) × ϕ(χp(M)),

the projection of the image of W ∗ in ϕ(χp(M)) is zero. This condition is equivalent to

ϕ2W ∗(ϕX,ϕY )ϕZ = 0 (44)

Here the cases 1, 2 and 3 are conformally symmetric, ξ−conformally flat and ϕ−conformally flat respectively. The cases

(1) and (2) were considered in [4] and [22] respectively. the case (3) was considered in [23] for the case M is a K-contact

manifold. Analogous to the definition of ξ−conformally flat and ϕ−conformally flat, we give the following defintions:

Definition 4.1. A Kenmotsu manifold with respect to the semi-symmetric metric connection is said to be ξ-M-projectively

flat if

P (X,Y )ξ = 0 (45)

Definition 4.2. A Kenmotsu manifold is said to be ϕ-M-projectively flat with respect to the semi-symmetric metric con-

nection if

g(P (ϕX,ϕY )ϕZ,ϕW ) = 0 (46)

where X,Y, Z,W ∈ χ(M).
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Putting Z = ξ in (26) and using (13) and (14), we get

R(X,Y )ξ = K(X,Y )ξ + η(X)Y − η(Y )X (47)

using (19) in (47), we get

R(X,Y )ξ = 2K(X,Y )ξ (48)

Putting Z = ξ in (10), we have

P (X,Y )ξ = R(X,Y )ξ − (
1

4n
)[S(Y, ξ)X − S(X, ξ)Y + g(Y, ξ)QX − g(X, ξ)QY (49)

Using (29) and (48) in (49), we get

P (X,Y )ξ = 0 (50)

This leads the following:

Theorem 4.3. If a Kenmotsu manifold admits a semi-symmetric metric connection, then the Kenmotsu manifold is ξ-M-

projectively flat with respect to the semi-symmetric metric connection.

Putting Y = ϕY and Z = ϕZ in (37), we obtain

g(P (ϕX,ϕY )ϕZ,ϕW ) = g(R(ϕX,ϕY )ϕZ,ϕW )−
(

1

4n

)
[S(ϕY, ϕZ)g(ϕX,ϕW )− S(ϕX,ϕZ)g(ϕY, ϕW )

+ g(ϕY, ϕZ)S(ϕX,ϕW )− g(ϕX,ϕZ)S(ϕY, ϕW ) (51)

Using (13), (14), (26) and (28) in (51), we get

g(P (ϕX,ϕY )ϕZ,ϕW ) = g(K(ϕX,ϕY )ϕZ,ϕW )−
(

1

n

)
g(ϕY, ϕZ)g(ϕX,ϕW ) +

(
1

n

)
g(ϕX,ϕZ)g(ϕY, ϕW )

−
(

1

4n

)
[S(ϕY, ϕZ)g(ϕX,ϕW )− S(ϕX,ϕZ)g(Y, ϕW ) + g(ϕY, ϕZ)S(ϕX,ϕW )

− g(ϕX,ϕZ)S(ϕY, ϕW )] (52)

Using (46) in (52), we get

g(K(ϕX,ϕY )ϕZ,ϕW ) = (
1

n
)g(ϕY, ϕZ)g(ϕX,ϕW ) + (

1

n
)g(ϕX,ϕZ)g(ϕY, ϕW )

−
(

1

4n

)
[S(ϕY, ϕZ)g(ϕX,ϕW )− S(ϕX,ϕZ)g(Y, ϕW )

+ g(ϕY, ϕZ)S(ϕX,ϕW )− g(ϕX,ϕZ)S(ϕY, ϕW )] (53)

Let {e1, e2, e3, . . . , e2n, ξ} be a local orthonormal basis of vector fields in M, then {ϕe1, ϕe2, ϕe3, . . . , ϕe2n, ξ} is also a local

orthonormal basis. Putting X = W = ei in (53) and summing over = 1, . . . , 2n, we get

2n∑
i=1

g(K(ϕei, ϕY )ϕZ,ϕei) =
1

n

2n∑
i=1

g(ϕY, ϕZ)g(ϕei, ϕei) +
1

n

2n∑
i=1

g(ϕei, ϕZ)g(ϕY, ϕei)

− 1

4n

2n∑
i=1

S(ϕY, ϕZ)g(ϕei, ϕei) + S(ϕei, ϕZ)g(Y, ϕei)

− g(ϕY, ϕZ)S(ϕei, ϕei)− g(ϕei, ϕZ)S(ϕY, ϕei)] (54)
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From (54), we get

S(ϕY, ϕZ) =
10n− 4 + r

2(n+ 1)
g(ϕY, ϕZ) (55)

Using (15) and (22) in (55) we get

S(Y,Z) =
10n− 4 + r

2(n+ 1)
g(Y,Z)− 4n2 + 14n− 4 + r

2(n+ 1)
η(Y )η(Z). (56)

Therefore, S(Y,Z) = ag(Y,Z) + bη(Y )η(Z). Where

a =
10n− 4 + r

2(n+ 1)
, b = −4n2 + 14n− 4 + r

2(n+ 1)

This leads the following:

Theorem 4.4. If a Kenmotsu manifold is ϕ-M-projectively flat with respect to the semi-symmetric metric connection, then

the manifold is an η−Einstein manifold.

Since a and b are both constant, by Lemma 2.1 we get following:

Corollary 4.5. If a Kenmotsu manifold is ϕ-M-projectively flat with respect to the semi-symmetric metric connection, then

the manifold is an Einstein manifold.

5. Kenmotsu Manifold with Respect to the Semi-Symmetric Metric
Connection Satisfying P.S = 0

In this Section we consider Kenmotsu Manifold with respect to the semi-symmetric metric connection M2n+1 satisfying

condition

(P (U, Y ).S)(Z,X) = 0

Then we have

S(P (U, Y )Z,X) + S(Z,P (U, Y )X) = 0 (57)

Putting U = ξ in (57), we get

S(P (ξ, Y )Z,X) + S(Z,P (ξ, Y )X) = 0 (58)

Putting X = ξ and using (28) and (29) in (10), we obtain

P (ξ, Y )Z = R(ξ, Y )Z −
(

1

4n

)
[S(Y,Z)ξ − 2(5n− 1)g(Y,Z)ξ + 2(2n+ 1)η(Y )η(Z)ξ (59)

Again putting X = ξ in (26) and using (20), we get

R(ξ, Y )Z = 2[η(Z)Y − g(Y,Z)ξ] (60)

Using (28), (29), (59) and (60) in (58), we obtain

S(Y,Z) = (
2(11n+ 7)

3
)g(Y,Z) + (

4(1− 2n)

3
)η(Y )η(Z) (61)

Therefore, S(Y,Z) = ag(Y,Z) + bη(Y )η(Z). Where

a =

(
2(11n+ 7)

3

)
, b =

(
4(1− 2n)

3

)
This leads the following:
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Theorem 5.1. If a Kenmotsu manifold with respect to the semi-symmetric metric connection satisfying P.S = 0, then the

manifold is an η−Einstein manifold.

Since a and b are both constant, by Lemma 2.1, we get following:

Corollary 5.2. If a Kenmotsu manifold with respect to the semi-symmetric metric connection satisfying P.S = 0, then the

manifold is an Einstein manifold.
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