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1. Introduction

In this paper, by a graph G(V,E) we mean a simple graph, that is nonempty, finite, having no loops, no multiple and

directed edges. Let n and m be the number of vertices and edges, respectively, of G. The degree of a vertex v in a graph G,

denoted by deg(v), is the number of vertices adjacent to v. For any vertex v of a graph G, the open neighborhood of v is

the set N(v) = {u ∈ V : uv ∈ E(G)}. For a subset S ⊆ V (G) the degree of a vertex v ∈ V (G) with respect to a subset S is

degS(v) = |N(v) ∩ S|. For graph theoretic terminology we refer to Harary book [8].

The distance between two vertices u and v is the length of a shortest path joining them. The eccentricity e(u) of a vertex

u is the distance to a vertex farthest from u. A vertex v is called an eccentric vertex of u if e(u) = d(u, v). A vertex v is

an eccentric vertex of G if v is an eccentric vertex of some vertex of G. Consequently if v is an eccentric vertex of u and w

is a neighbor of v, then d(u,w) ≤ d(u, v). A vertex v may have this property, however, without being an eccentric vertex of u.

Let G be a simple graph G = (V,E) with vertex set V (G) = {v1, v2, ..., vn}. For i 6= j, a vertex vi is a boundary vertex of

vj if d(vj , vt) ≤ d(vj , vi) for all vt ∈ N(vi) [4].

A vertex v is called a boundary neighbor of u if v is a nearest boundary of u. If u ∈ V , then the boundary neighbourhood of

u denoted by Nb(u) is defined as Nb(u) = {v ∈ V : d(u,w) ≤ d(u, v) for all w ∈ N(u)}. The cardinality of Nb(u) is denoted

by degb(u) in G. The maximum and minimum boundary degree of a vertex in G are denoted respectively by ∆b(G) and

∗ E-mail: aabuyasyn@gmail.com
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δb(G). That is ∆b(G) = maxu∈V |Nb(u)|, δb(G) = minu∈V |Nb(u)|.

A vertex u boundary dominate a vertex v if v is a boundary neighbor of u. KM.Kathiresan, G. Marimuthu and M.

Sivanandha Saraswathy introduced the concept of Boundary domination in graphs. A subset B of V (G) is called a

boundary dominating set if every vertex of V − B is boundary dominated by some vertex of B. The minimum taken

over all boundary dominating sets of a graph G is called the boundary domination number of G and is denoted by γb(G).[10].

The concept energy of a graph introduced by I. Gutman [6] in the year 1978. Let A(G) = (aij) be the adjacency matrix

of G. The eigenvalues λ1, λ2, ..., λn of a matrix A(G), assumed in nonincreasing order, are the eigenvalues of the graph G.

Let λ1, λ2, ..., λr for r ≤ n be the distinct eigenvalues of G with multiplicity m1,m2, ...,mr, respectively, the multiset of

eigenvalues of A(G) is called the spectrum of G and denoted by

Spec(G) =

 λ1 λ2 · · · λr

m1 m2 · · · mr


As A is real symmetric, the eigenvalues of G are real with sum equal to zero. The energy E(G) of G is defined to be the

sum of the absolute values of the eigenvalues of G, i.e. E(G) =
∑n
i=1 |λi|. For more details on the mathematical aspects

of the theory of graph energy we refer to [2], [7], [12]. Recently C. Adiga et al. [1] defined the minimum covering energy,

EC(G) of a graph which depends on its particular minimum cover C. Motivated by this paper, we introduce minimum

boundary dominating energy, denoted by EB(G), of a graph G, and computed minimum boundary dominating energies of

some standard graphs. Upper and lower bounds for EB(G) are established. It is possible that the boundary dominating

energy that we are considering in this paper may be have some applications in chemistry as well as in other areas.

2. The Minimum Boundary Dominating Energy of Graphs

Let G be a graph of order n with vertex set V (G) = {v1, v2, ..., vn} and edge set E. A subset B of V (G) is called a

boundary dominating set if every vertex of V −B is boundary dominated by some vertex of B. The boundary domination

number γb(G) of G is the minimum cardinality of a boundary dominating set. Any boundary dominating set with minimum

cardinality is called a MBD set. Let B be a MBD set of a graph G. The MBD matrix of G is the n× n matrix defined by

AB(G) = aij where

aij =


1 if vj ∈ Nb(vi),

1 if i = j and vi ∈ B,

0 otherwise.

The characteristic polynomial of AB(G) is denoted by

fn(G,λ) = det(λI −AB(G))

The MBD eigenvalues of the graph G are the eigenvalues of AB(G). Since AB(G) is real and symmetric, its eigenvalues

are real numbers and we label them in non-increasing order λ1 ≥ λ2 ≥ ... ≥ λn. The MBD energy of G is defined as

EB(G) =
∑n
i=1 |λi|. We first compute the MBD energy of a graph in Figure 1.

38



Mohammed Alatif and Puttaswamy

Figure 1. G

Example 2.1. Let G be a graph in fig 1 with vertices set {v1, v2, v3, v4, v5} and let its MBD set be B1 = {v1, v5}. Then

AB1(G) =



1 0 1 1 0

0 0 0 1 1

1 0 0 0 0

1 1 0 1 0

0 1 0 0 0


Characteristic equation is fn(G,λ) = λ5− 2λ4− 3λ3 + 4λ2 + 2λ− 1 = 0. Hence, the MBD eigenvalues are λ1 ≈ 2.4498, λ2 ≈

−1.3354, λ3 ≈ 1.2607, λ4 ≈ −0.7145, λ5 ≈ 0.3393. Therefore the MBD energy of G is

EB1(G) ≈ 6.0997.

If we take another MBD set in G, namely B2 = {v2, v3}, then

AB2(G) =



0 0 1 1 0

0 1 0 1 1

1 0 1 0 0

1 1 0 0 0

0 1 0 0 0


Characteristic equation is fn(G,λ) = λ5 − 2λ4 − 3λ3 + 5λ2 + 2λ− 1 = 0. Hence,the MBD eigenvalues are λ1 ≈ 2.1701, λ2 ≈

1.6180, λ3 ≈ −1.4812, λ4 ≈ −0.6180, λ5 ≈ 0.3111. Therefore the MBD energy of G is

EB2(G) ≈ 6.1984.

This example illustrates the fact that the MBD energy of a graph G depends on the choice of the MBD set. i.e. the MBD

energy is not a graph invariant.

3. Some Properties of MBD Energy of Graphs

In this section, we introduce some properties of characteristic polynomials of MBD matrix and some properties of minimum

boundary dominating eigenvalues of a graph G.

Theorem 3.1. Let G be a graph of order and size n and m, respectively. Let

fn(G,λ) = c0λ
n + c1λ

n−1 + c2λ
n−2..+ cn−1λ

2 + cn

be the characteristic polynomials of MBD matrix of a graph G. Then
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(1). c0 = 1.

(2). c1 = −|B|.

(3). c2 =

 |B|
2

 - m.

Proof.

(1). From the definition of fn(G,λ).

(2). Since the sum of diagonal elements of AB(G) is equal to |B|, where B is a MBD set a graph G. The sum of determinants

of all 1× 1 principal submatrices of AB(G) is the trace of AB(G), which evidently is equal to |B|. Thus, (−1)1c1 = |B|.

(3). (−1)2c2 is equal to the sum of determinants of all 2× 2 principal submatrices of B(G), that is

c2 =
∑

1≤i≤j≤n

∣∣∣∣∣∣∣
aii aij

aji ajj

∣∣∣∣∣∣∣
=

∑
1≤i≤j≤n

(aiiajj − aijaji)

=
∑

1≤i≤j≤n

aiiajj −
∑

1≤i≤j≤n

a2ij

=

 |B|
2

−m

Theorem 3.2. Let λ1, λ2, ..., λn be the eigenvalues of AB(G), then

(i). (i)
∑n
i=1 λi = |B|.

(ii). (ii)
∑n
i=1 λ

2
i = |B|+ 2m.

Proof.

(i). Since the sum of the eigenvalues of AB(G) is the trace of AB(G), it follows that

n∑
i=1

λi =

n∑
i=1

aii = |B|.

(ii). Similarly the sum of squares of the eigenvalues of AB(G) is the trace of (AB(G))2. Then

n∑
i=1

λ2
i =

n∑
i=1

n∑
j=1

aijaji

=

n∑
i=1

a2ii +

n∑
i 6=j

aijaji

=

n∑
i=1

a2ii + 2

n∑
i<j

a2ji

= |B|+ 2m.
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Theorem 3.3. Let G be a graph of order n and size m and let λ1(G) be the largest eigenvalue of AB(G). Then λ1(G) ≥
2m+γb
n

.

Proof. Let G be a graph of order n and let λ1 be the largest minimum boundary eigenvalue of AB(G). Then λ1 =

maxX 6=0{X
tAX
XtX

}, where X is any nonzero vector and Xt is its transpose and A is a matrix . If we tack X = J =



1

1

...

1


.

Then we have λ1 ≥ JtABJ
JtJ

= 2m+γb
n

.

Theorem 3.4. Let G be a graph with a minimum boundary dominating set B. If the minimum boundary dominating energy

EB(G) of G is a rational number,then EB(G) ≡ γb(G) (mod2).

Proof. Let λ1, λ2, ..., λn be minimum dominating eigenvalues of a graph G of which λ1, λ2, ..., λr are positive and the rest

are non-positive, then

n∑
i=1

|λi| = (λ1 + λ2 + ...+ λr)− (λr+1 + λr+2 + ...+ λn)

= 2(λ1 + λ2 + ...+ λr)− (λ1 + λ2 + ...+ λn)

= 2(λ1 + λ2 + ...+ λr)− |B| = 2q − |B|.

Hence, by Theorem 2.3 we have EB(G) = 2q − |B|, Where q = λ1 + λ2 + ...+ λr, and the proof is completed.

4. Minimum Boundary Dominating Energy of Some Standard Graphs

In this section, we investigate the exact values of the MBD energy of some standard graphs.

Theorem 4.1. For the complete graph Kn, n ≥ 2, EB(Kn) = (n− 2) +
√
n2 − 2n+ 5.

Proof. Let Kn be the complete graph with vertex set V = {v1, v2, ..., vn}, then γb = 1. Hence the MBD set is B = {v1}

and

AB(Kn) =



1 1 1 · · · 1 1

1 0 1 · · · 1 1

1 1 0 · · · 1 1

...
...

...
. . .

...
...

1 1 1 · · · 1 0


n×n

Characteristic polynomial is

fn(Kn, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −1 −1 · · · −1 −1

−1 λ −1 · · · −1 −1

−1 −1 λ · · · −1 −1

...
...

...
. . .

...
...

−1 −1 −1 · · · −1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= (λ+ 1)n+1(λ2 − (n− 1)λ− 1).
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The MBD spectrum of Kn will be written as

MBD Spec(Kn) =

 −1
(n−1)+

√
n2−2n+5

2

(n−1)−
√
n2−2n+5

2

n+ 1 1 1


Hence, the MBD energy is EB(Kn) = (n− 2) +

√
n2 − 2n+ 5.

Theorem 4.2. For n ≥ 2, the MBD energy of Star graph K1,n−1 is equal to
√

4n− 3.

Proof. Let K1,n−1 be a star graph with vertex set V = {v0, v1, v2, ..., vn−1}, v0 is the center, then γb = 1. MBD set is

B = {v0}. Then

AB(K1,n−1) =



1 1 1 · · · 1

1 0 0 · · · 0

1 0 0 · · · 0

...
...

...
. . .

...

1 0 0 · · · 0


n×n

The characteristic polynomial of AB(K1,n−1) is

fn(K1,n−1, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −1 −1 · · · −1

−1 λ 0 · · · 0

−1 0 λ · · · 0

...
...

...
. . .

...

−1 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= λn−2(λ2 − λ− (n− 1)).

It follows that the MBD spectrum is

MBD Spec(K1,n−1) =

 0 1+
√
4n−3
2

1−
√
4n−3
2

n− 2 1 1


Therefore, the MBD energy of a star graph is EB(K1,n−1) =

√
4n− 3.

Theorem 4.3. For the complete bipartite graph Kr,s, r ≤ s, the MBD energy is equal to (s−2)+
√
s2 − 2s+ 5+

√
r2 − 2r + 5.

Proof. For the complete bipartite graph Kr,s, (r ≤ s) with vertex set V = {v1, v2, ..., vr, u1, u2, ..., us}, γb = 2, hence the

MBD set is B = {v1, u1}. Then

AB(Kr,s) =



1 1 1 · · · 1 0 0 0 · · · 0

1 0 1 · · · 1 0 0 0 · · · 0

1 1 0 · · · 1 0 0 0 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

1 1 1 · · · 0 0 0 0 · · · 0

0 0 0 · · · 0 1 1 1 · · · 1

0 0 0 · · · 0 1 0 1 · · · 1

0 0 0 · · · 0 1 1 0 · · · 1

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · 0 1 1 1 · · · 0


(r+s)×(r+s)
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The characteristic polynomial of AB(Kr,s), where n = r + s is

fn(Kr,s, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −1 −1 · · · −1 0 0 · · · 0

−1 λ −1 · · · −1 0 0 · · · 0

−1 −1 λ · · · −1 0 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...

−1 −1 −1 · · · λ 0 0 · · · 0

0 0 0 · · · 0 λ− 1 −1 · · · −1

0 0 0 · · · 0 −1 λ · · · −1

...
...

...
. . .

...
...

...
. . .

...

0 0 0 · · · 0 −1 −1 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(r+s)×(r+s)

= (λ+ 1)s−2(λ2 − (s− 1)λ− 1)(λ2 − (r − 1)λ− 1)

it follows that

MBD Spec(Kr,s) =

 −1
(s−1)+

√
s2−2s+5

2

(s−1)−
√
s2−2s+5

2

(r−1)+
√
r2−2r+5

2

(r−1)−
√
r2−2r+5

2

s− 2 1 1 1 1


Hence, the MBD energy is

EB(Kr,s) = (s− 2) +
√
s2 − 2s+ 5 +

√
r2 − 2r + 5.

Definition 4.4. The double star graph Sn,m is the graph constructed from union K1,n−1 and K1,m−1 by join whose centers v0

with u0. Then V (Sn,m) = V (K1,n−1)∪V (K1,m−1) = {v0, v1, ..., vn−1, u0, u1, ..., um−1} and E(Sn,m) = {v0u0, v0vi, u0uj ; 1 ≤

i ≤ n− 1, 1 ≤ j ≤ m− 1}.

Figure 2. Double Star Graph Sn,m

Theorem 4.5. For the double star graph Sr,r with r ≥ 3, the MBD energy is equal to 2(
√
r − 1 +

√
r).

Proof. For the double star Sr,r with V (Sr,r) = {v0, v1, ..., vr−1, u0, u1, ..., ur−1}, γb = 2, hence the MBD set is B = {v0, u0}.

Then

AB(Sr,r) =



1 1 1 · · · 1 1 0 · · · 0

1 0 0 · · · 0 0 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...

1 0 0 · · · 0 0 0 · · · 0

1 0 0 · · · 0 1 1 · · · 1

0 0 0 · · · 0 1 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...

0 0 0 · · · 0 1 0 · · · 0


2r×2r
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The characteristic polynomial of AB(Sr,r) is

fn(Sr,r, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −1 −1 · · · −1 −1 0 · · · 0

−1 λ 0 · · · 0 0 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...

−1 0 0 · · · λ 0 0 · · · 0

−1 0 0 · · · 0 λ− 1 −1 · · · −1

0 0 0 · · · 0 −1 λ · · · 0

...
...

...
. . .

...
...

...
. . .

...

0 0 0 · · · 0 −1 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2r×2r

= λ2r−4(λ2 − (r − 1))(λ2 − 2λ− (r − 1)).

Then the MBD spectrum of Sr,r is

MBD Spec(Sr,r) =

 0
√
r − 1 −

√
r − 1 1 +

√
r 1−

√
r

2r − 4 1 1 1 1

 .

Hence, the MBD energy of Sr,r is

EB(Sr,r) = 2(
√
r − 1 +

√
r).

5. Bounds on Minimum Boundary Dominating Energy of Graphs

Theorem 5.1. Let G be a connected graph of order n and size m. Then

√
2m+ γb ≤ EB(G) ≤

√
n(2m+ γb).

Proof. Consider the Cauchy-Schwartiz inequality

( ∑n
i=1 aibi

)2

≤
( ∑n

i=1(ai)
2

)( ∑n
i=1(bi)

2

)

By choose ai = 1 and bi = |λi| and by Theorem 2.3, we get

(EB(G))2 =

( ∑n
i=1 |λi|

)2

≤
( ∑n

i=1 1

)( ∑n
i=1(λi)

2

)
≤ n(2m+ |B|)

≤ n(2m+ γb(G)).

Therefore, the upper bound is hold. For the lower bound since

( ∑n
i=1 |λi|

)2

≥
n∑
i=1

λ2
i ,

it follows by Theorem 2.3 that

(EB(G))2 ≥
n∑
i=1

λ2
i = 2m+ |B| = 2m+ γb(G).

Therefore, the lower bound is hold.
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Theorem 5.2. Let G be a connected graph of order n and size m. Then

√
n+ 1 ≤ EB(G) ≤ n

√
n.

Proof. Since for any graph γb(G) ≤ n−2 (see[2]), it follows that by using Theorem 2.9 and well-known result 2m ≤ n2−n,

we have

EB(G) ≤
√
n(2m+ γb) ≤

√
n[n2 − n+ (n− 2)] ≤ n

√
n.

For the lower bound, Since for any connected graph n ≤ 2m and γb(G) ≥ 1 (see[2]), it follows by Theorem 2.9 that

EB(G) ≥
√

2m+ γb ≥
√
n+ 1.

Similar to Koolen and Moultons [11], upper bound for EB(G) is given in the following theorem.

Theorem 5.3. Let G be a connected graph of order n and size m. Then

EB(G) ≤ 2m+ γb
n

+

√
(n− 1)[2m+ γb − (

2m+ γb
n

)2].

Proof. Consider the Cauchy-Schwartiz inequality

( ∑n
i=1 aibi

)2

≤
( ∑n

i=1(ai)
2

)( ∑n
i=1(bi)

2

)

By choose ai = 1 and bi = |λi| and by Theorem 2.3, we get

( ∑n
i=1 |λi|

)2

≤
( ∑n

i=1 1

)( ∑n
i=1(λi)

2

)

Hence, by Theorem 2.3 we have

(EB − |λ1|)2 ≤ (n− 1)(2m+ γb − λ2
1)

Therefore,

EB ≤ λ1 +
√

(n− 1)(2m+ γb − λ2
1).

From Theorem 2.4 we have λ1(G) ≥ 2m+γb
n

. Since f(x) = x+
√

(n− 1)(2m+ γb − x2) is a decreasing function, we have

f(λ1) ≤ f(
2m+ γb

n
).

Thus,

EB ≤ f(λ1) ≤ f(
2m+ γb

n
).

Therefore,

EB(G) ≤ 2m+ γb
n

+

√
(n− 1)[2m+ γb − (

2m+ γb
n

)2].
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Theorem 5.4. Let G be a connected graph of order n and size m. If D = det(AB(G)), then

EB(G) ≥
√

2m+ γb(G) + n(n− 1)D
n
2 .

Proof. Since

(EB(G))2 =

(
n∑
i=1

|λi|

)2

=

(
n∑
i=1

|λi|

)(
n∑
i=1

|λi|

)
=

n∑
i=1

|λi|2 + 2
∑
i 6=j

|λi||λj |.

Employing the inequality between the arithmetic and geometric means, we get

1

n(n− 1)

∑
i 6=j

|λi||λj | ≥

∏
i6=j

|λi||λj |

 1
n(n−1)

Thus

(EB(G))2 ≥
n∑
i=1

|λi|2 +
1

n(n− 1)

∏
i 6=j

|λi||λj |

 1
n(n−1)

≥
n∑
i=1

|λi|2 +
1

n(n− 1)

(∏
i=j

|λi|2(n−1)

) 1
n(n−1)

=

n∑
i=1

|λi|2 +
1

n(n− 1)

∣∣∣∣∣∏
i=j

λi

∣∣∣∣∣
2
n

= 2m+ γb(G) + n(n− 1)D
n
2 .
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