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1. Introduction

The concept of a vector space is well known, i.e, linear space is generalised by a bit more non-linearity the so called near
vector space introduced by André in [1]. A pair (V, A) is called a near vector space if it satisfies the condition of an
A—group and the quasi-kernel Q(V') generates a group (V,+). In recent years, near vector spaces have been used in several
applications, including secret sharing schemes in cryptography (see [3]) and to construct interesting examples of families of
planar near-rings in [4]. Additionally, they have proved to be of interesting from model theory perspective too. This paper
introduces the theory of near vector space. It gives important definitions, examples and some useful theorems. Regularity is
the central part in the study of near vector space and the Decomposition Theorem largely depends on the regularity notion.
The main objective of this paper is to understand the Decomposition Theorem which states that every near vector space
can be written as the direct sum of maximal regular subspaces. This paper is organised in four sections. In section 2 we
introduce the concept of a near-field. Near-fields are a source of scalars in the study of near vector space. Near-fields are also
used in the construction of near vector space as we shall see in section 4. In this paper we shall make use of right near-fields
as in André ([1]). In section 3 the theory of near vector space is presented. We start by introducing the most important
definitions: a near vector space, concept of the quasi-kernel and compatibility. We shall then introduce the concept of
regularity. Regularity plays a very important role in the theory of near vector space. As André stated in ([1]) that regular
near vector space are the building blocks of near vector space. We then build on the notion of regularity to understand the
Decomposition Theorem. We shall then give examples by applying the Decomposition Theorem and investigate how near
vector spaces are decomposed into maximal regular subspaces. In section 4 we will introduce the concept of cardinality of

the quasi-kernel Q(V'). Here will shall use the already existing examples to determine the cardinality of near vector spaces.
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2. Preliminary Material

Near-fields will serve as the source of scalars in the theory of near vector spaces. Let us start by defining a near-ring.
Definition 2.1 ([5]). A near-ring N is a set together with two binary operations + and - which satisfies the following azioms:
(i). (N,4) is a group,
(#). (N,-) is a semi group,
(4ii). (a1 +a2)-a3 =a1-a3+az- a3V ai,az2,a3 € N.
This is the definition for a right near-ring, since the right distributive law is satisfied. The set N is said to be a near-field if
N\ {0} is also a group.
Remark 2.2. We may also define a left nearing where aziom (iii) becomes
(i1) az - (a1 +a2) =az-a1 +az-az V ai,az,a3 € N.

In this paper we will consider right near-rings. If IV contains an element 1 so that al = la = a for all a € N then 1 is called
the multiplicative identity of N. The identity element of the additive group structure of (N, +, ) is called the zero of the

near-ring and is denoted by 0. Throughout this paper we shall use N* = N \ {0}.
Example 2.3 ([5]).
(i). Every ring is near-ring.
(#). If R is a commutative ring with identity, it can be shown that (R[z],+,0) is a near-ring, under pointwise addition and

composition, where R[x] is the set of polynomials with coefficient in R.

(i1). Let (G,+) be a group. Define M(G) to be the set of all functions from G to G with pointwise addition (f + g)(z) :=
f(z) + g(x) for all f,g € M(G),x € G and composition of maps (f o g)(z) := f(g(z)). Then (M(G),+,0) is right
near-ring

We now give a definition of a Dickson near-field which shall be used in section 4.

Definition 2.4 ([5]). Let N be a near-field and let Aut(N,-+,-) be the set of all automorphisms of N. A map ¢ :—

Aut(N, +,-); n > ¢n is said to be a coupling map if for alln,m € N*, we have ¢n © pm = ¢, ..., and N* =N\ {0}. If ¢

is a coupling map on N then

bm(m)m if m £ 0
nosm = f(z) =
0 ifm=20

If ¢ is a coupling map on N then (N,+,04) is again a near-field.

Definition 2.5 ([5]). If (N, +,-) is a near-field and ¢ a coupling on N*. Then (N, +,04) is called p— derivation of (N, +,-).
Thus a nearfield N is called a Dickson near-field if N is the ¢— derivation of some field F, i.e F® = N.

Definition 2.6 ([6]). A pair of numbers (p,m) € N is called a Dickson pair if
(i). m is some power of a prime p.
(ii). Each prime divisor of m divides p — 1.

Remark 2.7. Every finite field is a Dickson near-field. In this paper our examples will be restricted to Z,, where p is a

prime and R, the field of real numbers.
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3. The Theory of Near Vector Spaces

This section introduces the fundamental theory of near vector spaces. We shall give the most important definitions, lemmas

and theorems of a near vector spaces.

3.1. Near Vector Space

Let us define right vector space over a division ring A.

Definition 3.1 ([1]). A right vector space V over a division ring A is set V such that for each o € A and v € V, there is

a unique element va € V' such that the following conditions hold for all o, € A and u,v € V
(i) (V,4) is an abelian group,
(i) (v +u)a = va + ua,
(ii1) v(a+ B) = va +vf,
(i) v(af) = (va)B,

(v) vl =v.

The members of V are called vectors and the members of the division ring are called scalars. The operation that combines a

scalar o and a vector v to form the vector va is called scalar multiplication.
We then define the concept of a near vector space which shall be used mostly in this section.
Definition 3.2 ([2, 7]). A near vector space is a pair (V, A) which satisfies the following conditions;
(i) (V,4) is a group and A is a set of endomorphisms of V.
(i) The endomorphisms 0,1 and -1, defined by 20 = 0,21 = x and z(—1) = —x for each x € V are elements of A.
(i) A" := A\ {0} is a subgroup of the group of automorphisms of (V,+).

() If ta = 8 with x € V and o, B € A, then we have o = 8 or x =0, i.e A acts fized point free on V.

(v) The quasi-kernel Q(V) of V, generates V as a group. Here,

Q) ={x € V|Va,p € A, Iy € A such that xa + 8 = z~}.

The concept of the Quasi-kernel Q(V') of V is mostly used in the theory of near vector spaces and has the important properties

that shall be used on this section.
Lemma 3.3 ([1, 7]). The Quasi-kernel has the following properties;
(i) 0 €@,
(is) If u € Q\ {0}, then v is uniquely determined in Definition 3.2 (v) by a and 3,
(iii) Foru € Q and A\ € A, we have uX € Q, i.e uA C Q,

(iv) Foru € @Q and o, B € A, there exists v € A such that ua — uf = uy
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() Ifue@and \s € A, i =1,2,...,n, then 3, uhi =un € Q for somen € A and for all integers i > 1
Proof.
(i) Let a, B € A. Take any A € A, then O+ 08 = 0X. Thus 0 € Q.

(ii) Let u € @ \ {0} and «a, 3 € A. Suppose there exists v,v" € A such that ua + uf = uwy = uy’. Then by Definition 3.2

(iv) we have v =+, as u # 0.

(iii) Suppose u € @ and A € A. There are two cases to consider
Case 1: A=0. ThusuA=u0=0€ Q
Case 2: A # 0 Let «, 8 € A. Then by Definition 3.2 (iii), Ao € A and A8 € A. Now since u € @, there exists a v € A
such that u(Aa) + u(AB8) = ul = udA"1y. So (uX)a + (uA)B = (uX)(A\~7) which implies that u) € Q. Thus uA C Q.

(iv) Let w € Q\{0} and «, 8 € A. Then (—1)3 € A and by Definition 3.2 (iv), (=1)8 = —f since u(—f8) = (—u)f = u(—1)S.
But u € Q, so there exists a v € A such that ua + u(—8) = w7y, which implies that ua — uf = uy.

We shall use induction on n. Let S = {n € N[>  u\i € uA}ifu e Q, i € A;i=1,2,...,n}. By Lemma 3.3 (c)

above, 1 € S. Now suppose m € S ie, un =73 " ul € Q if u € Q. Then

m—+1 m
Z uN; = ZUAi + U1
i=1 i=1
= un + uAm+1
= up for some p € A, since u € Q.
Hence m + 1 € S and consequently S = N. O

Definition 3.4 ([1, 8]). A pair (V, A) is said to be a linear A—group if V=0 or Q(V) # 0.

Definition 3.5 ([1, 8]). Let (V,A) be a linear A—group, and let u € Q(V) \ {0}. Define the operation +. on A by

ula +4 B) :=ua+ uf for a,B € A.

Theorem 3.6 ([1, 8]). Let Q(V) be the Quasi-kernel of the near vector space (V, A) such that V=10 or Q # 0 and suppose
that u,v € Q \ {0} with v & uA. Then , for any AA\ {0}, u+vA € Q if and only if +u = +oa.

Lemma 3.7 ([1]). Let V be a near vector space and let B = {u;|i € I} be a basis of Q(V). Then each x € V is a unique

linear combination of elements of B, i.e there exists \; € A, with \; # 0 for at most a finite number i € I which are uniquely

determined by x and B, such that x = Z Ui g+

icl
n
Proof. Let x € V. Then by Definition 3.2 (v), there exist vi, v, -+ ,v, € @ such that z = Z v;. Since each v; is a linear
j=1
combination of elements B, x is also a linear combination of elements of B. To prove uniqueness, let > cr Wiki = > cr Wi i

with at most a finite number of \; and A} not zero and u; € B(i € I). Since B C Q then u; € Q(i € I). Hence, by Lemma 3.3
(iv), then n; € A(i € I) such that u;A; — u;\j = w;n; for all 7 € I. But > ier(uidi — u;\;) = 0 showing that > ierwini = 0.
Thus, since B is linearly independent 7; = 0 for each i € I. u;\; — u;\; = 0 and so u;\; = u;\;. Therefore for each

i€ I, =\, since u; # 0 for each i € I. O

Definition 3.8 ([1, 8]). The elements u and v of Q(V') \ {0} are said to be compatible (denoted by u cp v) if there is a
X € A\ {0} such that u+ v\ € Q.
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Lemma 3.9. The elements u and v of Q \ {0} are compatible if and only if there is a A € A\ {0} such that +u = +ux.

Proof. 1f v ¢ uA, then it clearly follows from Theorem 3.6. Let v € uA then if v = ua for any a € A\ {0}. Then the

following conditions holds
(i) u cp ua and by Lemma 3.3 (d) we have that u 4+ uaX € Q for each A € A.

b=y if we take A = o~ L. O

(ii) Since vA = 4, we have that +, = +,) = vaa™
Theorem 3.10 ([1]). The compatibility relation cp is an equivalence relation on Q \ {0}.
Proof. We show that the compatibility relation cp is reflexive, symmetric and transitive.

(i) Reflexivity: Let u € @, then u ¢p u by Lemma 3.3-(v) and thus u ¢cp u.

(ii) Symmetry: Let u,v € @ \ {0} and suppose that u cp v. Then there exist a A € A\ {0} such that u + vA € Q and by

Lemma 3.3-(iii), we have that (u +vM\)A™' =v+uX" € Q. Thus v ¢p u.
(iii) Transitive: Let u,v,w € @ \ {0} and supoose that u ¢p v and v ¢p w and so by Lemma 3.9, 4+, = +,x and also

+v = +wp. Then we show that+, = 4y, for w,n, u € A\ {0}.

-1
+u = Fox = a+u/3 = (O‘)\ +o ﬁ)\))\
-1
= (CY)\ +wu ﬁ)\))\ =« +wn)\ ﬂ

= 4wy B for n =wp € A\ {0}.

Theorem 3.11 ([1]). Let u,v € @\ {0} and if u+v € Q \ {0} then
(i) u cp v, and
(i) w cp u + v.

Definition 3.12 ([1]). A near vector space V is regular if any two vectors of Q(V) \ {0} are compatible, i.e , for any two
vectors u and v of Q(V') \ {0} there exists a A € A\ {0} such that u+vX € Q(V).

Theorem 3.13 ([1]). A near vector space V is regular if and only if there exists a basis which consists of mutually pairwise

compatible vectors.

Proof. Suppose V is regular. Then by definition of regularity of a near vector space, any two vectors of @ \ {0} are
compatible. Thus every basis of @ \ {0}, also of V' consists of mutually pairwise compatible vectors.

Conversely, suppose that V is a near vector space with basis B consisting of mutually pairwise compatible vectors. Let
u € @\ {0}. Then by Lemma 3.7 u,can be expressed as a linear combination of the basis elements of B, that is u can be

written as w = »._, usA; where u; € B and A\ # 0 for i € {1,2,--- ,r}. Now

S uh ifr>1

0 ifr=1

Thus u = v’ + ur\- € Q and so there exists «, 83 € A such that for v € A, we have

(W +urd)a+ (U + urd)B = ua+uB = wy = (u' + urAr)7y.
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Hence v'a + urAra + v/ + ur A f = 'y + urAry, and therefore v'a + u'B + urAra + ur A 8 = vy + ur Ay, But u, ¢
{ui,u2,...,ur—1} and if u, € {ui,uz, -+ ,ur—1} then u, is equal to one of the elements in {u1,u2, -+ ,ur—1}. Suppose
ur = ug then uia +u2a2 + - - -+ urar = 0 if we take &1 = a2 = -+ = a.—1 = 0. This contradicts the linear independence of
B. Thus by Lemma 3.7, we have that u,Ara+urArf = u,A7y and therefore ua+tu' B = u"y which implies that u, A\, v’ € Q.
Now we show that u and u, are compatible.

Now we show that if ©' = 0 then v = u, ), and thus by Theorem 3.9 we have that u, cp u,\.. If u # 0, then by Theorem
3.11, ur A cp u since v, ur A, u = v’ +ur A+’ € Q. But, Lemma 3.11 u, ¢p ur. Thus, by Lemma 3.9, we have u, cp u.
By assumption, wu, is compatible with every other vector of B. Thus, it follows from the transitivity of ¢p Theorem 3.11
that u is compatible with every other vector of B. Since u € @ \ {0} was arbitrarily chosen. Thus if v,w € Q \ {0} then
v ep u; and w cp u; with u; € B for ¢ € {1,--- ,r}. Thus by transitivity of Theorem 3.11 v ¢p w. Thus every two elements

of @\ {0} are compatible. Therefore V is regular. O

Definition 3.14 ([9]). Suppose (V,A) is a near vector space and O # V' C V is such that V' is a subgroup of (V,+)
generated additively by XA = {zalr € X,a € A}, where X is an independent subset of Q(V), then we say (V', A) is a
subspace of (V, A).

Theorem 3.15 ([7]). If W is a subspace of V, then Q(W) =W NQ(V).

Proof. Let u € Q(W). Then for each a,8 € A there exists v € A, such that ua + ufB = uwy. Since u € W and W
is a subspace of V,u € V. Since Q(V) C V and by the above equation v € Q(V). Thus Q(W) C W N Q(V). Suppose
u € Q(V)NW. Then u € Q(V). Then for each «, 3 € A there exists v € A, such that

ua + uf = uy.

Since u € W and by the above equation v € Q(W). Thus W N Q(V) C Q(W). O

Theorem 3.16 ([1]). A near vector space (V, A), with V' # {0} is regqular near vector space if and only if A is a near-field

and V is isomorphic to A’ for some non-empty index set I, where ()X = (m:\) where (n;) € AT and X € A.
We will need the definition of direct sum of subspace.

Definition 3.17. [2] The near vector space (V,A) is said to be a direct sum of subspaces Wi, Wa,--- , W, symbolised by

V=W1oW2@---®W, if and only if
() V=Wi+We+---+W,, and
(is) Win(Wi+ -+ Wi_i + Wig1 + -+ + Wa) =0 for each i.

The sufficient condition for V.= W1eWa®- - -&W,, is that every vector v € V' has a unique representation v = v1+va—+- - -+vn

with v; € W; fori: 1’27... ,n.
Lemma 3.18. Let (V, A) be a regular near vector space. Then any subspace W of V is also regular.

Proof.  Suppose that (V, A) is regular and that W is a subspace of V which is not regular. Take u € Q(W) and v € Q(V).

Then w is not compatible with v, but Q(W) C Q(V), a contradiction. O

The following theorem characterises a finite near vector spaces.
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Theorem 3.19 ([10]). Let V be a group and let A := D U\{0}, where D is a fized point free group of automorphism of V.
Then (V, A) is a finite-dimensional near vector space if and only if there exists a finite number of nearfields Fy, Fa,--- | Fp,
semigroup ¢; : A — F; and a group ¢ : V. — F1 @ Fo ® -+ ® F,, such that if ¢(v) = (z1,22, -+ ,2n),(x; € F;) then

p(va) = (z1p1(@), x292(a), -+ ,Tnpn(a) ), for allv €V and a € A.

We shall not give a proof for this theorem but we will explain how it is applied.

According to this theorem, we can specify a finite-dimensional near vector space by taking n near-fields Fi, F»,--- , F;, for
which there are semi-group isomorphisms 9;; : (Fj,-) — (Fj,-) with 94;0,, = ¥4 for 1 < 4,5,k < n. We can then take
V=F®F®- - ®F, as the additive group of the near vector space and any one of the semigroups (Fjo, -) as the semigroup
of endomorphisms by defining (21,2, - ,Zn)a = ( T1%1i (@), Z202i0 (), -+, ZnOniy () ) for z; € Fj,5 € {1,--- ,n} and

all a € Fjp. The next theorem is the most important theorem in the study of near vector space.

3.2. The Decomposition Theorem

Theorem 3.20 (The Decomposition Theorem [1]). Every near vector space V is the direct sum of reqular subspaces Vj for j €

J such that u € Q \ {0} lies precisely in one direct summand V. The subspaces V; are mazimal regular near vector spaces.
Proof.

(i) First we will show that V is the direct sum of regular near vector spaces V; € J. We start by partitioning @Q \ {0}
into sets @; of mutually pairwise compatible vectors. This partitioning is possible by Theorem 3.10. Furthermore, let
B C @\ {0} be a basis of V and let B; := BN Q;. By our partitioning, the B;ss are disjoint and clearly each Bj is

an independent subset of B. Furthermore, B = UjesBj. Again by Theorem 3.10 Q \ {0} = U;csQj, so
UjesB; = Ujes(BNQ;) = BN (UjesQ;) = BN (Q\{0}) = B.

Now let B = {b;|i € I} with I an index set. Since B = UjcsB; with the Bjss are mutually disjoint for each
i € I1,b; € J. Let I; = {i € I|b; € By}. then for each j € J, B; = {b;; := b;|i € I;}, and I = UjcsI;. Let V; := (B;)
be the subspaces of V' generated by B;. By Theorem 3.13, Vj is regular since B; C @Q; consists of mutually pairwise
compatible vectors. Let x € V. Then by Lemma 3.7, x = Ziel bin; with b; € B and n; = 0 for at mosta finite number
ofi€l. Hencex =3, ; (Zielj bi]-m]-) with b;; € B;j and n;; = n; if b; € B;. Moreover, since v; = (Bj), there is an
xj € Vj; such that z; = >

iel bijni;. Hence

.ZEZZZEJ‘. (1)

ieJ
By Lemma 3.7, = ), bin; can be written in a unique way. If we apply Lemma 3.7 to the near vector space V;
with basis B; for all j € J there exists a unique z; € V; which corresponds to Zielj bijnij. Hence z =37, ;z; is

uniquely determined. Thus V' = @]EJ V.

(ii) Next we show that each u € @ \ {0} lies precisely in one summand V.

Suppose that there exists elements in @ \ {0} which are not elements of Vj for any j € J. let u be such an element

with atleast possible number of summands in the decomposition given by Equation 1, i.e. Let

u=Zuj, (2)

jeJ
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with u; € V; and with the number of u; # 0 as small as possible. Since u € @, for every «, 8 € A there exists § € A

such that ua + uf = ud. But

uo+uf = (Zuj)our (Zuj),b’

jed jeJ

:Zuja—i—z:u]ﬂ

JjeJ JjeJ
= (uja+u;B)

jeJ

and

ud = (Zuj>6.
jeJ
Hence 3. (uja +u;B) = >, ;u;6. But since @, ,;V; is a direct sum, V; N'V; = {0} for all i # j. Hence

ujo 4+ w8 = ujd for all j € J. This implies that

(Zuj)a+<zuj)ﬁ:(Zuj)aforauJ'gJ. (3)

jeJ jeJ jeJ

Consequently,

u' =" u; €Q (with v’ #0). (4)

jeJt’

Let J, be the set of all j € J for which u; # 0 in the decomposition of Equation 2. Since J, is finite and u ¢ V;
for any j € J, |Ju| > 1. To see this , suppose that |J,| = 1 then u = u; € V}, a contradiction. Furthermore, by the
definition of u, |Jux| = |Ju| for all u* € Q \ UjcsV;. Next will show that if J' C J such that J, N (J/J') # 0, then
|J.| = 1 with «’ defined in Equation 4. To see this, suppose that |J,/| > 1 (note: |J,/| # 0 since u’ # 0). Then
' = uj1 +uj2+ - +uy, with n > 1 and Ju = {j1,2, -+ ,jn}. Then v’ ¢ V;; with j; € J', since v’ € Vj; implies
that v’ — uj € Vji N @je i Vs = {0}. But then v’ = uj; and uy € Vi, so v’ € Vjy, a contradiction.

Moreover v’ € V;; with j, € J/J', since v’ € Vj implies that v’ € Vjy N ®jenq;1Vj, a contradiction. Thus
v € Q\ UjesV;. Hence |j,/| > |Ju|. However, this is a contradiction to our assumption that J' C J is such that
Ju N (J/J) # 0. Hence J,» = {j'} for some j € J. Also, |J,_.| = 1. To see this, suppose |J,_,/| = m with m > 1
(Note: J,_u| # 0 since J, N (J/J") #0). Then u —u' = uj1 + ujo + - + Ujm. Thus u—u’ & Vj;, since u —u' € Vj;
implies that u —u' — uji € Vjs @jen iy Vi = {0}. But w — o’ = Vj; and uj; € Vi, thus u — u’ € Vj4, a contradiction.
Moreover u — v’ ¢ Vj; with j° € J/J', sinceu — v’ € Vj implies that v — v’ € Vjy N @jeny1V; = {0}, that is
u—1u' = 0, a contradiction. Hence u —u’ € UjesV;. Furthermore by Equation 3, u — v’ € Q. Hence u —u’ € Q \ Ujc..
Therefore , |j,_w| > |Ju|. This contradicts J,» = {j’}. Hence J,_,» = {j”} for some j” € J, with j” # j'. Suppose

that j :=j = 7. Then v’ = u; and v — v’ = u;. Hence u = 2u; € Vj}, a contradiction. We therefore obtain

w=u+ (u—u) (5)

with v’ € Vjy andu—u' € Vjr. Butvw' € Qand u—u' € Q. Hence v’ € QNVy =Qp and u —u' € QN Vr = Q.
But v’ ¢p u — u/(see Equation 5). Thus j° = j”, a contradiction. Therefore @ C U,c;V;. Hence each u € Q \ {0}
is contained in atleast one V; and V; NV, = {0} for j # J', each u € @ \ {0} is contained atleast one V; and since

V; NV = {0} for j # j, each u is contained in precisely one V;.
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(iii) Finally we show that the subspaces V;(j € J) are maximal regular near vector spaces. Suppose to the contrary
that there exist a jo € J such that V;o C W with W a regular subspace of V. Suppose that Q(Vjo) = Q(W). Then
since Vj, is generated by Q(V;o) and W is generated by Q(W), Vjo = W, which is impossible. Thus, there exists a
u € QN (W/Vjo). Since u € @\ {0}, u € V; for some j € J\ {jo}. But W is regular, so since Q(Vjo) C Q(W), u is

compatible with each v € Q(Vjo) \ {0}. This contradicts the fact that j # jo. O

Remark 3.21. When V is regular it is its own decomposition since it is the maximal regular subspace of itself. As seen
in the proof of the above theorem, the decomposition of the near vector spaces V' results in a decomposition of Q(V). We
can show how the Decomposition Theorem results in the decomposition of the quasi-kernel for near vector spaces constructed

under Z, where p is prime.

Lemma 3.22 ([11]). Suppose that V is an n-dimensional near vector space over Z, where p is prime, with Q(V) # V and
that V=V1 ® Vo ® --- ® Vi is the canonical decomposition of V. Then Q(V) =Q1 R Q2P - -- ® Qr where Q; = V; for each
ie{1,2,-- k).

Proof. By Theorem 3.10 it is possible to partition the quasi-kernel Q(V), that is, Q(V) = U'_,Qi;, where Q; =
{(a1,0,--+ ,a;,0)}a; in position i with ¢« € A; for j € {1,2,---,k}, furthermore, this partitions Q(V) \ {0} into sets
Q1 \ {0},Q2\ {0}, -+, Qi \ {0} of mutually pairwise compatible vectors. If we intersect each of these with a basis B of V,

and let B; = BN Q; for i € {1,2,--- ,k} and consider V; = (B;) we obtain ; = Vj for each j € {1,2,--- ,k}. O

We now give a short description of the procedure to decompose a near vector space V into maximal regular near vector

spaces:
(i) Start by partition Q(V') \ {0} into sets Q; for j € J of mutually pairwise compatible vectors.
(if) Let B C Q(V) \ {0} be a basis of V and let B; = BN Q;.

(iii) Let V; = (Bj) be the subspace of V' generated by Bj, then each Vj is a maximal regular subspace of V' and V is the

direct sum of the V.

Definition 3.23 ([1]). The uniquely determined direct decomposition of a near vector V into mazimal regular subspaces, is

called the canonical direct decomposition.

Theorem 3.24 (The Uniqueness Theorem [1]). There exists only one direct decomposition of a mear vector space into

maximal reqular near subspaces.

Proof. The existence of such a decomposition was shown in Theorem 3.20. Now to show the uniqueness, let

v-@v- DV (6)
jed jreJ’

be two direct decompositions of V' into maximal regular subspaces V;(j € J) and V}'/ (' € J'), respectively. Furthermore
let Q; = (Q(V))\{0})NV;(j € J). By Definition 3.2, V; = (Q;) for each j € J. Now each of two vectors in Q; are by
Definition 3.12 compatible. But @); is not properly contained in a set of mutually compatible vectors. This can be show as
follows: Suppose that, for some j € J, there exists a u € Q(V) \ Q; such that u ¢p v for all v € Q;.
Let Q(W)\{0} be an equivalence class(with respect to cp), with Q(W;\{0}). Then Q; € Q(W;)\{0}. Let W; = (Q(W;))\{0}.
Then W is regular since any two vectors of Q(W;) \ {0} are compatible. But V; C W; which contradicts the maximality

of Vj. Moreover, every VJ,(j" € J') is maximal regular and so Q’, is not properly contained in a set of mutually compatible
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vectors, and therefore corresponds to a Q;(j € J). Hence QQ; C Vs and therefore V; C Vj,. But V; is maximal regular

and so V; = V},. Therefore {V;|j € J} C {V/|j/ € J'}. By symmentry {V}/[j" € J'} C {V;|j € J}. Consequently,
{Virli" € J'y ={Vjli € J}. O

3.3.

Examples of Near Vector Spaces

In this section we give examples of near vector spaces which are not vector spaces. Each example of a near vector spaces

will be presented in two parts. Firstly, we shall that the pair (V, A) is a near vector spaces and secondly, we show that V'

can be decomposed into maximal regular near vector spaces by using the Decomposition Theorem.

Example 3.25. Suppose we have (V, A) where V = R® and A = R and let each o € R act as an endomorphism on V by

defining (x1,x2,x3) == (.1‘1047£U2a37$€3a5)7 for all (z1,z2,23) € V.

(1) We show that (V, A) is a near vector space as follows:

()

(i)

(iii)

(i)

(v)

(V,+) is a group. Moreover, let « € A and (z1,x2,3), (y1,Yy2,y3) € V. Then we have

[(z1, 2, 73) + (Y1, Y2, y3)|lo = (21 + Y1, T2 + Y2, 23 + y3)
= ((z1 + Y1), (32 + y2)a’, (23 + y3)a” )
=(ma+yia, z20° +y2a® | z30° +ysa” )
= (xloc,xzozg, x3a5) + (y1ay y2a3,y3045)

= (w1, 22, 23) + (Y1, Y2, y3)x.

Thus « is an endomorphism of V.

Let (z1,x2,23) € V. Then we have

(z1,72,23)0 = (210, 220°,230%) = (0,0,0)
(271,%2,%3)1 = 1‘(11,&'2137:6315) = (ml,mg,xg )

(1’1,1'2,1‘3)(—1) = xl(—l),wg(—l)g,xg(—l)S) = (—ml, —X2, —$3).

Now we show that (A*,") is a subgroup of Aut(V'), the automorphism group of (V,+). Let a € A, then « is an
endomorphism as shown above. Next we show that o is a bijection. Let (z1,x2,x3), (y1,Y2,y3) € V and suppose
we have (21,2, 23)a = (y1,y2,y3)B. Then (z10, 220 x30°) = (y18,y28%,y36° ) so that x1a = 113, x2a® =

5

y2B8° and x3a® = y3B°. Thus, since o # 0 and the fact that A is a field, we have x1 = y1,T2 = y2 and

x3 = ys. Thus « is injective. Furthermore, let (x1,x2,23) € V. Then (mla_l,mza_3,m3a_5) € V and we have
(a:lafl,xgafg’,xg,a%)a = (2310(710(,.%26173&3,.%3&75&5) = (z1,x2,x3). hence a is surjective. Since (A*,-) is a

group and (A,-) is a subset of Aut(V), (A*,") is a subgroup of Aut(V).

Let (x1,22,73) € V and a, 8 € A. Suppose that (x1c, 220>, 230" ) = (y18,y26%,y38° ), implying that z10 =
z1f, xaa® = 42 8% and yza® = y38°. Hence a = orxz1 =0, o = B> orza =0 and o® = B° orzs = 0. If « # B,
then o # 8% and so o® = 8°. If a # B then o® # 5% and o® # B° and thus v1 = 0,22 = 0 and x3 = 0. Hence
(z1,z2,23) = (0,0,0).

The quasi-kernel Q(V) of V' consists of all those elements u of V' such that for every a, 8 € A there exist ay € A

for which ua + uf = uy.
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(i1) Suppose (a,0,0) € V. For o, B € A we have,

~ (aar +af, 0,0)
= (ala+ £),0,0)

= (a,0,0)(a + B), wherea+pB€ A

Thus (a,0,0) € Q(V) for each a € A

(iz) Consider (0,b,0) € V, then

(0,b,0)a+(0,b,0)8=(0,ba”,0)+(0,b8,0)
=(0,ba> +b8°,0)
=(0,b,0)(”+p%

=(0,b,0)®+8%3, and (a® +8°)3 € 4,

Thus (0, b, 0) € Q(V) for each b € A.

(is) Consider (0, 0, c) €V, then

(0,0, ¢c)a+(0,0,¢)8=(0,0,ca®)+(0,0, cp)
=(0,0, cla”+5%))

= (0,0, ¢)(@® +p%%, where (a® + %)% € A

Hence (0, 0, ¢) € Q(V) for each c € A.

(vi) Finally let us consider (a , b, ¢ )€V for each a,b,c € A\ {0}. Then

(a,b,c)at(a,b,c)B=(aa, ba’, ca’® )+ (aB, bB*, )
=(aa+aB, ba® +b8°, ca’ +cB”)
=(a(a+p), ba®+8%), c(@®+5%))

#(a7b7c)77

for any o € A, since in general, (a+ 8)* # o® + 6% and (o + %) #a® +B°. Thus (a, b, ¢ ) # Q(V)

for each a,b,c € A. Hence
QWV)={(a,0,0)acAtu{(0,b,0)beAtu{(0,0, c)lceA}.
Moreover we check that Q(V') generates the group (V,+). To do thislet (a , b, ¢ ) € V, then we have that

(a,b,¢)=(a,0,0)+(0,b,0)+(0,0, c)

=(1,0,0)a+(0,1,0)b+(0,0,1)c
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and thus {(1,0,0),(0,0,1),(0,0,1)} C Q(V), we have that Q(V) generates the group (V,+). Since all the
conditions of a near vector space (V, A) is a near vector space. But (V, A) is not a vector space. To see this,

let(a,b,c)eV and a,B € A then we have

(a,b,c)a+B)=(ala+p), bla+pB)?’), (@+8)")
and

(a,b,clat(a,b,c)f=((aax+bB), (ba3+bﬂ3)v (Co‘5+cﬁs))

=(a(a+p), b(a+p)cla+p)”)

and in general (o + ) # o® + 82 nor is (a+ B)° # o° + B°. Thus the distributive law for scalars does not

hold in general, (V, A) is not a vector space.

(2) Let Q(V)\{0} ={(a, 0,0)ac A}U{(0, b, 0)be A}U{(0, 0, c)lce A}\{0, 0, 0}. Itis not difficult to
check that B={(1,0,0),(0,1,0),(0, 0, 1)} isa basis of Q(V). Then V can be decomposed into mazimal

regular near vector space in the following way:

Now, QIV)\{0}={(a, 0, 0)ac AU{(0,b,0)beA}U{(0,0, c)lce A}\{0, 0, 0}. Put

Q1(V):{(a, 0, O)|a€A}7
QQ(V):{(Ov b, O)|b€A}7

Qs:(V)={(0, 0, ¢)|lce A}.

Then
Bi=Bn@:(V)={(1,0,0)}
Bo=BNQ(V)={(0,1,0)}
BBZBHQS(V):{Ov 0, 1}'
Now let

Vf:<31>:{(1,O7O)a|a€A}:{(a,07O)|a6A}
Vo=(B2)={(0,1,0)bbcA}={(0,b,0) be A}

Vi=(Bs3)={(0,0,1)cceA}={(0,0, c)|ceA}

The regular near vector space V{,Vs, V4 are generated by Bi, B2, B3 respectively. Thus by the Decomposition Theorem,
V=VieV,eV.
Example 3.26. Put V = (Z2)* and A = Zs. Let o € A acts as an endomorphism on V by defining (z1,z2)a = (z10°, z20!)

where (x1,22) € V.

(1) We show that the pair (V, A) is near vector space
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(i) (V,+) is a group. Moreover, let o« € A and let (z1,x2), (y1,y2) € A. Then

(21, 22 )+ (v, y2)l = (21 + w1, 22412 )
=( (@ +y)a, (z2+y2)a)
=( (z1+y)a’ + (22 +y2)a) )
= (@a”, ma)+(ya’, ya)

=(z1, 2 )a+ (v, y2)o

Thus o is an endomorphism of V.

(i) Let (1, x2 ) € V. Then

(z1, 22 )0=(210°, 220)=(0, 0),
(ml,xg)lz(:c113,:c21):(m1,axz)

(Il , L2 )(—1):($1 , L2 )1 (—1:1inZQ)

=(z11%, 221)

= (11, x21)
=(z1(=1), 22(-1))
=( -z, —x2)

(iii) Let o € A* where A* = {0,1} and let (x1, 2 ),(y1, y2 ) €V.

(i1) Suppose that ( x1 , x2 Ja = (y1 , y2 ). Then ( x10® |, z20 ) = ( y10® , yea ), which implies that
r10® = yi1a® | xzea = yoa. Hence (x1—v1)a =0, (x2—y2)a = 0. Therefore, since o # 0,1 = y1, T2 = yo.
Hence (1, z2 ) = (10>, y2a ). Consequently o is injective.

(i2) Let (z1, 2 ) € V and let o € A*. Then ( zia 3, zpa?t )€V and ( 10”2 xea! )=(z1, z2). Hence
a 1s surjective. Therefore (A*,-) is subset of the group of automorphisms of (V,+). Furthermore, since o is
an endomorphism and (A*,+) and A is a field, A* is a subgroup of the automorphism group (V,+).

(iv) Let (1, 2 ) € V and let o, € A. Suppose that ( z1 , 2 )a = (y1 , y2 )B. Then ( x10° |, x2a ) =
(x18%, 228 ), which implies that x10® = x18% |, xoa = x2B . Ifa # B, then o® = 8% and so 1 = x2 =0,
te(x1, 2z2)=(0,0).

(v) The quasi-kernel Q(V') of V' consists of all those elements of u of V' such that for every a, 8 € A, there exists a

v € A for which ua + uff = ury.

(i) Consider (a , 0) € V. For each o, B € A,

(a,O)a+(a70)ﬁ:(aa3,0)+(a63,0)
=((ac’+ ap®), 0)

=(alc®+ %), 0)

ol

=(a, 0)(®+ ,33)% where (a+ )3 € A

Thus (a, 0) € Q(V) for each a € A.
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(ii) Consider (0, b) € V. For each o, 8 € A,

(0,0)a+(0,b)8=(0,0ba)+(0,b53)
=(0, ba+b3)
=(0, bla+tp))
=(0, b)(a+p).

Thus (0, b) € Q(V) for each b € A.

(i1i) Consider (a , b) € V. For each o, 5 € A,

(avb)a+(a7 b)ﬂz(aaS,ba)+(aﬁ3,bﬁ)
:(aa3+ a/o’?’, ba + b3)
= (a(a®+8°), bla+B8))

=(a,b),
since in general o + 5% # (a+ B)3. Moreover, ( a, b) # Q(V) for each a, 8 € A. Hence Q(V) is
QV)={(a,0) |a € AYU{ (0,b) | b € A}.
Let (a,b) € V and a,b € A, then we have that

(avb):(a70)+(07b)»
=(a,0)+(0,0)

=(1,0)a+(0, 1)

It is not difficult to check that {( 1, 0),( 0, 1)} is linearly independent. Moreover, {(1, 0),(0, 1)} €
Q(V). Thus Q(V) generates the group (V,+). Thus, since all the five conditions of a near vector space are
satisfied, (V, A) is a near vector space. But (V,A) is not a vector space. To see this, let (a,b) € V and
a,B € A then we have (a , b)(a+8)=(a (a+ )3, b (a+p)) and

(a,b)a+(a,b)g=(ad®, aa )+ (aB®, b8)
=(aad® + af’, ba + bB)

=(a@®+p8%), bla+p))

In general (a + B)% # o® + B3, Thus the distributive law for scalars does not hold in general, so V is not a

vector space over A.

(2) Then V' can be decomposed into maximal regular near vector space in the following way:
Let QV)\{0} ={(a, 0)|ac A}U{(0,b)|be A}\{(0, 0)}. We already have that B={(1, 0)},{(0, 1)}
is a basis of Q(V). Put Q1 (V) ={ (a,0) |a € A}\{(0, 0)} and Q2(V)=Q:(V)={(0,b) | b € A}\{(0, 0)}.
Then B =BNQ@Q1={(1,0)}and Bo=BnNQAV)={(0, 1)}. Let V/ =(B1) ={(1, 0)a | a € A} and
Vs =(B2) ={(0, 1)b]|be A}. The regular near vector spaces V{ and V3 are generated by B1 and Ba, respectively.
Thus V = V{ ® Vs by the Decomposition Theorem.
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4. The Cardinality of Quasi-kernel Q(V) for V = F" where F is a
Dickson nearfield

Our aim in this section is to determine the cardinality of the near vector spaces constructed in section 3.3.

We shall derive a formula to calculate the cardinality of the quasi-kernel for both regular and non regular near vector spaces.
We will use the construction of near vector spaces according to Van Der Walt’s Theorem 3.19 where F' is a finite field
nearfield. It is known that all finite near-fields are Dickson near-fields except for the seven exceptional cases. We shall focus
on the construction where F = DF(p™) elements, where (p,m) is a Dickson pair and V' = F™ the scalar multiplication is
defined as (1,22, - ,Zn)a = (x101(a), x202(t), - - , znbn(a)) for all (z1,z2,- - ,zn) € V and a € F where the 0,/ s are
automorphisms of (F,---) and they can be equal. Any finite field is a Dickson near-field, so our formula can be applied to
constructions where F' is a finite field too.

Let V.= Vi @ Vi, .-+, V,. be the Canonical decomposition of V, i.e, the V; are maximal regular subspaces of V. Then for
i,j € {1,2,--- ,r} such that i # j we have V; N'V; = {0}. Thus applying Theorem 3.19, we see that V; is isomorphic to F
for some ni € N. Thus the problem is reduced to finding the cardinality of an arbitrary regular near vector space of the form

V =F".

Definition 4.1 ([2]). Let F be a near-field. Define the kernel Fq of F to be the set of all distributive elements of F,
i.e. Fg ={d € Fl|d(a+b) = da+ db,Va,b € F}. For the construction of Q(V) = UV;, with V; = (d1,d2,--- ,dn)F, and

d; EFd,’iE{l,--- ,n}.

Lemma 4.2 ([2]). Forj={0,1,--- ,n—1}, let B; = {(d1,d2,--- ,)F*|di € GF(p),i =1,2,--- ,n}, be subsets of Q(V)\ {0}
such that (d1,da, -+ ,dn) has ezactly j zeros, and atleast one of the d; = 1. Then the family {B;j,j =0,--- ,n — 1} forms a

partition of Q(V) \ {0}.

Proof. We have that B; # 0 for all j = 0,1,---,n — 1. Let (a1,az2,---an) € By N B; and suppose | # k. Then
(a1,a2,---an) € By with k zeros. Also (a1,a2,- - ,an) € B; with exactly [ zeros. This is impossible. So BxN B, =0V [ # k.
Finally since Bjss are subsets of Q(V){0}, BoUB1 U---B,_1 C Q(V) \ {0}. Also for a non-zero element (a1, a2, ,an) €
Q(V), let k = [{aila; = 0}]. Then 0 < k <n —1 and so (a1,az2, - ,an) € By. Therefore, Q(V)\ {0} = BoU By, ,Bp_1.
Since the family B; {j =0,1,--- ,n — 1} forms a partition of Q(V') \ {0},

k=0

Q) =Bkl +1.

n—1
]

Theorem 4.3 ([2]). For the reqular near vector space (V, F) where V.= F" and F = DF(p™) of a finite Dickson near-field

with scalar multiplication defined by (x1, T2, - ,zn)a = (T1Q,220, -+ ,xpa), for all (x1,22, - ,zn) € V,a € F, we have
that
pn -1 m
= —1)+1
| Q(V) | p— (» )

For the general case where V' is not necessarily regular we make use of the Decomposition Theorem. Let the canonical
decomposition of V' into maximal regular subspaces be given by V. =V; @ Vo @ --- @ V.. respectively. Let ni,--- ,n, be the

dimension of Vi, -- -V, respectively. Then we have the following theorem.

Theorem 4.4 ([2]). For the near vector space (V, F') where V.= F" and F = DF(p™), the Dickson near-field of p™ elements

and scalar multiplication defined by (x1,z2, -+ ,xn)a = (2101 (@), x202(t), -+ ,znbn(c)), for all ( 1,22, - ,x4) € V and
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a € F where the 0;/s are automorphisms of (F,-) and they can be equal, we have that

Q) = [QIVI)N{0} +--- +[Q(V:) \ {0} +1

P =1 p"r—1
= " -1+ +

p—1 p—1

P4 " —

(" —-1)+1

Thus, this formula applies to all finite near vector spaces. Now let us apply this formula to thenear vector space constructed

in the section 3.3.

Example 4.5. From Ezample 3.26 the quasi kernel is given by Q1(V2) = { (a,0) | a € A}\{( 0, 0)} and Q2(V2) =
{(0,0) | b € A}\{( 0, 0)}. From the formula p is the number of distributive elements in the nearfield and so p =2 and

n1 =1 and n2 = 1 and for finite fields m = 1. Therefore applying the formula we have

pnl_"_..._"_pn,,,_r

= ™ —1)+1
| Q(V) | Py (" =1)+
prt AP =2
=" -1)+1
] (p )+
9l 1
_2 42 -2
1
4-2
=—=+1
—+
=3

5. Conclusion

The main objective of this paper was to introduce the theory of near vector spaces and discuss the proof of the Decomposition
Theorem as in André [1]. We have seen that regularity is a central notion in the study of near vector spaces and that the
regular subspaces are the building blocks of near vector spaces. We have shown that given a near vector space V which
is not regular, we can decompose V into maximal regular near vector spaces. In closing we gave an application of the
Decomposition Theorem, where it is used to determine the cardinality of the quasi-kernel Q(V') of V for both non-regular

and regular near vector spaces.
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