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1. Introduction

The concept of a vector space is well known, i.e, linear space is generalised by a bit more non-linearity the so called near

vector space introduced by André in [1]. A pair (V,A) is called a near vector space if it satisfies the condition of an

A−group and the quasi-kernel Q(V ) generates a group (V,+). In recent years, near vector spaces have been used in several

applications, including secret sharing schemes in cryptography (see [3]) and to construct interesting examples of families of

planar near-rings in [4]. Additionally, they have proved to be of interesting from model theory perspective too. This paper

introduces the theory of near vector space. It gives important definitions, examples and some useful theorems. Regularity is

the central part in the study of near vector space and the Decomposition Theorem largely depends on the regularity notion.

The main objective of this paper is to understand the Decomposition Theorem which states that every near vector space

can be written as the direct sum of maximal regular subspaces. This paper is organised in four sections. In section 2 we

introduce the concept of a near-field. Near-fields are a source of scalars in the study of near vector space. Near-fields are also

used in the construction of near vector space as we shall see in section 4. In this paper we shall make use of right near-fields

as in André ([1]). In section 3 the theory of near vector space is presented. We start by introducing the most important

definitions: a near vector space, concept of the quasi-kernel and compatibility. We shall then introduce the concept of

regularity. Regularity plays a very important role in the theory of near vector space. As André stated in ([1]) that regular

near vector space are the building blocks of near vector space. We then build on the notion of regularity to understand the

Decomposition Theorem. We shall then give examples by applying the Decomposition Theorem and investigate how near

vector spaces are decomposed into maximal regular subspaces. In section 4 we will introduce the concept of cardinality of

the quasi-kernel Q(V ). Here will shall use the already existing examples to determine the cardinality of near vector spaces.

∗ E-mail: jeromy.kalunga@cbu.ac.zm
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The Decomposition Theorem for Near Vector Spaces

2. Preliminary Material

Near-fields will serve as the source of scalars in the theory of near vector spaces. Let us start by defining a near-ring.

Definition 2.1 ([5]). A near-ring N is a set together with two binary operations + and · which satisfies the following axioms:

(i). (N,+) is a group,

(ii). (N, ·) is a semi group,

(iii). (a1 + a2) · a3 = a1 · a3 + a2 · a3 ∀ a1, a2, a3 ∈ N.

This is the definition for a right near-ring, since the right distributive law is satisfied. The set N is said to be a near-field if

N \ {0} is also a group.

Remark 2.2. We may also define a left nearing where axiom (iii) becomes

(iii) a3 · (a1 + a2) = a3 · a1 + a3 · a2 ∀ a1, a2, a3 ∈ N.

In this paper we will consider right near-rings. If N contains an element 1 so that a1 = 1a = a for all a ∈ N then 1 is called

the multiplicative identity of N . The identity element of the additive group structure of (N,+, ·) is called the zero of the

near-ring and is denoted by 0. Throughout this paper we shall use N∗ = N \ {0}.

Example 2.3 ([5]).

(i). Every ring is near-ring.

(ii). If R is a commutative ring with identity, it can be shown that (R[x],+, ◦) is a near-ring, under pointwise addition and

composition, where R[x] is the set of polynomials with coefficient in R.

(iii). Let (G,+) be a group. Define M(G) to be the set of all functions from G to G with pointwise addition (f + g)(x) :=

f(x) + g(x) for all f, g ∈ M(G), x ∈ G and composition of maps (f ◦ g)(x) := f(g(x)). Then (M(G),+, ◦) is right

near-ring

We now give a definition of a Dickson near-field which shall be used in section 4.

Definition 2.4 ([5]). Let N be a near-field and let Aut(N,+, ·) be the set of all automorphisms of N . A map φ :→

Aut(N,+, ·); n 7→ φn is said to be a coupling map if for all n,m ∈ N∗, we have φn ◦ φm = φφn(m).n
and N∗ = N \ {0}. If φ

is a coupling map on N then

n ◦φ m = f(x) =


φm(n)m if m 6= 0

0 if m = 0

If φ is a coupling map on N then (N,+, ◦φ) is again a near-field.

Definition 2.5 ([5]). If (N,+, ·) is a near-field and φ a coupling on N∗. Then (N,+, ◦φ) is called φ− derivation of (N,+, ·).

Thus a nearfield N is called a Dickson near-field if N is the φ− derivation of some field F , i.e Fφ = N .

Definition 2.6 ([6]). A pair of numbers (p,m) ∈ N2 is called a Dickson pair if

(i). m is some power of a prime p.

(ii). Each prime divisor of m divides p− 1.

Remark 2.7. Every finite field is a Dickson near-field. In this paper our examples will be restricted to Zp, where p is a

prime and R, the field of real numbers.
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3. The Theory of Near Vector Spaces

This section introduces the fundamental theory of near vector spaces. We shall give the most important definitions, lemmas

and theorems of a near vector spaces.

3.1. Near Vector Space

Let us define right vector space over a division ring A.

Definition 3.1 ([1]). A right vector space V over a division ring A is set V such that for each α ∈ A and v ∈ V , there is

a unique element vα ∈ V such that the following conditions hold for all α, β ∈ A and u, v ∈ V ;

(i) (V,+) is an abelian group,

(ii) (v + u)α = vα+ uα,

(iii) v(α+ β) = vα+ vβ,

(iv) v(αβ) = (vα)β,

(v) v1 = v.

The members of V are called vectors and the members of the division ring are called scalars. The operation that combines a

scalar α and a vector v to form the vector vα is called scalar multiplication.

We then define the concept of a near vector space which shall be used mostly in this section.

Definition 3.2 ([2, 7]). A near vector space is a pair (V,A) which satisfies the following conditions;

(i) (V,+) is a group and A is a set of endomorphisms of V.

(ii) The endomorphisms 0,1 and -1, defined by x0 = 0, x1 = x and x(−1) = −x for each x ∈ V are elements of A.

(iii) A∗ := A \ {0} is a subgroup of the group of automorphisms of (V,+).

(iv) If xα = xβ with x ∈ V and α, β ∈ A, then we have α = β or x = 0, i.e A acts fixed point free on V .

(v) The quasi-kernel Q(V ) of V , generates V as a group. Here,

Q(V ) = {x ∈ V |∀α, β ∈ A,∃γ ∈ A such that xα+ xβ = xγ}.

The concept of the Quasi-kernel Q(V ) of V is mostly used in the theory of near vector spaces and has the important properties

that shall be used on this section.

Lemma 3.3 ([1, 7]). The Quasi-kernel has the following properties;

(i) 0 ∈ Q,

(ii) If u ∈ Q \ {0}, then γ is uniquely determined in Definition 3.2 (v) by α and β,

(iii) For u ∈ Q and λ ∈ A, we have uλ ∈ Q, i.e uA ⊂ Q,

(iv) Foru ∈ Q and α, β ∈ A, there exists γ ∈ A such that uα− uβ = uγ

3
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(v) If u ∈ Q and λi ∈ A, i = 1, 2, . . . , n, then
∑n
i=1 uλi = uη ∈ Q for some η ∈ A and for all integers i > 1

Proof.

(i) Let α, β ∈ A. Take any λ ∈ A, then 0α+ 0β = 0λ. Thus 0 ∈ Q.

(ii) Let u ∈ Q \ {0} and α, β ∈ A. Suppose there exists γ, γ′ ∈ A such that uα+ uβ = uγ = uγ′. Then by Definition 3.2

(iv) we have γ = γ′, as u 6= 0.

(iii) Suppose u ∈ Q and λ ∈ A. There are two cases to consider

Case 1: λ = 0. Thus uλ = u0 = 0 ∈ Q

Case 2: λ 6= 0 Let α, β ∈ A. Then by Definition 3.2 (iii), λα ∈ A and λβ ∈ A. Now since u ∈ Q, there exists a γ ∈ A

such that u(λα) + u(λβ) = uλ = uλλ−1γ. So (uλ)α+ (uλ)β = (uλ)(λ−1γ) which implies that uλ ∈ Q. Thus uA ⊆ Q.

(iv) Let u ∈ Q\{0} and α, β ∈ A. Then (−1)β ∈ A and by Definition 3.2 (iv), (−1)β = −β since u(−β) = (−u)β = u(−1)β.

But u ∈ Q, so there exists a γ ∈ A such that uα+ u(−β) = uγ, which implies that uα− uβ = uγ.

We shall use induction on n. Let S = {n ∈ N|
∑n
i=1 uλi ∈ uA} if u ∈ Q,λi ∈ A, i = 1, 2, . . . , n}. By Lemma 3.3 (c)

above, 1 ∈ S. Now suppose m ∈ S i.e, uη =
∑m
i=1 uλi ∈ Q if u ∈ Q. Then

m+1∑
i=1

uλi =

m∑
i=1

uλi + uλm+1

= uη + uλm+1

= uµ for some µ ∈ A, since u ∈ Q.

Hence m+ 1 ∈ S and consequently S = N.

Definition 3.4 ([1, 8]). A pair (V,A) is said to be a linear A−group if V = 0 or Q(V ) 6= 0.

Definition 3.5 ([1, 8]). Let (V,A) be a linear A−group, and let u ∈ Q(V ) \ {0}. Define the operation +u on A by

u(α+u β) := uα+ uβ for α, β ∈ A.

Theorem 3.6 ([1, 8]). Let Q(V ) be the Quasi-kernel of the near vector space (V,A) such that V = 0 or Q 6= 0 and suppose

that u, v ∈ Q \ {0} with v /∈ uA. Then , for any λA \ {0}, u+ vλ ∈ Q if and only if +u = +vλ.

Lemma 3.7 ([1]). Let V be a near vector space and let B = {ui|i ∈ I} be a basis of Q(V ). Then each x ∈ V is a unique

linear combination of elements of B, i.e there exists λi ∈ A, with λi 6= 0 for at most a finite number i ∈ I which are uniquely

determined by x and B, such that x =
∑
i∈I

uiλi.

Proof. Let x ∈ V . Then by Definition 3.2 (v), there exist v1, v2, · · · , vn ∈ Q such that x =

n∑
j=1

vj . Since each vj is a linear

combination of elements B, x is also a linear combination of elements of B. To prove uniqueness, let
∑
i∈I uiλi =

∑
i∈I uiλ

′
i

with at most a finite number of λi and λ′i not zero and ui ∈ B(i ∈ I). Since B ⊆ Q then ui ∈ Q(i ∈ I). Hence, by Lemma 3.3

(iv), then ηi ∈ A(i ∈ I) such that uiλi − uiλ′i = uiηi for all i ∈ I. But
∑
i∈I(uiλi − uiλ

′
i) = 0 showing that

∑
i∈I uiηi = 0.

Thus, since B is linearly independent ηi = 0 for each i ∈ I. uiλi − uiλ
′
i = 0 and so uiλi = uiλ

′
i. Therefore for each

i ∈ I, λi = λ′i since ui 6= 0 for each i ∈ I.

Definition 3.8 ([1, 8]). The elements u and v of Q(V ) \ {0} are said to be compatible (denoted by u cp v) if there is a

λ ∈ A \ {0} such that u+ vλ ∈ Q.
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Lemma 3.9. The elements u and v of Q \ {0} are compatible if and only if there is a λ ∈ A \ {0} such that +u = +vλ.

Proof. If v /∈ uA, then it clearly follows from Theorem 3.6. Let v ∈ uA then if v = uα for any α ∈ A \ {0}. Then the

following conditions holds

(i) u cp uα and by Lemma 3.3 (d) we have that u+ uαλ ∈ Q for each λ ∈ A.

(ii) Since vλ = +vλ we have that +u = +vλ = uαα−1 = u if we take λ = α−1.

Theorem 3.10 ([1]). The compatibility relation cp is an equivalence relation on Q \ {0}.

Proof. We show that the compatibility relation cp is reflexive, symmetric and transitive.

(i) Reflexivity: Let u ∈ Q, then u cp u by Lemma 3.3-(v) and thus u cp u.

(ii) Symmetry: Let u, v ∈ Q \ {0} and suppose that u cp v. Then there exist a λ ∈ A \ {0} such that u+ vλ ∈ Q and by

Lemma 3.3-(iii), we have that (u+ vλ)λ−1 = v + uλ−1 ∈ Q. Thus v cp u.

(iii) Transitive: Let u, v, w ∈ Q \ {0} and supoose that u cp v and v cp w and so by Lemma 3.9, +u = +vλ and also

+v = +wµ. Then we show that+u = +wη for w, η, µ ∈ A \ {0}.

+u = +vλ =⇒ α+u β = (αλ +v β
λ)λ
−1

= (αλ +wµ β
λ)λ
−1

= α+wηλ β

= α+wη β for η = wµ ∈ A \ {0}.

Theorem 3.11 ([1]). Let u, v ∈ Q \ {0} and if u+ v ∈ Q \ {0} then

(i) u cp v, and

(ii) u cp u+ v.

Definition 3.12 ([1]). A near vector space V is regular if any two vectors of Q(V ) \ {0} are compatible, i.e , for any two

vectors u and v of Q(V ) \ {0} there exists a λ ∈ A \ {0} such that u+ vλ ∈ Q(V ).

Theorem 3.13 ([1]). A near vector space V is regular if and only if there exists a basis which consists of mutually pairwise

compatible vectors.

Proof. Suppose V is regular. Then by definition of regularity of a near vector space, any two vectors of Q \ {0} are

compatible. Thus every basis of Q \ {0}, also of V consists of mutually pairwise compatible vectors.

Conversely, suppose that V is a near vector space with basis B consisting of mutually pairwise compatible vectors. Let

u ∈ Q \ {0}. Then by Lemma 3.7 u,can be expressed as a linear combination of the basis elements of B, that is u can be

written as u =
∑r
i=1 uiλi where ui ∈ B and λi 6= 0 for i ∈ {1, 2, · · · , r}. Now

u′ =


∑r−1
i=1 uiλi if r > 1

0 if r = 1 .

Thus u = u′ + urλr ∈ Q and so there exists α, β ∈ A such that for γ ∈ A, we have

(u′ + urλr)α+ (u′ + urλr)β = uα+ uβ = uγ = (u′ + urλr)γ.
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Hence u′α + urλrα + u′β + urλrβ = u′γ + urλrγ, and therefore u′α + u′β + urλrα + urλrβ = u′γ + urλrγ. But ur /∈

{u1, u2, . . . , ur−1} and if ur ∈ {u1, u2, · · · , ur−1} then ur is equal to one of the elements in {u1, u2, · · · , ur−1}. Suppose

ur = u2 then u1α1 +u2α2 + · · ·+urαr = 0 if we take α1 = α2 = · · · = αr−1 = 0. This contradicts the linear independence of

B. Thus by Lemma 3.7, we have that urλrα+urλrβ = urλrγ and therefore u′α+u′β = u′γ which implies that urλr, u
′ ∈ Q.

Now we show that u and ur are compatible.

Now we show that if u′ = 0 then u = urλr and thus by Theorem 3.9 we have that ur cp urλr. If u 6= 0, then by Theorem

3.11, urλr cp u since u′, urλr, u = u′ + urλr + u′ ∈ Q. But, Lemma 3.11 ur cp urλr. Thus, by Lemma 3.9, we have ur cp u.

By assumption, ur is compatible with every other vector of B. Thus, it follows from the transitivity of cp Theorem 3.11

that u is compatible with every other vector of B. Since u ∈ Q \ {0} was arbitrarily chosen. Thus if v, w ∈ Q \ {0} then

v cp ui and w cp ui with ui ∈ B for i ∈ {1, · · · , r}. Thus by transitivity of Theorem 3.11 v cp w. Thus every two elements

of Q \ {0} are compatible. Therefore V is regular.

Definition 3.14 ([9]). Suppose (V,A) is a near vector space and ∅ 6= V ′ ⊆ V is such that V ′ is a subgroup of (V,+)

generated additively by XA = {xα|x ∈ X,α ∈ A}, where X is an independent subset of Q(V ), then we say (V ′, A) is a

subspace of (V,A).

Theorem 3.15 ([7]). If W is a subspace of V , then Q(W ) = W ∩Q(V ).

Proof. Let u ∈ Q(W ). Then for each α, β ∈ A there exists γ ∈ A, such that uα + uβ = uγ. Since u ∈ W and W

is a subspace of V, u ∈ V. Since Q(V ) ⊆ V and by the above equation u ∈ Q(V ). Thus Q(W ) ⊆ W ∩ Q(V ). Suppose

u ∈ Q(V ) ∩W. Then u ∈ Q(V ). Then for each α, β ∈ A there exists γ ∈ A, such that

uα+ uβ = uγ.

Since u ∈W and by the above equation u ∈ Q(W ). Thus W ∩Q(V ) ⊆ Q(W ).

Theorem 3.16 ([1]). A near vector space (V,A), with V 6= {0} is regular near vector space if and only if A is a near-field

and V is isomorphic to AI for some non-empty index set I, where (ηi)λ = (ηiλ) where (ηi) ∈ AI and λ ∈ A.

We will need the definition of direct sum of subspace.

Definition 3.17. [2] The near vector space (V,A) is said to be a direct sum of subspaces W1,W2, · · · ,Wn symbolised by

V = W1 ⊕W2 ⊕ · · · ⊕Wn if and only if

(i) V = W1 +W2 + · · ·+Wn, and

(ii) Wi ∩ (W1 + · · ·+Wi−1 +Wi+1 + · · ·+Wn) = 0 for each i.

The sufficient condition for V = W1⊕W2⊕· · ·⊕Wn is that every vector v ∈ V has a unique representation v = v1+v2+· · ·+vn

with vi ∈Wi for i = 1, 2, · · · , n.

Lemma 3.18. Let (V,A) be a regular near vector space. Then any subspace W of V is also regular.

Proof. Suppose that (V,A) is regular and that W is a subspace of V which is not regular. Take u ∈ Q(W ) and v ∈ Q(V ).

Then u is not compatible with v, but Q(W ) ⊆ Q(V ), a contradiction.

The following theorem characterises a finite near vector spaces.
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Theorem 3.19 ([10]). Let V be a group and let A := D ∪ \{0}, where D is a fixed point free group of automorphism of V .

Then (V,A) is a finite-dimensional near vector space if and only if there exists a finite number of nearfields F1, F2, · · · , Fn,

semigroup ϕi : A → Fi and a group φ : V → F1 ⊕ F2 ⊕ · · · ⊕ Fn such that if φ(v) = (x1, x2, · · · , xn), (xi ∈ Fi) then

φ(vα) = (x1ϕ1(α), x2ϕ2(α), · · · , xnϕn(α) ), for all v ∈ V and α ∈ A.

We shall not give a proof for this theorem but we will explain how it is applied.

According to this theorem, we can specify a finite-dimensional near vector space by taking n near-fields F1, F2, · · · , Fn for

which there are semi-group isomorphisms ϑij : (Fj , ·) → (Fi, ·) with ϑijϑjk = ϑik for 1 ≤ i, j, k ≤ n. We can then take

V = F1⊕F2⊕· · ·⊕Fn as the additive group of the near vector space and any one of the semigroups (Fi0, ·) as the semigroup

of endomorphisms by defining (x1, x2, · · · , xn)α = ( x1ϑ1i0(α), x2ϑ2i0(α), · · · , xnϑni0(α) ) for xj ∈ Fj , j ∈ {1, · · · , n} and

all α ∈ Fi0. The next theorem is the most important theorem in the study of near vector space.

3.2. The Decomposition Theorem

Theorem 3.20 (The Decomposition Theorem [1]). Every near vector space V is the direct sum of regular subspaces Vj for j ∈

J such that u ∈ Q \ {0} lies precisely in one direct summand Vj . The subspaces Vj are maximal regular near vector spaces.

Proof.

(i) First we will show that V is the direct sum of regular near vector spaces Vj ∈ J. We start by partitioning Q \ {0}

into sets Qj of mutually pairwise compatible vectors. This partitioning is possible by Theorem 3.10. Furthermore, let

B ⊆ Q \ {0} be a basis of V and let Bj := B ∩ Qj . By our partitioning, the Bj′s are disjoint and clearly each Bj is

an independent subset of B. Furthermore, B = Uj∈JBj . Again by Theorem 3.10 Q \ {0} = Uj∈JQj , so

Uj∈JBj = Uj∈J(B ∩Qj) = B ∩ (Uj∈JQj) = B ∩ (Q \ {0}) = B.

Now let B = {bi|i ∈ I} with I an index set. Since B = Uj∈JBj with the Bj′s are mutually disjoint for each

i ∈ I, bi ∈ J. Let Ij = {i ∈ I|bi ∈ Bj}. then for each j ∈ J, Bj = {bij := bi|i ∈ Ij}, and I = Uj∈JIj . Let Vj := 〈Bj〉

be the subspaces of V generated by Bj . By Theorem 3.13, Vj is regular since Bj ⊆ Qj consists of mutually pairwise

compatible vectors. Let x ∈ V. Then by Lemma 3.7, x =
∑
i∈I biηi with bi ∈ B and ηi = 0 for at mosta finite number

of i ∈ I. Hence x =
∑
j∈J

(∑
i∈Ij bijηij

)
with bij ∈ Bj and ηij = ηi if bi ∈ Bj. Moreover, since vj = 〈Bj〉, there is an

xj ∈ Vj such that xj =
∑
i∈Ij bijηij . Hence

x =
∑
i∈J

xj . (1)

By Lemma 3.7, x =
∑
i∈I biηi can be written in a unique way. If we apply Lemma 3.7 to the near vector space Vj

with basis Bj for all j ∈ J there exists a unique xj ∈ Vj which corresponds to
∑
i∈Ij bijηij . Hence x =

∑
j∈J xj is

uniquely determined. Thus V =
⊕

j∈J Vj .

(ii) Next we show that each u ∈ Q \ {0} lies precisely in one summand Vj .

Suppose that there exists elements in Q \ {0} which are not elements of Vj for any j ∈ J. let u be such an element

with atleast possible number of summands in the decomposition given by Equation 1, i.e. Let

u =
∑
j∈J

uj , (2)

7
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with uj ∈ Vj and with the number of uj 6= 0 as small as possible. Since u ∈ Q, for every α, β ∈ A there exists δ ∈ A

such that uα+ uβ = uδ. But

uα+ uβ =

(∑
j∈J

uj

)
α+

(∑
j∈J

uj

)
β

=
∑
j∈J

ujα+
∑
j∈J

ujβ

=
∑
j∈J

(ujα+ ujβ)

and

uδ =

(∑
j∈J

uj

)
δ.

Hence
∑
j∈J(ujα + ujβ) =

∑
j∈J ujδ. But since

⊕
j∈J Vj is a direct sum, Vi ∩ Vj = {0} for all i 6= j. Hence

ujα+ ujβ = ujδ for all j ∈ J. This implies that

(∑
j∈J′

uj

)
α+

(∑
j∈J′

uj

)
β =

(∑
j∈J′

uj

)
δ for all J ′ ⊆ J. (3)

Consequently,

u′ =
∑
j∈J′

uj ∈ Q (with u′ 6= 0). (4)

Let Ju be the set of all j ∈ J for which uj 6= 0 in the decomposition of Equation 2. Since Ju is finite and u /∈ Vj

for any j ∈ J, |Ju| > 1. To see this , suppose that |Ju| = 1 then u = uj ∈ Vj , a contradiction. Furthermore, by the

definition of u, |Ju∗ | > |Ju| for all u∗ ∈ Q \ Uj∈JVj . Next will show that if J ′ ⊆ J such that Ju ∩ (J/J ′) 6= 0, then

|Ju′ | = 1 with u′ defined in Equation 4. To see this, suppose that |Ju′ | > 1 (note: |Ju′ | 6= 0 since u′ 6= 0). Then

u′ = uj1 + uj2 + · · · + ujn with n > 1 and Ju′ = {j1, j2, · · · , jn}. Then u′ /∈ Vji with ji ∈ J ′, since u′ ∈ Vji implies

that u′ − uji ∈ Vji ∩ ⊕j∈J\{ji}Vj = {0}. But then u′ = uji and uji ∈ Vji, so u′ ∈ Vji, a contradiction.

Moreover u′ ∈ Vj′ with j
′
∈ J/J ′, since u′ ∈ Vj′ implies that u′ ∈ Vj′ ∩ ⊕j∈J\{j′}Vj , a contradiction. Thus

u′ ∈ Q \ Uj∈JVj . Hence |ju′ | ≥ |Ju|. However, this is a contradiction to our assumption that J ′ ⊆ J is such that

Ju ∩ (J/J ′) 6= ∅. Hence Ju′ = {j′} for some j ∈ J . Also, |Ju−u′ | = 1. To see this, suppose |Ju−u′ | = m with m > 1

(Note: Ju−u′ | 6= 0 since Ju ∩ (J/J ′) 6= 0 ). Then u− u′ = uj1 + uj2 + · · ·+ ujm. Thus u− u′ /∈ Vji, since u− u′ ∈ Vji

implies that u− u′ − uji ∈ Vji ⊕j∈J\{ji} Vj = {0}. But u− u′ = Vji and uji ∈ Vji, thus u− u′ ∈ Vji, a contradiction.

Moreover u − u′ /∈ Vji with j′ ∈ J/J ′, sinceu − u′ ∈ Vj′ implies that u − u′ ∈ Vj′ ∩ ⊕j∈J\{j′}Vj = {0}, that is

u−u′ = 0, a contradiction. Hence u−u′ ∈ Uj∈JVj . Furthermore by Equation 3, u−u′ ∈ Q. Hence u−u′ ∈ Q \Uj∈J .

Therefore , |ju−u′ | ≥ |Ju|. This contradicts Ju′ = {j′}. Hence Ju−u′ = {j′′} for some j′′ ∈ J, with j′′ 6= j′. Suppose

that j := j′ = j′′′. Then u′ = uj and u− u′ = uj . Hence u = 2uj ∈ Vj , a contradiction. We therefore obtain

u = u′ + (u− u′) (5)

with u′ ∈ Vj′ and u− u′ ∈ Vj′′ . But u′ ∈ Q and u− u′ ∈ Q. Hence u′ ∈ Q ∩ Vj′ = Qj′ and u− u′ ∈ Q ∩ Vj′′ = Qj′′ .

But u′ cp u − u′(see Equation 5). Thus j′ = j′′, a contradiction. Therefore Q ⊆ Uj∈JVj . Hence each u ∈ Q \ {0}

is contained in atleast one Vj and Vj ∩ Vj′ = {0} for j 6= J ′, each u ∈ Q \ {0} is contained atleast one Vj and since

Vj ∩ Vj′ = {0} for j 6= j′, each u is contained in precisely one Vj .
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(iii) Finally we show that the subspaces Vj(j ∈ J) are maximal regular near vector spaces. Suppose to the contrary

that there exist a j0 ∈ J such that Vj0 ( W with W a regular subspace of V. Suppose that Q(Vj0) = Q(W ). Then

since Vjo is generated by Q(Vj0) and W is generated by Q(W ), Vj0 = W, which is impossible. Thus, there exists a

u ∈ Q ∩ (W/Vj0). Since u ∈ Q \ {0}, u ∈ Vj for some j ∈ J \ {j0}. But W is regular, so since Q(Vj0) ( Q(W ), u is

compatible with each v ∈ Q(Vj0) \ {0}. This contradicts the fact that j 6= j0.

Remark 3.21. When V is regular it is its own decomposition since it is the maximal regular subspace of itself. As seen

in the proof of the above theorem, the decomposition of the near vector spaces V results in a decomposition of Q(V ). We

can show how the Decomposition Theorem results in the decomposition of the quasi-kernel for near vector spaces constructed

under Zp where p is prime.

Lemma 3.22 ([11]). Suppose that V is an n-dimensional near vector space over Zp where p is prime, with Q(V ) 6= V and

that V = V1 ⊕ V2 ⊕ · · · ⊕ Vk is the canonical decomposition of V. Then Q(V ) = Q1 ⊕Q2 ⊕ · · · ⊕Qk where Qi = Vi for each

i ∈ {1, 2, · · · , k}.

Proof. By Theorem 3.10 it is possible to partition the quasi-kernel Q(V ), that is, Q(V ) = ∪ki=1Qi, where Qj =

{(a1, 0, · · · , ai, 0)}|ai in position i with i ∈ Aj for j ∈ {1, 2, · · · , k}, furthermore, this partitions Q(V ) \ {0} into sets

Q1 \ {0}, Q2 \ {0}, · · · , Qk \ {0} of mutually pairwise compatible vectors. If we intersect each of these with a basis B of V,

and let Bj = B ∩Qj for i ∈ {1, 2, · · · , k} and consider Vj = 〈Bj〉 we obtain Qj = Vj for each j ∈ {1, 2, · · · , k}.

We now give a short description of the procedure to decompose a near vector space V into maximal regular near vector

spaces:

(i) Start by partition Q(V ) \ {0} into sets Qj for j ∈ J of mutually pairwise compatible vectors.

(ii) Let B ⊂ Q(V ) \ {0} be a basis of V and let Bj = B ∩Qj .

(iii) Let Vj = 〈Bj〉 be the subspace of V generated by Bj , then each Vj is a maximal regular subspace of V and V is the

direct sum of the Vj .

Definition 3.23 ([1]). The uniquely determined direct decomposition of a near vector V into maximal regular subspaces, is

called the canonical direct decomposition.

Theorem 3.24 (The Uniqueness Theorem [1]). There exists only one direct decomposition of a near vector space into

maximal regular near subspaces.

Proof. The existence of such a decomposition was shown in Theorem 3.20. Now to show the uniqueness, let

V =
⊕
j∈J

Vj =
⊕
j′∈J′

V ′j′ (6)

be two direct decompositions of V into maximal regular subspaces Vj(j ∈ J) and V ′j′(j
′ ∈ J ′), respectively. Furthermore

let Qj = (Q(V )) \ {0}) ∩ Vj(j ∈ J). By Definition 3.2, Vj = 〈Qj〉 for each j ∈ J. Now each of two vectors in Qj are by

Definition 3.12 compatible. But Qj is not properly contained in a set of mutually compatible vectors. This can be show as

follows: Suppose that, for some j ∈ J , there exists a u ∈ Q(V ) \Qj such that u cp v for all v ∈ Qj .

Let Q(W )\{0} be an equivalence class(with respect to cp), withQ(Wj\{0}). Then Qj ( Q(Wj)\{0}. Let Wj = 〈Q(Wj)〉\{0}.

Then Wj is regular since any two vectors of Q(Wj) \ {0} are compatible. But Vj ( Wj which contradicts the maximality

of Vj . Moreover, every V ′j′(j
′ ∈ J ′) is maximal regular and so Q′j′ is not properly contained in a set of mutually compatible

9
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vectors, and therefore corresponds to a Qj(j ∈ J). Hence Qj ⊆ Vj′ and therefore Vj ⊆ Vj′ . But Vj is maximal regular

and so Vj = V ′j′ . Therefore {Vj |j ∈ J} ⊆ {V ′j′ |j′ ∈ J ′}. By symmentry {V ′j′ |j′ ∈ J ′} ⊆ {Vj |j ∈ J}. Consequently,

{V ′j′ |j′ ∈ J ′} = {Vj |j ∈ J}.

3.3. Examples of Near Vector Spaces

In this section we give examples of near vector spaces which are not vector spaces. Each example of a near vector spaces

will be presented in two parts. Firstly, we shall that the pair (V,A) is a near vector spaces and secondly, we show that V

can be decomposed into maximal regular near vector spaces by using the Decomposition Theorem.

Example 3.25. Suppose we have (V,A) where V = R3 and A = R and let each α ∈ R act as an endomorphism on V by

defining (x1, x2, x3)α := (x1α, x2α
3, x3α

5), for all (x1, x2, x3) ∈ V.

(1) We show that (V,A) is a near vector space as follows:

(i) (V,+) is a group. Moreover, let α ∈ A and (x1, x2, x3), (y1, y2, y3) ∈ V . Then we have

[(x1, x2, x3) + (y1, y2, y3)]α = (x1 + y1, x2 + y2, x3 + y3)α

= ((x1 + y1)α, (x2 + y2)α3, (x3 + y3)α5 )

= ( x1α+ y1α , x2α
3 + y2α

3 , x3α
5 + y5α

5 )

= (x1α, x2α
3, x3α

5) + (y1α, y2α
3, y3α

5)

= (x1, x2, x3)α+ (y1, y2, y3)α.

Thus α is an endomorphism of V.

(ii) Let (x1, x2, x3) ∈ V. Then we have

(x1, x2, x3)0 = (x10, x203, x305) = (0, 0, 0)

(x1, x2, x3)1 = x(11, x213, x315) = (x1, x2, x3 )

(x1, x2, x3)(−1) = x1(−1), x2(−1)3, x3(−1)5) = (−x1,−x2,−x3).

(iii) Now we show that (A∗, ·) is a subgroup of Aut(V ), the automorphism group of (V,+). Let α ∈ A∗, then α is an

endomorphism as shown above. Next we show that α is a bijection. Let (x1, x2, x3), (y1, y2, y3) ∈ V and suppose

we have (x1, x2, x3)α = (y1, y2, y3)β. Then (x1α, x2α
3, x3α

5) = (y1β, y2β
3, y3β

5 ) so that x1α = y1β, x2α
3 =

y2β
3 and x3α

5 = y3β
5. Thus, since α 6= 0 and the fact that A is a field, we have x1 = y1, x2 = y2 and

x3 = y3. Thus α is injective. Furthermore, let (x1, x2, x3) ∈ V. Then (x1α
−1, x2α

−3, x3α
−5) ∈ V and we have

(x1α
−1, x2α

−3, x3α
−5)α = (x1α

−1α, x2α
−3α3, x3α

−5α5) = (x1, x2, x3). hence α is surjective. Since (A∗, ·) is a

group and (A, ·) is a subset of Aut(V ), (A∗, ·) is a subgroup of Aut(V ).

(iv) Let (x1, x2, x3) ∈ V and α, β ∈ A. Suppose that (x1α, x2α
3, x3α

5 ) = (y1β, y2β
3, y3β

5 ), implying that x1α =

x1β, x2α
3 = y2β

3 and y3α
5 = y3β

5. Hence α = β or x1 = 0, α3 = β3 orx2 = 0 and α5 = β5 orx3 = 0. If α 6= β,

then α3 6= β3 and so α5 = β5. If α 6= β then α3 6= β3 and α5 6= β5 and thus x1 = 0, x2 = 0 and x3 = 0. Hence

(x1, x2, x3) = (0, 0, 0).

(v) The quasi-kernel Q(V ) of V consists of all those elements u of V such that for every α, β ∈ A there exist a γ ∈ A

for which uα+ uβ = uγ.

10
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(i1) Suppose (a, 0, 0) ∈ V. For α, β ∈ A we have,

(a, 0, 0)α+ (a, 0, 0)β = (aα, 0, 0 ) + (aβ, 0, 0)

= (aα+ aβ, 0, 0)

= (a(α+ β), 0, 0)

= (a, 0, 0)(α+ β), where α+ β ∈ A

Thus (a, 0, 0) ∈ Q(V ) for each a ∈ A

(i2) Consider (0, b, 0) ∈ V , then

( 0 , b, 0 )α+ ( 0 , b , 0 )β = ( 0 , bα3 , 0 ) + ( 0 , bβ3 , 0 )

= ( 0 , bα3 + b β3 , 0 )

= ( 0 , b , 0 )(α3 + β3)

= ( 0 , b , 0 )(α3 + β3)
1
3 , and (α3 + β3)

1
3 ∈ A,

Thus ( 0 , b , 0 ) ∈ Q(V ) for each b ∈ A.

(i3) Consider ( 0 , 0 , c ) ∈ V, then

( 0 , 0 , c )α+ ( 0 , 0 , c )β = ( 0 , 0 , cα5 ) + ( 0 , 0 , cβ5 )

= ( 0 , 0 , c(α5 + β5) )

= ( 0 , 0 , c )(α5 + β5)
1
5 , where (α5 + β5)

1
5 ∈ A

Hence ( 0 , 0 , c ) ∈ Q(V ) for each c ∈ A.

(vi) Finally let us consider ( a , b , c ) ∈ V for each a, b, c ∈ A \ {0}. Then

( a , b , c )α+ ( a , b , c )β = ( aα , bα3 , cα5 ) + ( aβ , bβ3 , cβ5 )

= ( aα+ aβ , bα3 + bβ3 , cα5 + cβ5 )

= ( a( α+ β) , b(α3 + β3) , c(α5 + β5) )

6= ( a , b , c )γ,

for any α ∈ A, since in general, (α + β)3 6= α3 + β3 and (α5 + β5) 6= α5 + β5. Thus ( a , b , c ) 6= Q(V )

for each a, b, c ∈ A. Hence

Q(V ) = {( a , 0 , 0 )|a ∈ A} ∪ {( 0 , b , 0 )|b ∈ A} ∪ {( 0 , 0 , c )|c ∈ A}.

Moreover we check that Q(V ) generates the group (V,+). To do this let ( a , b , c ) ∈ V, then we have that

( a , b , c ) = ( a , 0 , 0 ) + ( 0 , b , 0 ) + ( 0 , 0 , c )

= ( 1 , 0 , 0 )a+ ( 0 , 1 , 0 )b+ (0, 0, 1)c

11
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and thus {(1, 0, 0), (0, 0, 1), (0, 0, 1)} ⊆ Q(V ), we have that Q(V ) generates the group (V,+). Since all the

conditions of a near vector space (V,A) is a near vector space. But (V,A) is not a vector space. To see this,

let ( a , b , c ) ∈ V and α, β ∈ A then we have

( a , b , c )( α+ β ) = ( a(α+ β) , (b(α+ β)3) , (α+ β)5 )

and

( a , b , c )α+ ( a , b , c )β = ( ( aα+ bβ ), (bα3 + bβ3) , (cα5 + cβ5) )

= ( a( α+ β ), b( α+ β )3, c( α+ β )5 )

and in general (α+ β)3 6= α3 + β3 nor is (α+ β)5 6= α5 + β5. Thus the distributive law for scalars does not

hold in general, (V,A) is not a vector space.

(2) Let Q(V )\{0} = {( a , 0 , 0 )|a ∈ A}∪{( 0 , b , 0 )|b ∈ A}∪{( 0 , 0 , c )|c ∈ A}\{ 0 , 0 , 0 }. It is not difficult to

check that B = {( 1 , 0 , 0 ), ( 0 , 1 , 0 ), ( 0 , 0 , 1 )} is a basis of Q(V ). Then V can be decomposed into maximal

regular near vector space in the following way:

Now, Q(V ) \ {0} = {( a , 0 , 0 )|a ∈ A} ∪ {( 0 , b , 0 )|b ∈ A} ∪ {( 0 , 0 , c )|c ∈ A} \ { 0 , 0 , 0 }. Put

Q1(V ) = {( a , 0 , 0 )|a ∈ A},

Q2(V ) = {( 0 , b , 0 )|b ∈ A},

Q3(V ) = {( 0 , 0 , c )|c ∈ A}.

Then

B1 = B ∩Q1(V ) = {( 1 , 0 , 0 )}

B2 = B ∩Q2(V ) = {( 0 , 1 , 0 )}

B3 = B ∩Q3(V ) = { 0 , 0 , 1 }.

Now let

V ′1 = 〈B1〉 = {( 1 , 0 , 0 ) a| a ∈ A} = {( a , 0 , 0 )| a ∈ A}

V ′2 = 〈B2〉 = {( 0 , 1 , 0 ) b| b ∈ A} = {( 0 , b , 0 )| b ∈ A}

V ′3 = 〈B3〉 = {( 0 , 0 , 1 ) c| c ∈ A} = {( 0 , 0 , c )| c ∈ A}

The regular near vector space V ′1 , V
′
2 , V

′
3 are generated by B1, B2, B3 respectively. Thus by the Decomposition Theorem,

V = V ′1 ⊕ V ′2 ⊕ V ′3 .

Example 3.26. Put V = (Z2)2 and A = Z2. Let α ∈ A acts as an endomorphism on V by defining (x1, x2)α = (x1α
3, x2α)

where (x1, x2) ∈ V.

(1) We show that the pair (V,A) is near vector space

12
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(i) (V,+) is a group. Moreover, let α ∈ A and let (x1, x2), (y1, y2) ∈ A. Then

[( x1, x2 ) + ( y1, y2)] = ( x1 + y1, x2 + y2 )α

= ( (x1 + y1)α , (x2 + y2)α)

= ( (x1 + y1)α3 + (x2 + y2)α) )

= ( x1α
3 , x2α ) + ( y1α

3 , y2α)

= ( x1 , x2 )α+ ( y1 , y2)α.

Thus α is an endomorphism of V.

(ii) Let ( x1 , x2 ) ∈ V. Then

( x1 , x2 )0 = ( x103 , x20 ) = ( 0 , 0 ),

( x1 , x2 )1 = ( x113 , x21 ) = ( x1 , x2 )

( x1 , x2 )(−1) = ( x1 , x2 )1 (−1 = 1 in Z2)

= ( x113 , x21 )

= ( x11 , x21 )

= ( x1(−1) , x2(−1) )

= ( − x1 , − x2 )

(iii) Let α ∈ A∗ where A∗ = {0, 1} and let ( x1 , x2 ), ( y1 , y2 ) ∈ V .

(i1) Suppose that ( x1 , x2 )α = ( y1 , y2 )α. Then ( x1α
3 , x2α ) = ( y1α

3 , y2α ), which implies that

x1α
3 = y1α

3 , x2α = y2α. Hence (x1−y1)α = 0, (x2−y2)α = 0. Therefore, since α 6= 0, x1 = y1, x2 = y2.

Hence ( x1 , x2 ) = ( y1α
3 , y2α ). Consequently α is injective.

(i2) Let ( x1 , x2 ) ∈ V and let α ∈ A∗. Then ( x1α
−3 , x2α

−1 ) ∈ V and ( x1α
−3 , x2α

−1 ) = ( x1 , x2 ). Hence

α is surjective. Therefore (A∗, ·) is subset of the group of automorphisms of (V,+). Furthermore, since α is

an endomorphism and (A∗,+) and A is a field, A∗ is a subgroup of the automorphism group (V,+).

(iv) Let ( x1 , x2 ) ∈ V and let α, β ∈ A. Suppose that ( x1 , x2 )α = ( y1 , y2 )β. Then ( x1α
3 , x2α ) =

( x1β
3 , x2β ), which implies that x1α

3 = x1β
3 , x2α = x2β . If α 6= β, then α3 = β3 and so x1 = x2 = 0,

i.e ( x1 , x2 ) = ( 0 , 0 ).

(v) The quasi-kernel Q(V ) of V consists of all those elements of u of V such that for every α, β ∈ A, there exists a

γ ∈ A for which uα+ uβ = uγ.

(i) Consider ( a , 0 ) ∈ V. For each α, β ∈ A,

( a , 0 )α+ ( a , 0 )β = ( aα3, 0 ) + ( aβ3 , 0 )

= ( (aα3 + aβ3 ), 0 )

= ( a(α3 + β3 ), 0 )

= ( a , 0 )(α3 + β3 )
1
3 where (α+ β )

1
3 ∈ A

Thus ( a , 0 ) ∈ Q(V ) for each a ∈ A.
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(ii) Consider ( 0 , b ) ∈ V . For each α, β ∈ A,

( 0 , b )α+ ( 0 , b )β = ( 0 , bα ) + ( 0 , bβ )

= ( 0 , bα+ bβ )

= ( 0 , b(α+ β ) )

= ( 0 , b )(α+ β).

Thus ( 0 , b ) ∈ Q(V ) for each b ∈ A.

(iii) Consider ( a , b ) ∈ V . For each α, β ∈ A,

( a , b )α+ ( a , b )β = ( aα3 , bα ) + ( aβ3 , bβ )

= ( aα3 + aβ3, bα + bβ )

= ( a(α3 + β3), b(α+ β ) )

= ( a , b )γ,

since in general α3 + β3 6= (α+ β)3. Moreover, ( a, b) 6= Q(V ) for each α, β ∈ A. Hence Q(V ) is

Q(V ) = { (a, 0) | a ∈ A} ∪ { (0, b) | b ∈ A}.

Let (a, b) ∈ V and a, b ∈ A, then we have that

( a , b ) = ( a , 0 ) + ( 0 , b ),

= ( a , 0 ) + ( 0 , b )

= ( 1 , 0 )a+ ( 0 , 1 )b.

It is not difficult to check that {( 1 , 0 ), ( 0 , 1 )} is linearly independent. Moreover, {( 1 , 0 ), ( 0 , 1 )} ∈

Q(V ). Thus Q(V ) generates the group (V,+). Thus, since all the five conditions of a near vector space are

satisfied, (V,A) is a near vector space. But (V,A) is not a vector space. To see this, let (a, b) ∈ V and

α, β ∈ A then we have ( a , b )(α+ β) = ( a (α+ β)3, b (α+ β)) and

( a , b )α+ ( a , b )β = ( aα3 , aα ) + ( aβ3 , bβ )

= ( aα3 + aβ3 , bα + bβ )

= ( a(α3 + β3) , b(α+ β) )

In general (α+ β)3 6= α3 + β3. Thus the distributive law for scalars does not hold in general, so V is not a

vector space over A.

(2) Then V can be decomposed into maximal regular near vector space in the following way:

Let Q(V )\{0} = {( a , 0 ) | a ∈ A}∪{( 0 , b ) | b ∈ A}\{( 0 , 0 )}. We already have that B = {( 1 , 0 )}, {( 0 , 1 )}

is a basis of Q(V ). Put Q1(V ) = { (a, 0) | a ∈ A} \ {( 0 , 0 )} and Q2(V ) = Q1(V ) = { (0, b) | b ∈ A} \ {( 0 , 0 )}.

Then B1 = B ∩ Q1 = {( 1 , 0 )} and B2 = B ∩ Q2(V ) = {( 0 , 1 )}. Let V ′1 = 〈B1〉 = {( 1 , 0 )a | a ∈ A} and

V ′2 = 〈B2〉 = {( 0 , 1 )b | b ∈ A}. The regular near vector spaces V ′1 and V ′2 are generated by B1 and B2, respectively.

Thus V = V ′1 ⊕ V ′2 by the Decomposition Theorem.
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4. The Cardinality of Quasi-kernel Q(V ) for V = Fn where F is a
Dickson nearfield

Our aim in this section is to determine the cardinality of the near vector spaces constructed in section 3.3.

We shall derive a formula to calculate the cardinality of the quasi-kernel for both regular and non regular near vector spaces.

We will use the construction of near vector spaces according to Van Der Walt’s Theorem 3.19 where F is a finite field

nearfield. It is known that all finite near-fields are Dickson near-fields except for the seven exceptional cases. We shall focus

on the construction where F = DF (pm) elements, where (p,m) is a Dickson pair and V = Fn the scalar multiplication is

defined as (x1, x2, · · · , xn)α = (x1θ1(α), x2θ2(α), · · · , xnθn(α)) for all (x1, x2, · · · , xn) ∈ V and α ∈ F where the θi′s are

automorphisms of (F, · · · ) and they can be equal. Any finite field is a Dickson near-field, so our formula can be applied to

constructions where F is a finite field too.

Let V = V1 ⊕ V2, · · · , Vr be the Canonical decomposition of V, i.e, the Vi are maximal regular subspaces of V. Then for

i, j ∈ {1, 2, · · · , r} such that i 6= j we have Vi ∩ Vj = {0}. Thus applying Theorem 3.19, we see that Vi is isomorphic to F ηi

for some ηi ∈ N. Thus the problem is reduced to finding the cardinality of an arbitrary regular near vector space of the form

V = Fn.

Definition 4.1 ([2]). Let F be a near-field. Define the kernel Fd of F to be the set of all distributive elements of F,

i.e. Fd = {d ∈ F |d(a + b) = da + db, ∀a, b ∈ F}. For the construction of Q(V ) = UVi, with Vi = (d1, d2, · · · , dn)F, and

di ∈ Fd, i ∈ {1, · · · , n}.

Lemma 4.2 ([2]). For j = {0, 1, · · · , n−1}, let Bj = {(d1, d2, · · · , )F ∗|di ∈ GF (p), i = 1, 2, · · · , n}, be subsets of Q(V )\{0}

such that (d1, d2, · · · , dn) has exactly j zeros, and atleast one of the di = 1. Then the family {Bj , j = 0, · · · , n− 1} forms a

partition of Q(V ) \ {0}.

Proof. We have that Bj 6= ∅ for all j = 0, 1, · · · , n − 1. Let (a1, a2, · · · an) ∈ Bk ∩ Bl and suppose l 6= k. Then

(a1, a2, · · · an) ∈ Bk with k zeros. Also (a1, a2, · · · , an) ∈ Bl with exactly l zeros. This is impossible. So Bk ∩Bl = ∅ ∀ l 6= k.

Finally since Bj′s are subsets of Q(V ){0}, B0 ∪B1 ∪ · · ·Bn−1 ⊆ Q(V ) \ {0}. Also for a non-zero element (a1, a2, · · · , an) ∈

Q(V ), let k = |{ai|ai = 0}|. Then 0 ≤ k ≤ n− 1 and so (a1, a2, · · · , an) ∈ Bk. Therefore, Q(V ) \ {0} = B0 ∪B1, · · · , Bn−1.

Since the family Bj {j = 0, 1, · · · , n− 1} forms a partition of Q(V ) \ {0},

|Q(V )| =
k=0∑
n−1

|Bk|+ 1.

Theorem 4.3 ([2]). For the regular near vector space (V, F ) where V = Fn and F = DF (pm) of a finite Dickson near-field

with scalar multiplication defined by (x1, x2, · · · , xn)α = (x1α, x2α, · · · , xnα), for all (x1, x2, · · · , xn) ∈ V, α ∈ F , we have

that

| Q(V ) | = pn − 1

p− 1
(pm − 1) + 1.

For the general case where V is not necessarily regular we make use of the Decomposition Theorem. Let the canonical

decomposition of V into maximal regular subspaces be given by V = V1 ⊕ V2 ⊕ · · · ⊕ Vr respectively. Let n1, · · · , nr be the

dimension of V1, · · ·Vr respectively. Then we have the following theorem.

Theorem 4.4 ([2]). For the near vector space (V, F ) where V = Fn and F = DF (pm), the Dickson near-field of pmelements

and scalar multiplication defined by (x1, x2, · · · , xn)α = (x1θ1(α), x2θ2(α), · · · , xnθn(α)), for all ( x1, x2, · · · , xn) ∈ V and
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α ∈ F where the θi′s are automorphisms of (F, ·) and they can be equal, we have that

|Q(V )| = |Q(V1) \ {0}|+ · · ·+ |Q(Vr) \ {0}|+ 1

=
pn1 − 1

p− 1
(pm − 1) + · · ·+ pnr − 1

p− 1
(pm − 1) + 1

=
pn1 + · · ·+ pnr − r

p− 1
(pm − 1) + 1.

Thus, this formula applies to all finite near vector spaces. Now let us apply this formula to thenear vector space constructed

in the section 3.3.

Example 4.5. From Example 3.26 the quasi kernel is given by Q1(V2) = { (a, 0) | a ∈ A} \ {( 0 , 0 )} and Q2(V2) =

{ (0, b) | b ∈ A} \ {( 0 , 0 )}. From the formula p is the number of distributive elements in the nearfield and so p = 2 and

n1 = 1 and n2 = 1 and for finite fields m = 1. Therefore applying the formula we have

| Q(V ) | = pn1 + · · ·+ pnr − r
p− 1

(pm − 1) + 1

=
pn1 + pn2 − 2

p− 1
(pm − 1) + 1

=
21 + 21 − 2

1
+ 1

=
4− 2

1
+ 1

= 3.

5. Conclusion

The main objective of this paper was to introduce the theory of near vector spaces and discuss the proof of the Decomposition

Theorem as in André [1]. We have seen that regularity is a central notion in the study of near vector spaces and that the

regular subspaces are the building blocks of near vector spaces. We have shown that given a near vector space V which

is not regular, we can decompose V into maximal regular near vector spaces. In closing we gave an application of the

Decomposition Theorem, where it is used to determine the cardinality of the quasi-kernel Q(V ) of V for both non-regular

and regular near vector spaces.
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