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1. Introduction

Let X = (X, 3, ) be a o- finite complete measure space. A nondecreasing continuous convex function ¢ : [0, co) — [0, o)

for which ¢(0) = 0 and limz— 00 ¢(2) = 00 is said to be an Orlicz function. For any f € L°(X), we define the modular

I(f) = /X $(1f (@) )du(z)

and the Orlicz space

L?(p) = {f € LX) | I,(\f) < oo for some A= A(f) > 0}.

This space is a Banach space with two norms: the Luxemburg — Nakano norm

[flle = inf{A >0 [ Io(f/X) <1}

and the Orlicz norm
0o _ -
1£15 = juf (1+ To(k 1)) /K.

For the study of Orlicz spaces, one can refer to [11, 13—-15]. Multiplication operators on Orlicz spaces have also been studied
in [5], [8] and references therein. The techniques used in this paper essentially depend on the conditions of embedding of

one Orlicz space into another (see, [13, Page 45] for details).
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2. Boundedness of Multiplication Operators

In this section, we study the boundedness of multiplication operators on weighted Orlicz spaces.

Lemma 2.1 ([13, Lemma 8.3]). Let (X,X, 1) be a o-finite nonatomic measure space, {an} a sequence of positive numbers

and {sn} a sequence of measurable, finite, non-negative functions on X such that forn=1,2, ...

/X sn(x)dp(z) > 2" an.

Then there exist an increasing sequence {ny} of integers and a sequence {Ay} of pairwise disjoint measurable sets such that
fork=1,2, ...
[ su@du(e) = an,.
Ak
Theorem 2.2. Let (X,X, u) be a o-finite nonatomic measure space and 0 : X — C be a measurable function. Then the

multiplication operator My : L**(X) — L%2(X) is bounded if and only if there ewist a,b > 0 and 0 < h € L'(X) such that

¢2(alf(x)|u)) < bpi(u) + h(z) for almost all x € X and for all u > 0.

Proof.  Suppose that the converse holds. Let 0 # f € L?'(X) and choose any M > 1 such that M(b+ ||h||1) > 1. Then

Lo (<M<b+ ||%i{||f|\¢l>/a> = [ (M(ba E(\fh)ﬁi(ﬁf}n@l) dulz)
1 ald(x x
A0+ TR /X“f’< R, )‘>d"(x)
< ETT . (b # <|||];(|\x)|> * h(m)) duz)

< 1

Thus | Mo fle, < 224 ||All1)||flle, and hence My is bounded. Consider the function

— a

hn(z) = sup (¢2(27"0(x)|u) — 2" ¢1(u)) .

u>0

Write X = |J X;, where {X;}§2, is a pairwise disjoint sequence of measurable subsets of X with u(X;) < oo for every
i=1
i=1,2,.... For every ¢ € Q,we put f;,:(x) = qxx, (x), where xx, is the characteristic function of X;. Then it can be

shown that

hn(z) = sup ($2(27"10(2)|fri(2)) — 2" p1(fri())) -
=

Taking (fx) to be a rearrangement of (fg;) with fi = fo,;, the above equation can be rewritten as

hal@) = sup (627" 10(2) e (@) = 2°61 (fu(a)
It is clear that h, are measurable and h,(xz) > 0 for each x € X. To complete the proof, we need only to show that
Jx hn(x)dp(z) < oo for some n. Suppose this is not true. Denote

bmn(z) = max ($2(27"(0(2)|fr (7)) — 2" ¢1(fx(@))) -

1<k<m

Then by, , are measurable, by, n(z) > 0 and by, »(z) is a non-decreasing sequence tending to hy,(x) as m — oo for every
@ € X. Thus for any n, there exists my such that [y bm, n(z)dp(z) > 2". Writing by, = bm,, n, we have [, b, (z)du(z) > 2"
forn=1,2,.... Let

Eny = {z € X | ¢2(27"10(2)|fr(2)) — 2" ¢1(fi(2)) = bu(2)}
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and

E,=X\(En1UE,2U---UFE, n,).

Then p(E,) = 0. Let

B 0 if x € En71 @] Bn
fulz) = k—1
fe(@) HzeFEpr\ U Enjy, k=2,3,...,my.
j=1
Then
bu(z) = ¢2(27"10(2)|fn(2)) = 2"d1(fu(2))
>0
Therefore,

/X 62(27"|0(2) | Fu () )dpa()

%

| bu@yduto)

v

2 [ o(Gu@Nau@) + [ bu@int)

Thus by Lemma ??, with a,(z) = ¢2(27"|0(z)|fn(z)) and o, = 1, we obtain an increasing sequence {ns} and a sequence

{Ar} of pairwise disjoint measurable sets such that

i $2(27"|0(2)| fuy (2))dp(a) =1, k=12, ...

~nkx ifx e Ax
f(x):{f (@) fae

0 otherwise.

Then for any A > 0, using (2) and (3), we obtain

/ 62 (\Mo f(z)) dyu(x / 62 (\O(@)|f(2)) du(z)

Z B2\ o ()2

Y

Z 27"0(2)] f, () dpa()

:OO,

where p is so large that 277 < A. And using (1), (2) and (3), we have

/X¢1<f<x Z 1 @)dp(@)

:22 / $2(27"|0(2)| fy. (2))dps( 22 /
Som / $2(27"|0(x) | foy, (@) dps()
k=1 Ak

k=1

IN

(z)du(z)
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Thus, f € L® (x)(X) but Me(f) ¢ L??(X), which is a contradiction. Hence,

/ hn(x)dp(z) < oo for some n
X

This completes the proof.
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