Volume 4, Issue 1-C (2016), 9-15.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Soft Pre Generalized Closed Sets With Respect to a Soft Ideal in Soft Topological Spaces

Research Article

V.Chitra¹, V.Inthumathi¹ and K.Nirmaladevi¹*

1 Department of Mathematics, NGM College, Pollachi, Tamilnadu, India.

Abstract: In this paper, we extend the concept of soft pre generelized closed sets due to J. Subhashini and C. Sekar [15] to soft pre

generalized closed sets with respect to a soft ideal and study some of their basic properties.

MSC: 54A40, 06D72

Keywords: Soft sets, Soft topological spaces, Soft pg-closed set, soft g-closed set, Soft I_q -closed set and Soft I_{pq} -closed set.

© JS Publication.

1. Introduction

Soft set is collection of approximate descriptions of an object. In 1999, Molodtsov [12] initiated the concept of soft set as a new mathematical tool for dealing with uncertainties. Soft topology was introduced by Muhammad Shabir and Munazza Naz [13] in 2010. Later, Aygunoglu [2], Zorlutuna [17], S.Hussian [3], Aygun [2] continued to study the some of basic concepts and properties of soft topological spaces. The concept of generalized closed set in topology was introduced by Levine [8]. Ideals play an important role in toplogy. Jankovic and Hamlet [5] introduced the notion of *I*-open sets in topological spaces. Kuratowski [7] and Vaidyanayhaswamy [16] introduced and studied the concepts of ideals topological spaces. The concept of g-closed sets in soft topology by Kannan [4]. Andrijevic [1] and Mashhour [11] gave many results on pre open sets in general toplogy. Subhashini and Sekar [15] introduced pre generalized closed sets in soft topological spaces. H.I.Mustafa and F.M.Sleim [14] introduced the concept of soft generalized closed sets with respect to a soft ideal, which is the extension of the concept of soft generalized closed sets.

In this paper, we introduce and study the concept of soft I_{pg} -closed sets in soft topological spaces. We also study the relationship between generalized soft I_{pg} -closed sets, soft I_{pg} -open sets, soft I_{g} -closed sets, soft g-closed sets, soft pg-closed sets and some of their properties.

2. Preliminaries

Let X refers to an initial universe set, E is a set of parameters and $A \subseteq E$. Parameters are attributes, characteristics or properties of the objects in X and P(X) denotes the power set of X.

^{*} E-mail: chitrangmc@qmail.com

Definition 2.1 ([12]). A pair F_E is called a soft set over X where F is a mapping given by $F: A \to P(X)$. In other words, a soft set over X is a parameterized family of subsets of the universe X.

Definition 2.2 ([9]). The union of two soft sets F_A and G_B over U is a soft set H_C , where $C = A \cup B$ and $\forall e \in C$,

$$H(e) = \begin{cases} F(e), & if \quad e \in A - B \\ G(e), & if \quad e \in B - A \end{cases}$$
$$F(e) \cup G(e), & if \quad e \in A \cap B \end{cases}$$

This relationship is denoted by $F_A \cup G_B = H_C$

Definition 2.3 ([10]). The intersection of two soft sets F_A and G_B over X is a soft set H_C , where $C = A \cap B$ and $\forall e \in C$, $H(e) = F(e) \cap G(e)$. This relationship is denoted by $F_A \cap G_B = H_C$.

Definition 2.4 ([13]). Let $\tilde{\tau}$ be the collection of soft sets over X. Then $\tilde{\tau}$ is said to be a soft topology on X if

- (a). $F_{\phi}, F_A \in \tilde{\tau}$
- (b). If $F_E, G_E \in \tilde{\tau}$, then $F_E \cap G_E \in \tilde{\tau}$
- (c). If $\{F_{E_i}\}_{i\in I} \in \tilde{\tau}, \forall i \in I, then \ \tilde{\bigcup}_{i\in I} F_{E_i} \in \tilde{\tau}$

The pair $(X, \tilde{\tau})$ is called a soft topological space.

Definition 2.5 ([13]). Let $(X, \tilde{\tau})$ be a soft topological space over X and Y be a non-empty subset of X. Then $\tilde{\tau}_Y = \{\tilde{Y} \cap F_E \mid F_E \in \tilde{\tau}\}$ is said to be the soft relative topology on Y and $(Y, \tilde{\tau}_Y)$ is called a soft subspace of $(X, \tilde{\tau})$. We can easily verify that $\tilde{\tau}_Y$ is a soft topology on Y.

Definition 2.6 ([12]). If $(X, \tilde{\tau})$ be a soft topological space. Then, every element of $\tilde{\tau}$ is called a soft open set. The collection of all soft open set is denoted by $G_s(F_E)$. Let $F_c \subseteq F_E$. Then F_c is said to be soft closed if the soft set F_c^c is soft open in F_E . The collection of all soft closed set is denoted by $F_s(F_E)$.

Definition 2.7 ([13]). Let F_E be a soft set over X and Y be a nonempty subset of X. Then the soft subset of F_E over Y denoted by YF_E , is defined as ${}^YF(e) = Y \cap F(e)$, for all $e \in E$. In other words ${}^YF_E = \tilde{Y} \cap F_E$.

Definition 2.8 ([17]). Let $(X, \tilde{\tau})$ be a soft topological space, a soft set F_A is said to be soft pre-open(soft P-open) if there exists a soft open set F_o such that $F_A \subseteq F_o \subseteq F_A^-$. The set of all soft P-open set of F_E is denoted by $G_{sp}(F_E, \tilde{\tau})$ or $G_{sp}(F_E)$. Then F_A^c is said to be soft pre-closed. The set of all soft P-closed set of F_E is denoted by $F_{sp}(F_E, \tilde{\tau})$ or $F_{sp}(F_E)$.

Definition 2.9 ([15]). Let $(X, \tilde{\tau})$ be a soft topological space and $F_A \subseteq F_E$. Then the soft pre-interior(soft P-interior) of F_A denoted by $p(F_A)^o$ is defined as the soft union of all soft P-open subsets of F_A . Note that $p(F_A)^o$ is the biggest soft P-open set that contained in F_A .

Definition 2.10 ([15]). Let $(X, \tilde{\tau})$ be a soft topological space and $F_A \subseteq F_E$. Then the soft pre closure(soft P-closure)of F_A denoted by $p(F_A)^-$ is defined as the soft intersection of all soft P-closed supersets of F_A . Note that, $p(F_A)^-$ is the soft smallest soft P-closed set containing F_A .

Definition 2.11 ([6]). Let $(X, \tilde{\tau})$ be a soft topological space over X. A soft set F_E is called a soft g-closed in X if $F_E^- \subseteq F_o$ whenever $F_E \subseteq F_o$ and F_o is soft open in X.

Definition 2.12 ([15]). Let F_A is said to be soft pre generalized closed set (soft Pg-closed set) if $p(F_A)^- \subseteq F_o$ whenever $F_A \subseteq F_o$ and $F_o \in G_{sp}(F_E)$. The collection of all soft Pg-closed sets is denoted by $F_{spg}(F_E)$.

Definition 2.13 ([14]). A non empty collections I of soft subsets over X is called a soft ideal on X if the following holds:

- (i) If $F_E \in I$ and $G_E \subseteq F_E$, implies $G_E \in I$ (heredity)
- (ii) If F_E and $G_E \in I$, then $F_E \tilde{\cup} G_E \in I$. (additivity)

Definition 2.14 ([14]). A soft set F_E is called soft generalized closed set with respect to a soft ideal I (soft I_g -closed) in a soft topological space $(X, \tilde{\tau})$ if $F_E^- \setminus G_E \in I$ whenever $F_E \subseteq G_E$ and $G_E \in \tilde{\tau}$.

Definition 2.15 ([14]). Two soft sets A_E and B_E are said to be soft separated in a soft topological space $(X, \tilde{\tau})$ if $A_E^c \tilde{\cap} B_E = \phi$ and $A_E \tilde{\cap} B_E^- = \phi$.

3. Soft Pre Generalized Closed Sets With Respect To Soft Ideal

In this section we introduce the concept of soft I_{pg} -closed sets and study some of its properties.

Definition 3.1. A soft set F_E is called soft pre generalized closed set with respect to a soft ideal I (soft I_{pg} -closed) in a soft topological space $(X, \tilde{\tau})$ if $p(F_E)^- \setminus G_E \in I$ whenever $F_E \subseteq G_E$ and G_E is soft pre open.

Example 3.2. Let $X = \{u_1, u_2, u_3\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2, u_3\})\}$. Then $F_{A1} = \{(x_1, \{u_1\})\}$, $F_{A2} = \{(x_1, \{u_2\})\}$, $F_{A3} = \{(x_1, \{u_1, u_2\})\}$, $F_{A4} = \{(x_2, \{u_2\})\}$, $F_{A5} = \{(x_2, \{u_3\})\}$, $F_{A6} = \{(x_2, \{u_2, u_3\})\}$, $F_{A7} = \{(x_1, \{u_1\}), (x_2, \{u_2\})\}$, $F_{A8} = \{(x_1, \{u_1\}), (x_2, \{u_3\})\}$, $F_{A9} = \{(x_1, \{u_1\}), (x_2, \{u_2, u_3\})\}$, $F_{A10} = \{(x_1, \{u_2\}), (x_2, \{u_2\})\}$, $F_{A11} = \{(x_1, \{u_2\}), (x_2, \{u_3\})\}$, $F_{A12} = \{(x_1, \{u_2\}), (x_2, \{u_2, u_3\})\}$, $F_{A13} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2\})\}$, $F_{A14} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_3\})\}$, $F_{A15} = F_A$, $F_{A16} = F_{\phi}$ are all soft subsets of F_A and $T_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2, u_3\})\}$, $T_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_3\})\}$, $T_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2\})\}$, $T_A = \{(x_1, \{$

Proposition 3.3. Every soft pg-closed set is soft I_{pg} - closed.

Proof. Let F_E be a soft pg-closed set in soft topological space $(X, \tilde{\tau})$. We show that F_E is soft I_{pg} -closed set. Let $F_E \subseteq G_E$ and G_E is soft pre open. Since F_E is soft pg-closed, then $p(F_E)^- \subseteq G_E$ and hence $p(F_E)^- \setminus G_E = \phi \in I$. Consequently F_E is soft I_{pg} -closed.

The converse of the above proposition is not true in general as seen from the following example.

Example 3.4. From Example 3.3, we have F_{A8} is soft I_{pg} -closed, but it is not pg-closed.

Proposition 3.5. Every soft g-closed set is soft I_{pg} -closed.

Proof. Let F_E be a soft g-closed set in soft topological space $(X, \tilde{\tau})$. Let $F_E \subseteq G_E$ and G_E is soft open. Since F_E is soft g-closed, then $F_E^- \subseteq G_E$. Since every soft open is soft pre open, then we have G_E is soft pre open and hence $p(F_E)^- \setminus G_E = \phi \in I$. Consequently F_E is soft I_{pg} -closed.

The converse of the above proposition is not true in general as seen from the following example.

Example 3.6. From Example 3.3, F_{A2} is soft I_{pg} -closed, but not soft g-closed.

Proposition 3.7. Every soft I_g -closed set is soft I_{pg} -closed.

Proof. Let F_E be a soft I_g -closed set in soft topological space $(X, \tilde{\tau})$. Let $F_E \subseteq G_E$ and G_E is soft open. Since F_E is soft I_g -closed, then $F_E^- \setminus G_E \in I$. Since every soft open is soft pre open, then we have G_E is soft pre open and hence $p(F_E)^- \setminus G_E = \phi \in I$. Consequently F_E is soft I_{pg} -closed.

The converse of the above proposition is not true in general as seen from the following example.

Example 3.8. From Example 3.3, we have F_{A2} is soft I_{pg} -closed. But it is not soft I_{g} -closed.

Theorem 3.9. A soft set A_E is soft I_{pg} -closed in a soft topological space $(X, \tilde{\tau})$ iff $F_E \subseteq p(A_E)^- \setminus A_E$ and F_E is soft pre closed implies $F_E \in I$.

Proof. Assume that A_E is soft I_{pg} -closed. Let $F_E \subseteq p(A_E)^- \setminus A_E$. Suppose that F_E is soft pre closed. Then $A_E \subseteq F_E^c$. By our assumption, $p(A_E)^- \setminus F_E^c \in I$. But $F_E \subseteq p(A_E)^- \setminus F_E^c$, then $F_E \in I$.

Conversely, assume that $F_E \subseteq p(A_E)^- \setminus A_E$ and F_E is soft pre closed implies $F_E \in I$. Suppose that $A_E \subseteq G_E$ and G_E is soft pre open. Then $p(A_E)^- \setminus G_E^- = p(A_E)^- \cap (G_E^c)^-$ is a soft pre closed set in $(X, \tilde{\tau})$ and $p(A_E)^- \setminus G_E^- \supseteq p(A_E)^- \setminus G_E$. By assumption $p(A_E)^- \setminus G_E \in I$. This implies that A_E is soft I_{pg} -closed.

Theorem 3.10. If F_E and G_E are soft I_{pg} -closed sets in a soft topological space $(X, \tilde{\tau})$, then their union $F_E \tilde{\cup} G_E$ is also soft I_{pg} -closed in $(X, \tilde{\tau})$.

Proof. Suppose that F_E and G_E are soft I_{pg} -closed in $(X, \tilde{\tau})$. If $F_E \tilde{\cup} G_E \tilde{\subseteq} H_E$ and H_E is soft pre open , then $F_E \tilde{\subseteq} H_E$ and $G_E \tilde{\subseteq} H_E$. By assumption $p(F_E)^- \setminus H_E \in I$ and $p(G_E)^- \setminus H_E \in I$ and hence $p(F_E \tilde{\cup} G_E)^- \setminus H_E = (p(F_E)^- \setminus H_E) \tilde{\cup} (p(G_E)^- \setminus H_E) \in I$. That is $F_E \tilde{\cup} G_E$ is soft I_{pg} -closed.

Theorem 3.11. If F_E is soft I_{pg} -closed in a soft topological space $(X, \ \tilde{\tau})$ and $F_E \subseteq G_E \subseteq p(F_E)^-$, then G_E is soft I_{pg} -closed in $(X, \ \tilde{\tau})$.

Proof. If F_E is soft I_{pg} -closed and $F_E \subseteq G_E \subseteq p(F_E)^-$ in $(X, \tilde{\tau})$. Suppose that $G_E \subseteq H_E$ and H_E is soft pre open . Then $F_E \subseteq H_E$. Since F_E is soft I_{pg} -closed, then $p(F_E)^- \setminus H_E \in I$. Now, $G_E \subseteq p(F_E)^-$ implies that $p(G_E)^- \subseteq p(F_E)^-$. So $p(G_E)^- \setminus H_E \subseteq p(F_E)^- \setminus H_E$ and thus $p(G_E)^- \setminus H_E \in I$. Consequently G_E is soft I_{pg} -closed in $(X, \tilde{\tau})$.

Remark 3.12. The intersection of two soft I_{pg} -closed sets need not be a soft I_{pg} -closed as shown by the following example.

Example 3.13. Let $X = \{u_1, u_2, u_3\}, A = \{x_1, x_2\}, F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2, u_3\}) \text{ and } \tilde{\tau} = \{F_{\phi}, F_A, F_{A1}, F_{A3}\}, \tilde{\tau}^c = \{F_{\phi}, F_A, F_{A12}, F_{A6}\}.$ Let $I = \{F_{\phi}, (x_2, \{u_2\})\}$ be a soft ideal on X. $G_{sp} = \{F_{\phi}, F_A, F_{A1}, F_{A3}, F_{A7}, F_{A8}, F_{A9}, F_{A13}, F_{A14}\}.$ Clearly, F_{A9} and F_{A13} are soft I_{pg} -closed but their intersection F_{A7} is not I_{pg} -closed.

Theorem 3.14. If A_E is soft I_{pg} -closed and F_E is soft pre-closed in a soft topological space $(X, \tilde{\tau})$. Then $A_E \tilde{\cap} F_E$ is soft I_{pg} -closed in $(X, \tilde{\tau})$.

Proof. Assume that $A_E \ \tilde{\cap} \ F_E \ \tilde{\subseteq} \ G_E$ and G_E is soft pre open. Then $A_E \ \tilde{\subseteq} \ G_E \ \tilde{\cup} \ F_E^c$. Since A_E is soft I_{pg} -closed, we have $p(A_E)^- \ \backslash \ (G_E \ \tilde{\cup} \ F_E^c) \ \in \ I$. Now, $p(A_E \ \tilde{\cap} \ F_E)^- \ \tilde{\subseteq} \ p(A_E)^- \ \tilde{\cap} \ p(F_E)^- = p(A_E)^- \ \tilde{\cap} \ F_E = p(A_E)^- \ \tilde{\cap} \ F_E \ \backslash \ F_E^c$. Therefore $(A_E \ \tilde{\cap} \ F_E) \ \backslash \ G_E \ \tilde{\subseteq} \ p(A_E)^- \ \tilde{\cap} \ F_E) \ \backslash \ G_E \ \tilde{\subseteq} \ p(A_E)^- \ \backslash \ G_E \ \tilde{\cup} \ F_E^c = I$. Hence $A_E \ \tilde{\cap} \ F_E$ is soft I_{pg} -closed.

Definition 3.15. Let $(X, \tilde{\tau})$ be a soft topological space and $F_A \subseteq F_E$. Then the soft pre generalized closed set with respect to soft ideal closure(soft I_{pg} -closure) of F_A denoted by $I_{pg}(F_A)^-$ is defined as the soft intersection of all soft I_{pg} -closed supersets of F_A . Note that, $I_{pg}(F_A)^-$ is the soft smallest soft I_{pg} -closed set containing F_A .

Theorem 3.16. Let $(X, \tilde{\tau})$ be a soft topological space and let F_A and F_B be a soft sets over X. Then

- (a). $F_A \subseteq I_{pg}(F_A)^-$
- (b). F_A is soft I_{pg} -closed iff $F_A = I_{pg}(F_A)^-$
- (c). $F_A \subseteq F_B$, then $I_{pq}(F_A)^- \subseteq I_{pq}(F_B)^-$
- (d). $I_{pg}(F_{\phi})^{-} = F_{\phi} \text{ and } I_{pg}(F_{E})^{-} = F_{E}$
- (e). $I_{pg}(F_A \tilde{\cap} F_B)^- = I_{pg}(F_A)^- \tilde{\cap} I_{pg}(F_B)^-$
- (f). $I_{pq}(F_A \tilde{\cup} F_B)^- = I_{pq}(F_A)^- \tilde{\cup} I_{pq}(F_B)^-$
- (g). $I_{pg}(I_{pg}(F_A)^-)^- = I_{pg}(F_A)^-$.

Theorem 3.17. Let $Y \subseteq X$ and $F_E \subseteq \tilde{Y} \subseteq \tilde{X}$. Suppose that F_E is soft I_{pg} -closed in $(X, \tilde{\tau})$. Then F_E is soft I_{pg} -closed relative to the soft topological subspace $\tilde{\tau}_Y$ of X and with respect to the soft ideal $I_Y = \{H_E \subseteq \tilde{Y} : H_E \in I\}$.

Proof. Suppose that $F_E \subseteq B_E \cap \tilde{Y}$ and B_E is soft pre open. So $B_E \cap \tilde{Y} \in \tilde{\tau}_Y$ and $F_E \subseteq B_E$. Since F_E is soft I_{pg} -closed in $(X, \tilde{\tau})$, then $p(F_E)^- \setminus B_E \in I$. Now, $(p(F_E)^- \cap \tilde{Y}) \setminus (B_E \cap \tilde{Y}) = (p(F_E)^- \setminus B_E) \cap \tilde{Y} \in I_Y$ whenever F_E is soft I_{pg} -closed relative to the subspace $(Y, \tilde{\tau}_Y)$.

4. Soft Pre Generalized Open Sets With Respect To Soft Ideal

Definition 4.1. A soft set F_E is called soft pre generalized open set with respect to a soft ideal I (soft I_{pg} -open) in a soft topological space $(X, \tilde{\tau})$ iff the complement F_E^c is soft I_{pg} -closed in $(X, \tilde{\tau})$.

Theorem 4.2. A soft set A_E is soft I_{pg} -open in a soft topological space $(X, \tilde{\tau})$ iff $F_E \setminus B_E \subseteq p(A_E)^o$ for some $B_E \in I$ whenever $F_E \subseteq A_E$ and F_E is soft pre closed in $(X, \tilde{\tau})$.

Proof. Suppose that A_E is soft I_{pg} -open. Let $F_E \subseteq A_E$ and F_E is soft pre-closed. we have $A_E^c \subseteq F_E^c$, A_E^c is soft I_{pg} -closed and F_E^c is soft pre-open. By assumption, $p(A_E^c)^- \setminus F_E^c \in I$. Hence $p(A_E^c)^- \subseteq F_E^c \cup B_E$ for some $B_E \in I$. So $(F_E^c \cup B_E)^c \subseteq p((A, E^c)^-)^c = p(A_E)^o$ and therefore $F_E \setminus B_E = F_E \cap B_E^c \subseteq p(A_E)^o$.

Conversely, assume that $F_E \subseteq A_E$ and F_E is soft pre closed. These imply that $F_E \setminus B_E \subseteq p(A_E)^o$ for some $B_E \in I$. Consider G_E is soft pre open such that $A_E^c \subseteq G_E$. Then $G_E^c \subseteq A_E$. By assumption $G_E^c \setminus B_E \subseteq p(A_E)^o = (p(A_E^c)^-)^c$ for some $B_E \in I$. This gives that $(G_E \cup B_E)^c \subseteq (p(A_E^c)^-)^c$. Then $p(A_E^c)^- \subseteq G_E \cup B_E$ for some $B_E \in I$. This shows that $p(A_E^c)^- \setminus G_E \in I$. Hence A_E^c is soft I_{pg} -closed and therefore A_E is soft I_{pg} -open.

Theorem 4.3. If A_E and B_E are soft separated and soft I_{pg} -open sets in a soft topological space $(X, \tilde{\tau})$ then $A_E \tilde{\cup} B_E$ is soft I_{pg} -open in $(X, \tilde{\tau})$.

Proof. Suppose that A_E and B_E are soft separated I_{pg} -open sets in $(X, \tilde{\tau})$ and F_E is soft pre closed subset of $A_E \ \tilde{\cup} \ B_E$. Then $F_E \ \tilde{\cap} \ A_E^- \ \tilde{\subseteq} \ A_E$ and $F_E \ \tilde{\cap} \ B_E^- \ \tilde{\subseteq} \ B_E$. By Theorem 4.2, $(F_E \ \tilde{\cap} \ A_E^-) \setminus D_E \ \tilde{\subseteq} \ p(A_E)^o$ and $(F_E \ \tilde{\cap} \ B_E^-) \setminus C_E \ \tilde{\subseteq} \ p(B_E)^o$ for some $D_E, C_E \in I$. This means that $(F_E \ \tilde{\cap} \ A_E^-) \setminus p(A_E)^o \in I$ and $(F_E \ \tilde{\cap} \ B_E^-) \setminus p(B_E)^o \in I$. Then $((F_E \ \tilde{\cap} \ A_E^-) \setminus p(A_E)^o) \ \tilde{\cup} \ ((F_E \ \tilde{\cap} \ B_E^-) \setminus p(B_E)^o) \in I$. Hence $(F_E \ \tilde{\cap} \ (A_E^- \ \tilde{\cup} \ B_E^-)) \setminus p(A_E^o \ \tilde{\cup} \ B_E^-)^o \in I$. But $F_E = F_E \ \tilde{\cap} \ (A_E \ \tilde{\cup} \ B_E) \ \tilde{\subseteq} \ F_E \ \tilde{\cap} \ (A_E \ \tilde{\cup} \ B_E)^-$ and we have $F_E \setminus p(A_E \ \tilde{\cup} \ B_E)^o \ \tilde{\subseteq} (F_E \ \tilde{\cap} \ (A_E \ \tilde{\cup} \ B_E)^-) \setminus p(A_E^o \ \tilde{\cup} \ B_E^o) \in I$. Hence $F_E \setminus H_E \ \tilde{\subseteq} \ p(A_E^o \ \tilde{\cup} \ B_E^o)$ for some $H_E \in I$. This proves that $A_E \ \tilde{\cup} \ B_E$ is soft I_{pg} -open.

Corollary 4.4. If A_E and B_E are soft I_{pg} -open set in a soft topological space $(X, \tilde{\tau})$, then $A_E \tilde{\cap} B_E$ is soft I_{pg} -open in $(X, \tilde{\tau})$.

Proof. If A_E and B_E are soft I_{pg} -open, then A_E^c and B_E^c are soft I_{pg} -closed. By Theorem 3.10, $(A_E \tilde{\cap} B_E)^c = A_E^c \tilde{\cup} B_E^c$ is soft I_{pg} -closed, which implies $A_E \tilde{\cup} B_E$ is soft I_{pg} -open.

Remark 4.5. Let A_E and B_E be soft I_{pg} closed sets and suppose that A_E^c and B_E^c are soft separated in a soft topological space $(X, \tilde{\tau})$. Then $A_E \tilde{\cap} B_E$ is soft I_{pg} -closed in $(X, \tilde{\tau})$.

Theorem 4.6. Let $Y \subseteq X$ and $A_E \subseteq \tilde{Y} \subseteq \tilde{X}$, A_E is soft I_{pg} -open in $(Y, \tilde{\tau}_Y)$ and \tilde{Y} is soft I_{pg} -open in $(X, \tilde{\tau})$. Then A_E is soft I_{pg} -open in $(X, \tilde{\tau})$.

Proof. Suppose that $A_E \ \tilde{\subseteq} \ \tilde{Y} \ \tilde{\subseteq} \ \tilde{X}$, A_E is soft I_{pg} -open in $(Y, \ \tilde{\tau}_Y)$ and \tilde{Y} is soft I_{pg} -open in $(X, \ \tilde{\tau})$. We show that A_E is soft I_{pg} -open in $(X, \ \tilde{\tau})$. Suppose that $F_E \ \tilde{\subseteq} \ A_E$ and F_E is soft pre closed. Since A_E is soft I_{pg} -open relative to \tilde{Y} , by Theorem 4.2 , $F_E \setminus D_E \ \tilde{\subseteq} \ p(A_E)^o$ for some $D_E \in I_Y$. This implies that there exists a soft pre open set G_E such that $F_E \setminus D_E \ \tilde{\subseteq} \ G_E \ \tilde{\cap} \ \tilde{Y} \ \tilde{\subseteq} \ A_E$ for some $D_E \in I$. Then $F_E \ \tilde{\subseteq} \ \tilde{Y}$ and F_E is soft pre closed. Since \tilde{Y} is soft I_{pg} -open, then $F_E \setminus H_E \ \tilde{\subseteq} \ p(\ \tilde{Y})^o$ for some $H_E \in I$. This implies that there exists a soft pre open set K_E such that $F_E \setminus H_E \ \tilde{\subseteq} \ K_E \ \tilde{\subseteq} \ \tilde{Y}$ for some $H_E \in I$. Now, $F_E \setminus (D_E \ \tilde{\cup} H_E) = (F_E \setminus D_E) \ \tilde{\cap} \ (F_E \setminus H_E) \ \tilde{\subseteq} \ G_E \ \tilde{\cap} \ K_E \ \tilde{\subseteq} \ G_E \ \tilde{\cap} \ \tilde{Y} \ \tilde{\subseteq} \ A_E$. This implies that $F_E \setminus (D_E \ \tilde{\cup} \ H_E) \ \tilde{\subseteq} \ p(A_E)^o$ for some $D_E \ \tilde{\cup} \ H_E \in I$ and hence A_E is soft I_{pg} -open in $(X, \ \tilde{\tau})$.

Theorem 4.7. If $A_E^o \subseteq B_E \subseteq A_E$ and A_E is soft I_{pg} -open in a soft topological space $(X, \tilde{\tau})$, then B_E is soft I_{pg} -open in $(X, \tilde{\tau})$.

Proof. Suppose that $A_E^o \subseteq B_E \subseteq A_E$ and A_E is soft I_{pg} -open. Then $A_E^c \subseteq B_E^c \subseteq (A_E^c)^-$ and A_E^c is soft I_{pg} -closed. By Theorem 3.12, B_E^c is soft I_{pg} -closed and hence B_E is soft I_{pg} -open.

Definition 4.8. Let $(X, \tilde{\tau})$ be a soft topological space and $F_A \subseteq F_E$. Then the soft pre generalized closed set with respect to soft ideal interior(soft I_{pg} -interior) of F_A denoted by $I_{pg}(F_A)^o$ is defined as the soft union of all soft I_{pg} -open subsets of F_A . Note that, $I_{pg}(F_A)^o$ is the soft biggest soft I_{pg} -open set that contained in F_A .

Theorem 4.9. Let $(X, \tilde{\tau})$ be a soft topological space and let F_A and F_B be a soft sets over X. Then

- (a). $I_{pg}(F_A)^o \subseteq F_A$
- (b). F_A is soft I_{pg} -open iff $F_A = I_{pg}(F_A)^o$
- (c). $F_A \subseteq F_B$, then $I_{pg}(F_A)^o \subseteq I_{pg}(F_B)^o$
- (d). $I_{pg}(F_{\phi})^o = F_{\phi}$ and $I_{pg}(F_E)^o = F_E$
- (e). $I_{pg}(F_A \tilde{\cap} F_B)^o = I_{pg}(F_A)^o \tilde{\cap} I_{pg}(F_B)^o$
- (f). $I_{pq}(F_A \tilde{\cup} F_B)^o \tilde{\supseteq} I_{pq}(F_A)^o \tilde{\cup} I_{pq}(F_B)^o$
- (g). $I_{pg}(I_{pg}(F_A)^o)^o = I_{pg}(F_A)^o$
- (h). $(i)(I_{pq}(F_A)^-)^c = I_{pq}(F_A^c)^o$ $(ii)(I_{pq}(F_A)^o)^c = I_{pq}(F_A^c)^-$

Theorem 4.10. A soft set A_E is soft I_{pg} -closed in a soft topological space $(X, \tilde{\tau})$ iff $p(A_E)^- \setminus A_E$ is soft I_{pg} -open.

Proof. Suppose that $F_E \subseteq p(A_E)^- \setminus A_E$ and F_E is soft pre closed. Then $F_E \in I$ and this implies that $F_E \setminus D_E = \phi$ for some $D_E \in I$. Clearly, $F_E \setminus D_E \subseteq p(A_E^- \setminus A_E)^o$. By Theorem 4.2, $p(A_E)^- \setminus A_E$ is soft I_{pg} -open.

Conversely, suppose that $A_E \ \tilde{\subseteq} \ G_E$ and G_E is soft pre open in $(X, \ \tilde{\tau})$. Then, $p(A_E)^- \ \tilde{\cap} \ G_E^c \ \tilde{\subseteq} \ p(A_E)^- \ \tilde{\cap} \ A_E^c = p(A_E)^- \setminus A_E$. By hypothesis, $p(A_E)^- \ \tilde{\cap} \ G_E^c \setminus D_E \ \tilde{\subseteq} \ (p(A_E)^- \setminus A_E)^o = \phi$, for some $D_E \in I$. This implies that $p(A_E)^- \ \tilde{\cap} \ G_E^c \ \tilde{\subseteq} \ D_E \in I$ and therefore $p(A_E)^- \setminus G_E \in I$. Thus, A_E is soft I_{pg} -closed.

References

- [1] Andrijevic, On the topology generated by preopen sets, Mat. Vesnik, 39(1987), 367-376.
- [2] A.Aygunoğlu and H.Aygun, Some notes on soft topological spaces, Neural Comput. and Applic., 21(1)(2012), 113-119.
- [3] S.Hussain and Bashir Ahmad, *Some properties of soft topological spaces*, Computers and Mathematics with Applications, 62(2011), 4058-4067.
- [4] S.Jafari and N.Rajesh, Generalized closed sets with respect to an ideal, European journal of pure and applied mathemetics, 4(2011), 147-151.
- [5] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Month., 97(1990), 295-310.
- [6] K.Kannan, Soft generalized closed sets in soft topological spaces, Journal of Theoretical and applied information technology, 37(2012).
- [7] K.Kuratowski, Topology, Vol.I, Academic press, New York, (1966).
- [8] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [9] P.K.Maji, R.Biswas and A.R.Roy, An application of soft sets in decision making problem, Computers and Mathematics with Applications, 44(2002), 1077-1083.
- [10] P.K.Maji, R.Biswas and A.R.Roy, Soft set theory, Computers and Mathematics with Applications, 45(2003), 555-562.
- [11] A.S.Mashhour, M.E.Abd El-Monsel and El-Deep, On precontinuous and week precontinuous mappings, Proc. Math. Phys. Soc. Egypt. 53(1982), 47-53.
- [12] D.Molodtsov, Soft set theory first results, Computers and Mathematics with Applications, 37(1999), 19-31.
- [13] Muhammad Shabir and M.Naz, On soft topological spaces, Computers and Mathematics with Applications, 61(2011), 1786-1799.
- [14] H.I.Mustafa and F.M.Sleim, Soft generalized closed sets with respect to ideal in soft topological spaces, Appl. Math. Inf. Sci, 8(2)(2014), 665-671.
- [15] J.Subhashini and C.Sekar, On soft pre generalized closed sets in soft topological spaces, Int. Journal of Engineering Trends and Technology, 12(2014).
- [16] R.Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20(1944), 51-61.
- [17] I.Zorlutuna, M.Akdağ, W.K.Min and S.Atmaca, Remarks on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 3(2)(2012), 171-185.