Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

The Approximation of Laplace-Stieltjes Transforms in the Half Plane

Gyan Prakash Rathore^{1,*} and Anupma Rastogi¹

1 Department of Mathematics and Astronomy, Lucknow University, Lucknow, Uttar Pradesh, India.

Abstract: In this paper, we study the growth of the analytic function represented by Laplace-Stieltjes transform of infinite order which is convergent in the right half plane. We also investigate the error in approximation defined on Laplace-Stieltjes transform of finite γ_U -order in the half plane, and some relations between the error and growth of Laplace-Stieltjes transform of finite γ_U -order.

MSC: 44A10, 30E10.

Keywords: Growth, Laplace-Stieltjes transform, approximation, γ_U -order.

© JS Publication.

1. Introduction

Let Laplace-Stieltjes transform

$$F(s) = \int_0^\infty e^{-sx} d\alpha(x), \quad s = \sigma + it, \tag{1}$$

where $\alpha(x)$ is a bounded variation on any finite interval [0,Y] $(0 < Y < +\infty)$, σ and t are real variables. If $\alpha(t)$ is a step function and satisfies,

$$\alpha(t) = \begin{cases} a_1 + a_2 + \dots + a_n, & \lambda_n < x < \lambda_{n+1} \\ 0, & 0 \le x < \lambda_1 \\ \frac{\alpha(x+) + \alpha(x-)}{2}, & x > 0 \end{cases}$$

where the sequence $\{\lambda_n\}_{n=0}^{\infty}$ satisfies

$$0 \le \lambda_1 < \lambda_2 < \dots < \lambda_n < \dots, \quad \lambda_n \longrightarrow \infty \quad as \quad n \longrightarrow \infty,$$
 (2)

where $\alpha(x)$ is stated in (1) and $\{\lambda_n\}$ satisfy (2),

$$\limsup_{n \to \infty} (\lambda_{n+1} - \lambda_n) = h < +\infty, \quad \limsup_{n \to \infty} \frac{n}{\lambda_n} = E < +\infty.$$
(3)

Set

$$A_n^* = \sup_{\lambda_n \le x \le \lambda_{n+1}, -\infty < t < +\infty} \left| \int_{\lambda_n}^x e^{-ity} d\alpha(y) \right|,$$

^{*} E-mail: gyan.rathore1@gmail.com

$$\limsup_{n \to \infty} \frac{\log A_n^*}{\lambda_n} = 0. \tag{4}$$

Thus, F(s) becomes Dirichlet series,

$$F(s) = \sum_{n=1}^{\infty} a_n e^{\lambda_n s}, \quad s = \sigma + it, \tag{5}$$

where σ ,t are real variables and a_n are non-zero complex numbers.

The author studied the growth and value distribution of Laplace-Stieltjes transform (1) in 1963, J. R. Yu [9], and we get Valiron-Knopp-Bohr formula with associated abscissas of bounded convergence, absolute convergence and uniform convergence of Laplace-Stieltjes transform and to investigate the singular direction-borel line of Laplace-Stieltjes transform. After his work, some mathematician investigated properties on the growth and the value distribution of Laplace-Stieltjes transforms in ([3, 5, 6, 14, 16, 17]) and J. R. Yu, L. N. Shang, Z. S. Gao, and H. Y. Xu investigated the value distribution of such functions ([7–9, 11]). Furthermore, for Dirichlet series (3), a special form of Laplace-Stieltjes transform, authors paid considerable attention to the growth and value distribution of analytic functions defined by Dirichlet series. They founded many interesting results in ([1, 2, 4, 10, 12, 13, 15, 18–20]).

In 1963, Yu [9] proved the Valiron-Knopp-Bohr formula of the associated abscissas of bounded convergence, absolute convergence, and uniform convergence of Laplace-Stieltjes transforms;

Theorem 1.1 ([9]). Suppose that Laplace-Stieltjes transform (1) satisfy (3) and

$$\limsup_{n \to \infty} \frac{\log n}{\lambda_n} < +\infty,$$

then

$$\limsup_{n\to\infty}\frac{\log A_n^*}{\lambda_n}<\sigma_u^F\leq \limsup_{n\to\infty}\frac{\log A_n^*}{\lambda_n}+\limsup_{n\to\infty}\frac{\log n}{\lambda_n},$$

where σ_u^F is called the abscissa of uniformly convergent.

It follows that from (3), (4) and Theorem 1.1 such that $\sigma_u^F = 0$, i.e., F(s) is analytic in the right half plane. Put

$$\begin{split} M(\sigma,F) &= \sup_{-\infty < t < +\infty} |F(\sigma + it)|, \\ \mu(\sigma,F) &= \max_{n \in N} \{A_n^* e^{-\lambda_n \sigma}\}, \\ M_u(\sigma,F) &= \sup_{0 < x < +\infty, -\infty < t < +\infty} \left| \int_0^x e^{-(\sigma + it)y} d\alpha(y) \right| \quad (\sigma > 0). \end{split}$$

Definition 1.2 ([7]). If the Laplace-Stieltjes transform (1) satisfy $\sigma_u^F = 0$, then

$$\limsup_{\sigma \to \infty} \frac{\log^+ \log M_u(\sigma, F)}{-\log \sigma} = \rho,$$

we call F(s) is of order ρ in the right half plane, where $\log^+ x = \max(\log x, 0)$.

For $\rho = \infty$, we get the definition of γ -order of Laplace-Stieltjes transform (1) as follows that.

Definition 1.3 ([8]). If Laplace-Stieltjes transform (1) of γ -order satisfy,

$$\limsup_{\sigma \to 0^+} \frac{\gamma(\log^+ M_u(\sigma, F))}{-\log \sigma} = \rho_{\gamma},$$

where $\gamma(x) \in \Im$, then ρ_{γ} is called the γ -order of F(s), and \Im is the class of all functions $\gamma(x)$ satisfies the following conditions:

(i). $\gamma(x)$ is positive, strictly increasing, differentiable and tends to $+\infty$ as $x \to +\infty$ and is defined on $[a, \infty), a > 0$,

(ii).
$$x\gamma'(x) = o(1)$$
 as $x \to +\infty$.

Theorem 1.4 ([8]). Let Laplace-Stieltjes transformation $F(s) \in \overline{L_{\beta}}$ of infinite order has finite γ -order ρ_{γ} (0 < ρ_{γ} < $+\infty$) and the sequence (2) satisfies (3) and (4), then

$$\limsup_{\sigma \to 0^+} \frac{\gamma(\log \mu(\sigma, F))}{-\log \sigma} = \rho_{\gamma} \iff \limsup_{\sigma \to 0^+} \frac{\gamma(\log M_u(\sigma, F))}{-\log \sigma} = \rho_{\gamma},$$

Theorem 1.5 ([8]). Let Laplace-Stieltjes transformation $F(s) \in \overline{L_{\beta}}$ of infinite order has finite γ -order ρ_{γ} (0 < ρ_{γ} < $+\infty$) and the sequence (2) satisfies (3) and (4), then

$$\limsup_{n \to \infty} \frac{\gamma(\lambda_n)}{\log \lambda_n - \log^+ \log^+ A_n^*} = \rho_{\gamma} \iff \limsup_{\sigma \to 0^+} \frac{\gamma(\log M_u(\sigma, F))}{-\log \sigma} = \rho_{\gamma}.$$

Theorem 1.6 ([4]). Let Laplace-Stieltjes transform $F(s) \in \overline{L_{\beta}}$ is of infinite γ -order, then

$$\limsup_{\sigma \to 0^+} \frac{\gamma(\log^+ M_u(\sigma, F))}{\log U(\frac{1}{\sigma})} = T \iff \limsup_{\sigma \to 0^+} \frac{\gamma(\log^+ \mu(\sigma, F))}{\log U(\frac{1}{\sigma})} = T$$

where $0 < T < \infty$ and $U(x) = x^{\rho(x)}$ satisfies the following conditions,

(i). $\rho(x)$ is monotone and $\lim_{x\to\infty} \rho(x) = \infty$;

(ii).
$$\lim_{x\to\infty} \frac{\log U(x')}{\log U(x)} = 1, where \ x' = x(1 + \frac{1}{\log U(x)}).$$

Definition 1.7 ([7]). Let Laplace-Stieltjes transform F(s) of infinite order has infinite γ -order and satisfies,

$$\limsup_{\sigma \to 0^+} \frac{\gamma(\log^+ M_u(\sigma, F))}{\log U(\frac{1}{\sigma})} = T,$$

then T is called γ_U -order of Laplace-stieltjes transform F(s).

We denote L to be the class of all the functions F(s) of the form (1) which is analytic in the half plane Re(s) > 0 and the sequence $\{\lambda_n\}$ satisfies (2), (3) and (4), and denote $\overline{L_\beta}$ to the class of all the functions F(s) of the form (1) which is analytic in the half plane $Re(s) \leq \beta(-\infty < \beta < +\infty)$ and the sequence $\{\lambda_n\}$ satisfies (2) and (3).

Thus, if $-\infty < \beta < 0$ and $F(s) \in L$, then $F(s) \in \overline{L_{\beta}}$; if $0 < \beta < +\infty$ and $F(s) \in \overline{L_{\beta}}$ then $F(s) \in L$. If $A_n^* = 0$ for $n \geq k+1$, and $A_n^* \neq 0$, then F(s) will be called an exponential polynomial of degree k usually denoted by P_k i.e., $P_k(s) = \int_0^{\lambda_k} \exp(-sy) d\alpha(y)$. Since, F(s) is an analytic in the half plane, $H = \{s = \sigma + it, \sigma > 0, t \in \Re\}$. We denote \prod_n to the class of all exponential polynomial of degree n i.e., $\prod_n = \{\sum_{i=1}^n b_i \exp(-s\lambda_i); (b_1, b_2, \dots, b_n) \in \mathbb{C}^n\}$.

For $F(s) \in \overline{L_{\beta}}$, $-\infty < \beta < +\infty$, we denote $E_n(F,\beta)$ be the error in approximating the function F(s) by exponential polynomial of degree n in the uniform norms.

$$E_n(F,\beta) = \inf_{P \in \prod_n} ||F - P||_{\beta}, n = 1, 2, \dots$$

where

$$||F - P||_{\beta} = \max_{-\infty < t < +\infty} |F(\beta + it) - P(\beta + it)|.$$

The authors ([2, 11]) investigated the approximation of analytic function defined by Laplace-Stieltjes transforms of finite order. In this paper, we study the approximation of analytic function defined by Laplace-Stieltjes transform and obtain relation between the error $E_n(F,\beta)$ and growth order of F(s), when F(s) is of infinite order.

To prove our results we use the following Lemma's;

Lemma 1.8 ([7]). Let $\gamma(x) \in \Im$ and c be a constant, and $\psi(x)$ be the function such that

$$\limsup_{x \to +\infty} \frac{\log^+ \psi(x)}{\log x} = \rho, \quad (0 \le \rho < \infty)$$

and if the real function M(x) satisfies

$$\limsup_{x \to +\infty} \frac{\gamma(\log M(x))}{\log x} = \nu(>0).$$

Then we have

$$\limsup_{x\to +\infty} \frac{\gamma(logM(x)+c)}{logx} = \nu, \qquad \limsup_{x\to +\infty} \frac{\gamma(\psi(x)logM(x))}{logx} = \nu$$

Lemma 1.9 ([7]). If the abscissa $\sigma_u^F = 0$, of the uniform convergent Laplace-Stieltjes transformation and the sequence (2) satisfies (3), then for any given $\epsilon \in (0,1)$, and for $\sigma(>0)$ sufficiently reaching 0 we have

$$\frac{1}{3}\mu(\sigma, F) \le M_u(\sigma, F) \le K(\epsilon)\mu((1 - \epsilon)\sigma, F)\frac{1}{\sigma}.$$

Where $K(\epsilon)$ is a constant depending on ϵ .

2. Main Results

Theorem 2.1. Let Laplace-Stieltjes transform $F(s) \in \overline{L_{\beta}}$ of infinite order has infinite γ -order, then

$$\limsup_{\sigma \to 0^+} \frac{\gamma(\log^+ M_u(\sigma, F))}{\log U(\frac{1}{\sigma})} = T \iff \limsup_{n \to \infty} \frac{\gamma(\log^+ A_n^*)}{\log U(\frac{\lambda_n}{\log^+ A_n^*})} = T,$$

Proof. We want to proof only sufficient part.

Suppose that

$$\limsup_{n \to \infty} \frac{\gamma(\log^+ A_n^*)}{\log U\left(\frac{\lambda_n}{\log^+ A_n^*}\right)} = T. \tag{6}$$

Then, for any positive real number $\epsilon > 0$, for sufficiently large n, we have

$$\log^+ A_n^* < J\left((T + \epsilon) \log U\left(\frac{\lambda_n}{\log^+ A_n^*} \right) \right),$$

where J(x) is the inverse of $\gamma(x)$. Let V(x) is the inverse function of U(x), then

$$\begin{split} \frac{\gamma(\log^+ A_n^*)}{T + \epsilon} &< \log U \left(\frac{\lambda_n}{\log^+ A_n^*} \right) \\ &\log A_n^* &< \frac{\lambda_n}{V \left(\exp \left(\frac{\gamma(\log^+ A_n^*)}{T + \epsilon} \right) \right)} \\ &\log A_n^* &< \lambda_n \left[V \left(\exp \left(\frac{\gamma(\log^+ A_n^*)}{T + \epsilon} \right) \right) \right]^{-1}. \end{split}$$

Thus, we have

$$\log A_n^* e^{-\lambda_n \sigma} < \lambda_n \left[\left(V \left(\exp \left(\frac{\gamma(\log^+ A_n^*)}{T + \epsilon} \right) \right) \right)^{-1} - \sigma \right]. \tag{7}$$

For any fixed and sufficiently small $\sigma > 0$, set

$$I = J \left[(T + \epsilon) \log U \left(\frac{1}{\sigma} + \frac{1}{\sigma \log U(\frac{1}{\sigma})} \right) \right]$$

$$\gamma(I) = (T + \epsilon) \log U \left(\frac{1}{\sigma} + \frac{1}{\sigma \log U(\frac{1}{\sigma})} \right)$$

$$\frac{1}{\sigma} + \frac{1}{\sigma \log U(\frac{1}{\sigma})} = V \left(\exp \left(\frac{\gamma(I)}{T + \epsilon} \right) \right). \tag{8}$$

If $\log A_n^* \leq I$, then for sufficiently large n, let $V\left(\exp\left(\frac{\gamma(I)}{T+\epsilon}\right)\right) \geq 1$, for $\sigma > 0$, from (7), (8) and definition of U(x), we get

$$\log^{+}(A_{n}^{*}e^{-\lambda_{n}\sigma}) \leq I\left[\left(V\left(\exp\left(\frac{\gamma(\log^{+}A_{n}^{*})}{T+\epsilon}\right)\right)\right)^{-1} - \sigma\right]$$

$$\leq J\left((T+\epsilon)\log\left((1+o(1))U\left(\frac{1}{\sigma}\right)\right)\right)$$
(9)

If $log^+A_n^* > I$ then from (7) and (8), we get

$$\log(A_n^* e^{-\lambda_n \sigma}) \le \lambda_n \left(\left(V \left(\exp\left(\frac{\gamma(\log^+ A_n^*)}{T + \epsilon} \right) \right) \right)^{-1} - \sigma \right)$$

$$< 0 \tag{10}$$

For sufficiently large n from (9) and (10), we get

$$\log \mu(\sigma, F) \le J\left((T + \epsilon) \log \left((1 + o(1))U\left(\frac{1}{\sigma}\right) \right) \right)$$
$$\le J\left((T + \epsilon) \log U\left(\frac{1}{\sigma}\right) \right).$$

Since ϵ is arbitrary by Theorem C and Lemma 2.2, we get

$$\limsup_{\sigma \to 0^+} \frac{\gamma(\log M_u(\sigma,F))}{\log U(\frac{1}{\sigma})} \leq \limsup_{n \to \infty} \frac{\gamma(\log^+ A_n^*)}{\log U(\frac{\lambda_n}{\log^+ A^*})} = T.$$

Suppose that

$$\limsup_{\sigma \to 0^+} \frac{\gamma(\log M_u(\sigma, F))}{\log U(\frac{1}{\sigma})} < T. \tag{11}$$

Then, there exist a real number $\epsilon(0 < \epsilon < \frac{T}{2})$. For any positive number n and sufficiently small $\sigma > 0$ from Lemma 1.2, we have

$$\log^{+}(A_{n}^{*}e^{-\lambda_{n}\sigma}) \leq \log M_{u}(\sigma, F) \leq J\left((T - 2\epsilon)\log U\left(\frac{1}{\sigma}\right)\right). \tag{12}$$

From (6), there exist a subsequence $\{n(p)\}$ for sufficiently large p, we have

$$\gamma(\log^+ A_{n(p)}^*) > (T - \epsilon) \log U \left(\frac{\lambda_{n(p)}}{\log^+ A_{n(p)}^*} \right). \tag{13}$$

Taking a sequence $\{\sigma_p\}$ satisfy

$$J\left((T - 2\epsilon)\log U\left(\frac{1}{\sigma_p}\right)\right) = \frac{\log^+(A_{n(p)}^*)}{1 + \log U\left(\frac{\lambda_{n(p)}}{\log^+ A_{n(p)}^*}\right)}.$$
(14)

From (12) and (13), we get

$$\log A_{n(p)}^* - \lambda_{n(p)} \sigma_p \leq J\left((T - 2\epsilon) \log U\left(\frac{1}{\sigma_p}\right) \right) = \frac{\log^+(A_{n(p)}^*)}{1 + \log U\left(\frac{\lambda_{n(p)}}{\log^+ A_{n(p)}^*}\right)},$$

that is,

$$\frac{1}{\sigma_p} \leq \frac{\lambda_{n(p)}}{\log^+ A_{n(p)}^*} \left(1 + \frac{1}{\log U \left(\frac{\lambda_{n(p)}}{\log A_{n(p)}^*} \right)} \right).$$

$$U \left(\frac{1}{\sigma_p} \right) \leq U \left(\frac{\lambda_{n(p)}}{\log^+ A_{n(p)}^*} \left(1 + \frac{1}{\log U \left(\frac{\lambda_{n(p)}}{\log A_{n(p)}^*} \right)} \right) \right)$$

$$\leq U^{(1+o(1))} \left(\frac{\lambda_{n(p)}}{\log^+ A_{n(p)}^*} \right). \tag{15}$$

From (14) and (15), we get

$$\log^{+}(A_{n(p)}^{*}) = J\left((T - 2\epsilon)\log U\left(\frac{1}{\sigma_{p}}\right)\right)\left(1 + \log U\left(\frac{\lambda_{n(p)}}{\log^{+}A_{n(p)}^{*}}\right)\right)$$

$$= J\left((T - 2\epsilon)(1 + o(1))\log U\left(\frac{\lambda_{n(p)}}{\log^{+}A_{n(p)}^{*}}\right)\right)\left(1 + \log U\left(\frac{\lambda_{n(p)}}{\log^{+}A_{n(p)}^{*}}\right)\right).$$

Thus, from the Cauchy mean value theorem and there exist a real number ξ between x_1 and x_2 , where

$$x_1 = J\left((T - 2\epsilon)(1 + o(1)) \log U\left(\frac{\lambda_{n(p)}}{\log^+ A_{n(p)}^*}\right) \right) \quad and$$

$$x_2 = J\left((T - 2\epsilon)(1 + o(1)) \log U\left(\frac{\lambda_{n(p)}}{\log^+ A_{n(p)}^*}\right) \right) \left(1 + \log U\left(\frac{\lambda_{n(p)}}{\log^+ A_{n(p)}^*}\right) \right)$$

such that

$$\gamma(\log^{+}(A_{n(p)}^{*})) = \gamma \left\{ \left(1 + \log U \left(\frac{\lambda_{n(p)}}{\log^{+} A_{n(p)}^{*}} \right) \right) J \left((T - 2\epsilon)(1 + o(1)) \log U \left(\frac{\lambda_{n(p)}}{\log^{+} A_{n(p)}^{*}} \right) \right) \right\}$$

$$= \gamma \left(J \left((T - 2\epsilon)(1 + o(1)) \log U \left(\frac{\lambda_{n(p)}}{\log^{+} A_{n(p)}^{*}} \right) \right) + \log \left(1 + \log U \left(\frac{\lambda_{n(p)}}{\log^{+} A_{n(p)}^{*}} \right) \right) \xi \gamma'(\xi)$$

Since,

$$\lim_{p \to \infty} \frac{\log \left(1 + \log U \left(\frac{\lambda_{n(p)}}{\log^+ A_{n(p)}^*} \right) \right)}{\log U \left(\frac{\lambda_{n(p)}}{\log^+ A_{n(p)}^*} \right)} = 0.$$

Then for sufficiently large p, we have

$$\gamma(\log^{+}(A_{n(p)}^{*})) = (T - 2\epsilon)(1 + o(1))\log U\left(\frac{\lambda_{n(p)}}{\log^{+}A_{n(p)}^{*}}\right) + K_{1}\xi\gamma'(\xi)\log U\left(\frac{\lambda_{n(p)}}{\log^{+}A_{n(p)}^{*}}\right),\tag{16}$$

П

where K_1 is a constant. From (13) and (16), we get a contradiction. Thus,

$$\limsup_{\sigma \to 0^+} \frac{\gamma(\log M_u(\sigma, F))}{\log U\left(\frac{1}{\sigma}\right)} = T.$$

Hence, the sufficient part is completed. The necessary part is similar.

Now we establish some relation between $E_n(F,\beta)$ and growth of F(s).

Theorem 2.2. Let Laplace-Stieljes transform $F(s) \in \overline{L_{\beta}}$, $(0 < \beta < +\infty)$ is of order ρ , then

$$\rho = \limsup_{n \to \infty} \frac{\log^+ \log^+(E_n(F, \beta)e^{\beta\lambda_{n+1}}}{\log^+ \lambda_{n+1} - \log^+ \log^+(E_n(F, \beta)e^{\beta\lambda_{n+1}}}.$$

Theorem 2.3. Let Laplace-Stieltjes transform $F(s) \in \overline{L_{\beta}}$ is of finite γ -order ρ_{γ} , for any real number $0 < \beta < +\infty$, then

$$\limsup_{n \to \infty} \frac{\gamma(\lambda_n)}{\log \lambda_n - \log^+ \log^+ (E_{n-1}(F, \beta)e^{\beta \lambda_n})} = \rho_{\gamma}.$$

Theorem 2.4. Let $F(s) \in \overline{L_{\beta}}$ is of infinite γ -order, for any real number $0 < \beta < +\infty$, then

$$\limsup_{\sigma \to 0^+} \frac{\gamma(\log^+ M(\sigma, F))}{\log U(\frac{1}{\sigma})} = T \iff \limsup_{n \to +\infty} \phi_n(F, \beta, \lambda_n) = T;$$

where

$$\phi_n(F, \beta, \lambda_n) = \frac{\gamma(\log^+(E_{n-1}(F, \beta)e^{\beta\lambda_n}))}{\log U\left(\frac{\lambda_n}{\log^+(E_{n-1}(F, \beta)e^{\beta\lambda_n})}\right)}$$

Proof. We want to proof only sufficient part of the theorem.

Suppose that

$$\lim_{n \to \infty} \phi_n(F, \beta, \lambda_n) = \limsup_{n \to \infty} \frac{\gamma(\log^+(E_{(n-1)}e^{\beta\lambda_n}))}{\log U\left(\frac{\lambda_n}{\log^+(E_{n-1}e^{\beta\lambda_n})}\right)} = T.$$
(17)

For sufficiently large positive integer n and any positive real number $\epsilon > 0$, we have

$$\log^{+}(E_{n-1}e^{\beta\lambda_{n}}) < J\left((T+\epsilon)\log U\left(\frac{\lambda_{n}}{\log^{+}(E_{n-1}e^{\beta\lambda_{n}})}\right)\right).$$

By using the similar argument of Theorem , we have

$$\log^{+}(E_{n-1}e^{-(\sigma-\beta)\lambda_{n}}) \le \lambda_{n} \left(\left(V\left(\exp\left(\frac{\gamma(\log^{+}(E_{n-1}e^{-\beta\lambda_{n}}))}{T+\epsilon}\right) \right) \right)^{-1} - \sigma \right). \tag{18}$$

For any fixed and sufficiently small $\sigma > 0$, Set

$$I = J\left((T + \epsilon) \log U\left(\frac{1}{\sigma} + \frac{1}{\sigma \log U(\frac{1}{\sigma})}\right) \right),\,$$

i.e

$$\frac{1}{\sigma} + \frac{1}{\sigma \log U(\frac{1}{\sigma})} = V\left(\exp\left(\frac{\gamma(I)}{T + \epsilon}\right)\right). \tag{19}$$

If $\log^+(E_{n-1}e^{\beta\lambda_n}) \leq I$, for sufficiently large positive integer n, let $V\left(\exp\left(\frac{\gamma(\log^+(E_{n-1}e^{\beta\lambda_n}))}{T+\epsilon}\right)\right) \geq 1$. Since $\sigma > 0$, from (17) and (18), and definition of U(x), we have

$$\log^{+}(E_{n-1}e^{-(\sigma-\beta)\lambda_{n}}) \leq \lambda_{n} \left(\left(V \left(\exp\left(\frac{\gamma(\log^{+}(E_{n-1}e^{\beta\lambda_{n}}))}{T+\epsilon} \right) \right) \right)^{-1} - \sigma \right)$$

$$\leq I = J \left((T+\epsilon) \log U \left(\frac{1}{\sigma} + \frac{1}{\sigma \log U(\frac{1}{\sigma})} \right) \right)$$

$$\leq J \left((T+\epsilon) \log \left((1+o(1))U(\frac{1}{\sigma}) \right) \right). \tag{20}$$

If $\log^+(E_{n-1e}e^{\beta\lambda_n}) > I$, it follows that from (17) and (18),

$$\log^{+}(E_{n-1}e^{-(\sigma-\beta)\lambda_{n}}) \leq \lambda_{n} \left(\left(V\left(\exp\left(\frac{\gamma(I)}{T+\epsilon}\right) \right) \right)^{-1} - \sigma \right)$$

$$\leq \lambda_{n} \left(\left(\frac{1}{\sigma} + \frac{1}{\sigma \log U(\frac{1}{\sigma})} \right)^{-1} - \sigma \right)$$

$$< 0. \tag{21}$$

Hence from (19) and (20) for sufficiently large positive integer n, we get

$$\log^{+}(E_{n-1}e^{-(\sigma-\beta)\lambda_{n}}) \le J\left((T+\epsilon)\log\left((1+o(1))U\left(\frac{1}{\sigma}\right)\right)\right). \tag{22}$$

For any $\beta > 0$, then from the definition of $E_k(\beta, F)$, then exist $P_1 \in \prod_{n-1}$ satisfying

$$||F - P_1|| \le K_2 E_{n-1}. \tag{23}$$

Since,

$$A_n^* \exp\left(-\beta \lambda_n\right) = \sup_{\lambda_n < x \le \lambda_{n+1}, -\infty < t < +\infty} \left| \int_{\lambda_n}^x \exp\{-ity\} d\alpha(y) \right| \exp(-\beta \lambda_n)$$

$$\leq \sup_{\lambda_n < x \le \lambda_{n+1}, -\infty < t < +\infty} \left| \int_{\lambda_n}^x \exp\{-\beta - ity\} d\alpha(y) \right|$$

$$\leq \sup_{-\infty < t < +\infty} \left| \int_{\lambda_n}^\infty \exp\{-\beta - ity\} d\alpha(y) \right|,$$

then for any $P \in \prod_{n-1}$, we have

$$A_n^* \exp(-\beta \lambda_n) \le |F(\beta + it) - P(\beta + it)|$$

$$\le ||F - P||_{\beta}.$$
(24)

Hence, for any $\beta > 0$, and $F(s) \in \overline{L_{\beta}}$, it follows that from (22) and (23)

$$A_n^* \exp(-\beta \lambda_n) \le K_2 E_{n-1},$$

$$i.e., \quad A_n^* \le K_2 E_{n-1} \exp(\beta \lambda_n)$$

$$A_n^* e^{-\sigma \lambda_n} \le K_2 E_{n-1} e^{-(\sigma - \beta) \lambda_n}.$$

$$(25)$$

Thus from (22), (24), by Lemma 1.8 and Theorem C as $\epsilon \to 0$, we have

$$\limsup_{\sigma \to 0} \frac{\gamma(\log^+ M_u(\sigma, F))}{\log U\left(\frac{1}{\sigma}\right)} \le T.$$

Suppose that

$$\limsup_{\sigma \to 0} \frac{\gamma(\log^+ M_u(\sigma, F))}{\log U\left(\frac{1}{2}\right)} < T.$$

Then there exist any real number ϵ $(0 < \epsilon < \frac{T}{2})$, and for any sufficiently small $\sigma > 0$, we get

$$\log^{+}(M_{u}(\sigma, F)) \le J\left((T - 2\epsilon)\log U\left(\frac{1}{\sigma}\right)\right). \tag{26}$$

Since,

$$E_{n-1}(\beta, F) \leq \|F - P_{n-1}\|_{\beta}$$

$$\leq |F(\beta + it) - P_{n-1}(\beta + it)|$$

$$\leq \left| \int_{\lambda_n}^{+\infty} \exp\{-(\beta + it)y\} d\alpha(y) \right|, \tag{27}$$

for $0 < \beta < \sigma$, and

$$\left| \int_{\lambda_k}^{+\infty} \exp\{-(\beta+it)y\} d\alpha(y) \right| = \lim_{b \to +\infty} \left| \int_{\lambda_k}^{b} \exp\{-(\beta+it)y\} d\alpha(y) \right|.$$

Set.

$$I_{j+k}(b;it) = \int_{\lambda_{j+k}}^{b} \exp(-ity)d\alpha(y), (\lambda_{j+k} \le b \le \lambda_{j+k+1}),$$

then we have $|I_{j+k}(b;it)| \leq A_{j+k}^*$. Thus, it follows

$$\left| \int_{\lambda_k}^b \exp\{-(\beta + it)y\} d\alpha(y) \right| = \left| \sum_{j=k}^{n+k-1} \int_{\lambda_j}^{\lambda_{j+1}} \exp(-\beta y) dy I_j(y; it) + \int_{\lambda_{n+k}}^b \exp(-\beta y) dy I_{n+k}(y; it) \right|$$

$$\leq 2 \sum_{j=k}^{n+k} A_n^* e^{-\beta \lambda_{n+1}}.$$

Because $b \to +\infty$ as $n \to +\infty$, thus it follows that

$$\left| \int_{\lambda_k}^{+\infty} \exp\{-(\beta + it)y\} d\alpha(y) \right| \le 2 \sum_{n=k}^{+\infty} A_n^* e^{-\beta \lambda_{n+1}}. \tag{28}$$

By Lemma 1.2, from (26) and (27), we have

$$E_{n-1}(\beta, F) \le 6M_u(\sigma, F) \sum_{k=n}^{\infty} \exp\{(-\beta + \sigma)\lambda_k\}.$$
(29)

From (3), we can take h'(0 < h' < h) such that $(\lambda_{(n+1)} - \lambda_n) \ge h'$ for $n \ge 0$, then from (29) for $\sigma \le \frac{\beta}{2}$, we get

$$E_{n-1}(\beta, F) \leq 6M_u(\sigma, F) \exp\{(-\beta + \sigma)\lambda_n\} \sum_{n=k}^{+\infty} \exp\{(\lambda_k - \lambda_n)(-\beta + \sigma)\}$$

$$\leq 6M_u(\sigma, F) \exp\{(-\beta + \sigma)\lambda_n\} \left(1 - \exp\left(-\frac{3}{2}\beta kh'\right)\right)^{-1},$$

$$E_{n-1}(\beta, F) \leq K_3 M_u(\sigma, F) \exp\{(-\beta + \sigma)\lambda_n\},$$
(30)

where K_3 is constant. Then for sufficiently small $\sigma > 0$ and $0 < \beta < \sigma < +\infty$, we have

$$M_u(\sigma, F) \ge K_3 E_{n-1}(\beta, F) e^{\lambda_n(\beta - \sigma)} = K_3 E_{n-1}(\beta, F) \exp(\beta \lambda_n) e^{(-\lambda_n \sigma)}, \tag{31}$$

where $K_4 = 1 - \exp\left(-\frac{3}{2}\beta h'\right)$. Hence, it follows that from (26) and (31)

$$\log^{+} \left[K_{3} E_{n-1}(\beta, F) \exp\left(\beta \lambda_{n}\right) e^{(-\lambda_{n} \sigma)} \right] \leq \log M_{u}(\sigma, F) \leq J\left((T - 2\epsilon) \log U\left(\frac{1}{\sigma}\right) \right). \tag{32}$$

From the assumption, there exist a subsequence $\{\lambda_{n(p)}\}$ such that for sufficiently large p,

$$\gamma \left(\log^+(E_{n(p-1)} \exp\{\beta \lambda_{n(p)}\}) \right) > (T - \epsilon) \log U \left(\frac{\lambda_{n(p)}}{\log^+ E_{n(p-1)} \exp\{\beta \lambda_{n(p)}\}} \right). \tag{33}$$

Take a sequence $\{\sigma_p\}$ satisfying

$$J\left((T - 2\epsilon)\log U\left(\frac{1}{\sigma_p}\right)\right) = \frac{\log^+ E_{n(p-1)} \exp\{\beta \lambda_{n(p)}\}}{1 + \log U\left(\frac{\lambda_{n(p)}}{\log E_{n(p-1)} \exp\{\beta \lambda_{n(p)}\}}\right)}.$$
(34)

From (31) and (34), by using the similar argument of Theorem 2.1, we get

$$\log^{+}(E_{n(p-1)}e^{\beta\lambda_{n(p)}}) = J\left((T - 2\epsilon)\log U\left(\frac{1}{\sigma_{p}}\right)\right)\left(1 + \log U\left(\frac{\lambda_{n(p)}}{\log^{+}E_{n(p-1)}\exp\{\beta\lambda_{n(p)}\}}\right)\right). \tag{35}$$

Then by Cauchy mean value theorem, then there exist a real number $\xi \in (x_1, x_2)$ where

$$x_1 = J\left((T - 2\epsilon) \log U\left(\frac{1}{\sigma_p}\right) \right)$$
$$x_2 = x_1 \left(1 + \log U\left(\frac{\lambda_{n(p)}}{\log^+ E_{n(p-1)} \exp\{\beta \lambda_{n(p)}\}} \right) \right),$$

such that

$$\gamma \left(\log^+(E_{n(p-1)}e^{\beta\lambda_{n(p)}}) \right) = \gamma \left(J \left((T - 2\epsilon)(1 + o(1)) \log U \left(\frac{\lambda_{n(p)}}{\log^+ E_{n(p-1)} \exp\{\beta\lambda_{n(p)}\}} \right) \right) \right) + \log \left(1 + \log U \left(\frac{\lambda_{n(p)}}{\log^+ E_{n(p-1)} \exp\{\beta\lambda_{n(p)}\}} \right) \right) \xi \gamma'(\xi),$$

since

$$\lim_{p \to \infty} \frac{\log \left(1 + \log U\left(\frac{\lambda_{n(p)}}{\log^+ E_{n(p-1)} \exp\{\beta \lambda_{n(p)}\}}\right)\right)}{\log U\left(\frac{\lambda_{n(p)}}{\log^+ E_{n(p-1)} \exp\{\beta \lambda_{n(p)}\}}\right)} = 0,$$

then for $p \to +\infty$ and let $\sigma \to 0^+$, it follows that

$$\gamma \left(log^{+}(E_{n(p-1)}e^{\beta\lambda_{n(p)}}) \right) = (T - 2\epsilon)(1 + o(1))logU\left(\frac{\lambda_{n(p)}}{log^{+}E_{n(p-1)}\exp\{\beta\lambda_{n(p)}\}} \right) + o(1).$$

$$(36)$$

From (26) and (36) by Lemma 1.8, we obtain a contradiction with the assumption $0 < \epsilon < \frac{T}{2}$. Thus,

$$\limsup_{\sigma \to 0^+} \frac{\gamma(\log^+ M_u(\sigma, F))}{\log U\left(\frac{1}{\sigma}\right)} = T.$$

Hence, the sufficient part is proved. The necessary part is similar.

References

- [1] A. Nautiyal, On the coefficients of analytic Dirichlet series of fast growth, Indian Journal of Pure and Appl. Math., 155(10), 1984, 1102-1114.
- [2] A. Nautiyal and D. P. Shukla, On the approximation of an analytic function by exponential polynomials, Indian J. of Pure and App. Math., 14(6)(1983),722-727.
- [3] C. J. K. Batty, Tauberian theorem for the Laplace-Stieltjes transform, Trans. Amer. Math.Soc., 322(2)(1990), 783-804.
- [4] D. C. Sun, On the distribution of values of random Dirichlet Series II, Chin. Ann. Math. Ser. B, 11(1)(1990), 33-44.
- [5] H. Y. Xu, The logarithmic order and logarithmic type of Laplace-Stieltjes transform, J. Jiangxi Norm. Univ. Nat. Sci., 41(2017), 180-183.
- [6] H. Y. Xu, C. F. Yi and T. B. Cao, On proximate order and type function of Laplace Stieltjes transformation convergent in the right half plane, Math.Commun., 17(2012), 355-369.
- [7] H. Y. Xu and Z. X. Xuan, The growth and value distribution of Laplace -Stieltjes transformation with infinite order in the right half plane, Journal of Inequalities and Applications 2013(2013), Art. 273.

- [8] H. Y. Xu and Z. X. Xuan, The singular points of analytic functions with finite X-order defined by Laplace-Stieltjes transformation, Journal of Functional Spaces, 2015(2015), Art.ID 865069, 9 pages.
- [9] J. R. Yu, Borel's line of entire functions represented by Laplace-Stieltjes transformation (in chinese), Acta Math. Sinica, 13(1963), 471-484.
- [10] J. R. Yu, X. Q. Ding and F. J. Tian, On the distribution of values of Dirichlet series and random Dirichlet Series, Wuhan: Press in Wuhan University, (2004).
- [11] L. N. Shang and Z. S. Gao, The growth of entire functions of infinite order represented by Laplace-Stieltjes transformation, Acta Math. Sci., 27A(6)(2007), 1035-1043.
- [12] M. S. Liu, The regular growth of Dirichlet series of finite order in the half plane, J. Syst. Sci. Math. Sci., 22(2)(2002), 229-238.
- [13] J. R. Yu, Dirichlet Series and the Random Dirichlet Series, Science Press, Beijing, (1997).
- [14] W. C. Lu, On the λ*-logarithmic type of analytic functions represented by Laplace-Stieltjes transformation, J. Jiangxi Norm. Univ. Nat. Sci., 40(2016), 591-594.
- [15] W. J. Tang, Y. Q. Cui, H. Q. Xu, On some q-order and q-type of Taylor-Hadamard Product function, J. Jiangxi Norm. Univ. Nat. Sci., 40(2016), 276-279.
- [16] Y. Y. Kong and Y. Yang, On the growth properties of the Laplace-Stieltjes transform, Complex Variables and Elliptic Equation, 59(2014), 553-563.
- [17] Y. Y. Kong and Y. Y. Huo, On general order and type of Laplace-Stieltjes transforms analytic in the right half plane, Acta Math. Sinica, 59A(2016), 91-98.
- [18] X. Luo, X. Z. Liu and Y. Y. Kong, The regular growth of Laplace-Stieltjes transforms, J. of Math. (PRC) 34(2014), 1181-1186.
- [19] X. Luo and Y. Y. Kong, On the order and type Laplace-Stieltjes transforms of slow growth, Acta Math. Sci., 32A(2012), 601-607.
- [20] Z. S. Gao, The growth of entire functions represented by Dirichlet series, Acta Mathematica Sinica, 42A(1999), 741-748.