

International Journal of Mathematics And its Applications

On Contra Weakly μg -Continuous Function in Generalized Topological Spaces

K. Selva Rani^{1,*}, M. Himaya Jaleela Begum¹ and S. Syed Ali Fathima¹

1 Department of Mathematics, Sadakathullah Appa College, Tirunelveli, Tamil Nadu, India.

 $Accepted \ on: \ 02.03.2018$

1. Introduction

In 2002, generalized topological space (GTS), introduced by A. Császár [2] In 2009, W.K.Min [4] has introduced and studied the notion of (α, g') continuous functions, (π, g') continuous functions in generalized topological space. In 2011, D.Jayanthi [3] has introduced some contra continuous functions in generalized topological space. The purpose of this paper is to define a new class of continuous functions called contra wµg-continuous functions and contra wµg-irresolute functions in GTS.

2. Preliminaries

Let X be a non empty set, $\exp X$ denotes the power set of X. A generalized topology simply GT [2] on a non empty set X is a collection of subsets of X such that $\phi \in \mu$ and μ is closed under arbitrary union. Elements of μ are called μ -open sets. A subset A of X is said to be μ -closed if A^c is μ -open. Then the pair (X,μ) is called a Generalized Topological Space(GTS). If A is a subset of X, then $c_{\mu}(A)$ is the smallest μ -closed set containing A and $i_{\mu}(A)$ is the largest μ -open set contained in A. A space (X,μ) is said to be strong, if $X \in \mu$. Throughout this paper X and Y mean GTS's (X,μ_1) and (Y,μ_2) and the function $f: X \to Y$ denotes a single valued function of a space (X,μ_1) into a space (Y,μ_2) . We recall the following definitions and results.

Definition 2.1 ([5]). Let (X, μ) be a GTS, and $A \subseteq X$. Then A is said to be

- (1). μ - α -open if $A \subseteq i_{\mu}c_{\mu}i_{\mu}(A)$
- (2). μ - π -open if $A \subseteq i_{\mu}c_{\mu}(A)$

Abstract: In this paper we introduce some new class of functions called contra $w\mu g$ -continuous functions and contra $w\mu g$ -irresolute functions using $w\mu g$ -closed sets in generalized topological space. We investigate their relationships with other existing functions in generalized topological space. Also we prove that composition of two contra $w\mu g$ -continuous need not be contra $w\mu g$ -continuous.

Keywords:
 wµg-closed sets, contra wµg-continuous functions, contra wµg-irresolute functions.

 © JS Publication.
 Accepted of

^{*} E-mail: selva1161995@gmail.com

The complements of μ - α -open (resp. μ - π -open, μ -open) is said to be $\mu - \alpha$ -closed(res. μ - π -closed, μ -closed).

Definition 2.2 ([5]). A subset A of X is said to be weakly μg -closed set (simply $W\mu g$ -closed) if $c_{\mu}i_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ - open. The complements of $W\mu g$ -closed set is called $W\mu g$ -open set. Let us denote $\mu(X)$ (reps. $\alpha\mu(X), \pi\mu(X), G\mu(X), W\mu GO(X)$) the class of all μ -open (resp. μ - α -open, μ - π -open, μg -open $W\mu g$ -open)sets on X.

Definition 2.3 ([5]). A function $f: X \to Y$ is said to be (μ_1, μ_2) continuous functions, if $f^{-1}(U)$ is μ_1 -open in X for every μ_2 -open set U of Y.

Definition 2.4. [5] A function $f : X \to Y$ is said to be $(w\mu g - \mu_1, \mu_2)$ -continuous if $f^{-1}(U)$ is $w\mu g$ -open in X for every μ_2 -open set U of Y.

Definition 2.5 ([3]). Let (X, μ_1) and (Y, μ_2) be GTS's. Then a function $f : X \to Y$ is said to be contra (μ_1, μ_2) -continuous if $f^{-1}(U)$ is μ -closed in X for every μ -open set U of Y.

Definition 2.6 ([3]). Let (X, μ_1) and (Y, μ_2) be GTS's. Then a function $f : X \to Y$ is said to be contra $(\alpha \mu_1, \mu_2)$ -continuous if $f^{-1}(U)$ is μ - α -closed in X for every μ -open set U of Y.

Definition 2.7 ([3]). Let (X, μ_1) and (Y, μ_2) be GTS's. Then a function $f : X \to Y$ is said to be contra $(\pi \mu_1, \mu_2)$ -continuous if $f^{-1}(U)$ is μ - π -closed in X for every μ -open set U of Y.

Definition 2.8 ([5]). A function $f: X \to Y$ is said to be wµg-open if image of every wµg-open set is wµg-open

3. Contra $W\mu g$ -Continuous Function

Definition 3.1. A function $f: X \to Y$ is said to be contra $W\mu g$ -continuous if the inverse image of each μ -open in Y is $W\mu g$ -closed in X.

Example 3.2. Let $X = Y = \{u, v, w\}$ and $\mu_1 = \mu_2 = \{\phi, X, \{u\}, \{v, w\}, \{u, w\}\}$. Then $W\mu gC(X) = \{\phi, X, \{u\}, \{v\}, \{w\}, \{v, w\}, \{u, v\}\}$. A function $f : X \to Y$ defined by f(u) = u, f(v) = v = f(w). Then f is contrawing $W\mu g$ -continuous.

Remark 3.3. $\mu(X) \subseteq \mu \cdot \alpha(X) \subseteq \mu \cdot \pi(X) \subseteq W \mu g(X)$.

Theorem 3.4. Let $f: X \to Y$ be a map. Then the following are equivalent

- (i). f is contra $W\mu g$ continuous.
- (ii). The inverse image of each μ -closed in Y is $W\mu g$ -open in X.

Proof. $(i) \Rightarrow (ii)$ Let f be contra $W\mu g$ -continuous. Let F be a μ -closed set in Y.Then F^c is μ -open in Y. Since f is contra $W\mu g$ - continuous, $f^{-1}(F^c)$ is $W\mu g$ -closed in X. $(f^{-1}(F))^c$ is $W\mu g$ -closed in X. Then $f^{-1}(F)$ is $W\mu g$ -open in X.

 $(ii) \Rightarrow (i)$ Let F be μ -open set in Y. F^c is μ -closed in Y. $f^{-1}(F^c)$ is $W\mu g$ -open in X. $(f^{-1}(F))^c$ is $W\mu g$ -open in X.Then $f^{-1}(F)$ is $W\mu g$ -closed in X. Hence f is contra $W\mu g$ -continuous.

Theorem 3.5. If $f : X \to Y$ is contra $W\mu g$ -continuous, then for every $x \in X$ and each μ -closed subset F of Y containing f(x) there exists $U \in W\mu gO(X)$ and $f(U) \subseteq F$.

Proof. Let $x \in X$, F be a μ -closed set in Y and $f(x) \in F$. Since F is a contra $W\mu g$ -continuous, $f^{-1}(F)$ is $W\mu g$ -open in X and $x \in f^{-1}(F)$. Let $U = f^{-1}(F)$ and $x \in U$. Then U is $W\mu g$ -open and $f(U) \subseteq F$.

Theorem 3.6. Every contra (μ_1, μ_2) -continuous is contra $W\mu g$ -continuous.

Proof. Let F be a μ -open set in Y. Since f is contra (μ_1, μ_2) -continuous, $f^{-1}(F)$ is μ -closed in X. Thus, $f^{-1}(F)$ is $W\mu g$ -closed in X. Hence f is contra $W\mu g$ -continuous. The converse of the theorem need not be true as seen from the following example.

Example 3.7. Let $X = Y = \{u, v, w\}$ and $\mu_1 = \mu_2 = \{\phi, X, \{u\}, \{u, v\}, \{v, w\}\}$. Then $W\mu gC(X) = \{\phi, X, \{u\}, \{v\}, \{w\}, \{v, w\}, \{u, w\}\}$. A function $f : X \to Y$ defined by f(u) = u, f(v) = w, f(w) = v. Clearly f is contra $W\mu g$ -continuous but not contra (μ_1, μ_2) -continuous, since $f^{-1}\{u, v\} = \{u, w\}$ which is not μ -closed.

Theorem 3.8. Every contra $(\alpha \mu_1, \mu_2)$ -continuous is contra $W \mu g$ -continuous.

Proof. Let F be a μ -open set in Y. Since f is contra $(\alpha \mu_1, \mu_2)$ -continuous, $f^{-1}(F)$ is μ - α -closed in X. This implies $f^{-1}(F)$ is $W\mu g$ -closed in X. Hence f is contra $W\mu g$ -continuous. The converse of the theorem need not be true as seen from the following example.

Example 3.9. Let $X = Y = \{u, v, w\}$ and $\mu_1 = \mu_2 = \{\phi, X, \{u\}, \{v\}, \{u, v\}\}$. Then $W\mu gC(X) = \{\phi, X, \{u\}, \{w\}, \{v, w\}, \{u, w\}\}$. A function $f : X \to Y$ defined by f(u) = u, f(v) = w, f(w) = v. Clearly f is contral $W\mu g$ -continuous but not contra $(\alpha \mu_1, \mu_2)$ -continuous, since $f^{-1}\{u\} = \{u\}$ which is not μ - α -closed in X.

Theorem 3.10. Every contra $(\pi\mu_1, \mu_2)$ -continuous is contra $W\mu g$ -continuous.

Proof. Let F be a μ open set in Y. Since f is contra $(\pi\mu_1, \mu_2)$ -continuous, $f^{-1}(F)$ is μ -preclosed in X. This implies $f^{-1}(F)$ is $W\mu g$ -closed in X. Hence f is contra $W\mu g$ -continuous. The converse of the theorem need not be true as seen from the following example.

Example 3.11. Let $X = Y = \{u, v, w\}$ and $\mu_1 = \mu_2 = \{\phi, X, \{u\}, \{v\}, \{u, v\}\}$. Then $W\mu gC(X) = \{\phi, X, \{u\}, \{w\}, \{v, w\}, \{u, w\}\}$. A function $f : X \to Y$ defined by f(u) = u = f(w), f(v) = w. Clearly f is contral $W\mu g$ -continuous but not contra $(\pi \mu_1, \mu_2)$ -continuous, since $f^{-1}\{u\} = \{u\}$ which is not π - μ -closed in X.

Remark 3.12. According to the above discussion we have the following relation

 $A \rightarrow B$ means A implies B but not conversely

Definition 3.13. A space X is called a Twµg space if every Wµg-closed set is µ-closed.

Theorem 3.14. If a function $f : X \to Y$ is contra $W\mu g$ -continuous and X is $Tw\mu g$ space, then f is contra (μ_1, μ_2) continuous.

Proof. Let F be a μ open set in Y. Since f is contra $W\mu g$ -continuous, $f^{-1}(F)$ is $W\mu g$ -closed in X. Since X is a $Tw\mu g$ space, $f^{-1}(F)$ is μ -closed in X. Hence f is contra (μ_1, μ_2) -continuous.

Theorem 3.15. If X is $Tw\mu g$ space. Then then the following are equivalent.

- (i). f is contra (μ_1, μ_2) -continuous.
- (ii). f is contra $W\mu g$ -continuous.

Proof. $(i) \Rightarrow (ii)$ Let F be an open in Y. Since f is contra (μ_1, μ_2) -continuous, $f^{-1}(F)$ is μ -closed in X. Then, $f^{-1}(F)$ is $W\mu g$ -closed in X. Hence f is contra $W\mu g$ -continuous.

 $(ii) \Rightarrow (i)$ Let F be a μ -open set in Y. Then $f^{-1}(F)$ be an $W\mu g$ -closed set in X. Since X is a $Tw\mu g$ space, $f^{-1}(F)$ is μ -closed in X. Hence f is contra (μ_1, μ_2) -continuous.

Definition 3.16. A function $f : (X, \mu_1) \to (Y, \mu_2)$ is called contra $W\mu g$ -irresolute if $f^{-1}(U)$ is $W\mu g$ -open in X for every $W\mu g$ -closed set U of Y.

Example 3.17. Let $X = Y = \{u, v, w\}$ and $\mu_1 = \mu_2 = \{\phi, X, \{u\}, \{u, v\}, \{v, w\}\}$. Then $W\mu gO(X) = \{\phi, X, \{u\}, \{v\}, \{u, v\}, \{v, w\}, \{u, w\}\}$ and $W\mu gC(Y) = \{\phi, X, \{u\}, \{v\}, \{w\}, \{v, w\}, \{u, w\}\}$. A function $f : X \to Y$ defined by f(u) = u, f(v) = v = f(w). Then f is contra $W\mu g$ -irresolute.

Theorem 3.18. Every contra $W\mu g$ -irresolute is contra $W\mu g$ -continuous.

Proof. It is obvious.

Remark 3.19. The converse of the above theorem is not true as seen from the following example.

Example 3.20. Let $X = Y = \{u, v, w\}$ and $\mu_1 = \mu_2 = \{\phi, X, \{u\}, \{u, v\}, \{v, w\}\}$. Then $W\mu gO(X) = \{\phi, X, \{u\}, \{v\}, \{v, v\}, \{v, w\}, \{u, w\}\}$ and $W\mu gC(Y) = \{\phi, X, \{u\}, \{v\}\{w\}, \{v, w\}, \{u, w\}\}$. A function $f : X \to Y$ defined by f(u) = u, f(v) = w, f(w) = v. Then f is contra $W\mu g$ -continuous which is not contra $W\mu g$ -irresolute, since $f^{-1}(\{v\}) = \{w\}$ is not $W\mu g$ -open in X.

Definition 3.21 ([5]). A function $f : (X, \mu_1) \to (Y, \mu_2)$ is called $W\mu g$ -irresolute if $f^{-1}(U)$ is $W\mu g$ -open in X for every $W\mu g$ -open set U of Y.

Theorem 3.22. If $f: X \to Y$ is contra $W\mu g$ -continuous and irresolute. Then $f^{-1}(F) \subseteq i_{\mu}c_{\mu}(f^{-1}(c_{\mu}(F)))$ for every subset F in Y.

Proof. Let $F \subseteq Y$. Then $c_{\mu}(F)$ is μ closed. Since every μ closed set is $W\mu g$ -closed set, $c_{\mu}(F)$ is $W\mu g$ -closed set. Since f is contra $W\mu g$ -continuous, $f^{-1}(c_{\mu}(F))$ is $W\mu g$ -open. Also, $f^{-1}(c_{\mu}(F))$ is μ closed. Then $(f^{-1}(c_{\mu}(F))) \subseteq i_{\mu}c_{\mu}(f^{-1}(c_{\mu}(F)))$. Therefore $f^{-1}(F) \subseteq (f^{-1}(c_{\mu}(F))) \subseteq i_{\mu}c_{\mu}(f^{-1}(c_{\mu}(F)))$. Hence $f^{-1}(F) \subseteq i_{\mu}c_{\mu}(f^{-1}(c_{\mu}(F)))$.

Theorem 3.23. If $f : X \to Y$ is a continuous map and $F \subseteq i_{\mu}c_{\mu}(f^{-1}(c_{\mu}(f(F))))$ for all μ -closed set F. Then f is contra $W\mu g$ -continuous.

Proof. Let F be a μ -closed set in Y. Since f is a continuous map, $f^{-1}(F)$ is μ closed set in X. By hypothesis, $f^{-1}(F) \subseteq i_{\mu}c_{\mu}(f^{-1}(c_{\mu}(f(f^{-1}(F))))) \subseteq i_{\mu}(c_{\mu}(f^{-1}(c_{\mu}(F))))$. Thus $f^{-1}(F) \subseteq i_{\mu}(c_{\mu}(f^{-1}(c_{\mu}(F))))$. Therefore $f^{-1}(F)$ is $W\mu g$ -open in X. Hence f is contra $W\mu g$ -continuous.

Remark 3.24. The composition of two contra $W\mu g$ -continuous functions need not be contra $W\mu g$ -continuous as seen from the following example.

Example 3.25. Let $X = Y = Z = \{u, v, w\}$ and $\mu_1 = \mu_2 = \mu_3 = \{\phi, X, \{u\}, \{u, v\}, \{v, w\}\}$. Then $W\mu gO(X) = \{\phi, X, \{u\}, \{v\}, \{v, v\}, \{v, w\}, \{v, w\}, \{u, w\}\}$ and $W\mu gC(Y) = \{\phi, X, \{u\}, \{v\}, \{w\}, \{v, w\}, \{u, w\}\}$. A function $f : X \to Y$ defined by f(u) = u, f(v) = w, f(w) = v and $g : Y \to Z$ defined by g(u) = v, g(v) = u, g(w) = v. Then clearly f and g are contrating $W\mu g$ -continuous. But gof $: X \to Z$ is not contrating $W\mu g$ -continuous, since $(gof)^{-1}\{v, w\} = f^{-1}(g^{-1}\{v, w\}) = f^{-1}\{u, w\} = \{u, v\}$ which is not $W\mu g$ -closed in X.

Theorem 3.26. Let $f: X \to Y$ be surjective, $W\mu g$ -irresolute and $W\mu g$ -open and $g: Y \to Z$ be any function then gof is contra $W\mu g$ -continuous if and only if g is contra $W\mu g$ -continuous.

Proof. Suppose gof is contra $W\mu g$ -continuous. Let F be a closed set in Z. Then $(gof)^{-1}(F)=f^{-1}(g^{-1}(F))$ is $W\mu g$ -open in X. Since f is $W\mu g$ -open and surjective $f(f^{-1}(g^{-1}(F)))$ is $W\mu g$ -open in Y (i.e) $g^{-1}(F)$ is $W\mu g$ -open in Y. Hence g is contra $W\mu g$ -continuous.

Conversely, suppose that g is contra $W\mu g$ -continuous. Let F be a closed set in Z. Then $g^{-1}(F)$ is $W\mu g$ -open in Y. Since f is $W\mu g$ -irresolute, $f^{-1}(g^{-1}(F))$ is $W\mu g$ -open in X. Hence gof is contra $W\mu g$ -continuous.

Theorem 3.27. Let $f: X \to Y$ and $g: Y \to Z$ be a function then,

- (i). If g is $W\mu g$ -irresolute and f is contra $W\mu g$ -irresolute, then gof is contra $W\mu g$ -irresolute.
- (ii). If g is contra $W\mu g$ -irresolute and f is $W\mu g$ -irresolute, then gof is contra $W\mu g$ -irresolute.

Proof.

- (i). Let F be a $W\mu g$ -closed in Z. Since g is $W\mu g$ -irresolute, $g^{-1}(F)$ is $W\mu g$ -closed in Y. Then $f^{-1}(g^{-1}(F))$ is $W\mu g$ -open in X (since f is contra $W\mu g$ -irresolute). That is $(gof)^{-1}(F)$ is $W\mu g$ -open in X. This implies gof is contra $W\mu g$ -irresolute.
- (ii). Let F be closed in Z. Since g is contra $W\mu g$ -irresolute, $g^{-1}(F)$ is $W\mu g$ -open in Y. Then $f^{-1}(g^{-1}(F))$ is $W\mu g$ -open in X(since f is $W\mu g$ -irresolute). That is, $(gof)^{-1}(F)$ is $W\mu g$ -open in X. This implies gof is contra $W\mu g$ -irresolute.

Theorem 3.28. If $f : X \to Y$ is contra $W\mu g$ -irresolute and $g : Y \to Z$ is $W\mu g$ -continuous, then gof is contra $W\mu g$ -continuous.

Proof. Let F be a closed set in Z. Since g is $W\mu g$ -continuous, $g^{-1}(F)$ is $W\mu g$ -closed in Y. Then $f^{-1}(g^{-1}(F))$ is $W\mu g$ -open in X (since f is contra $W\mu g$ -irresolute). Then $(gof)^{-1}(F)$ is $W\mu g$ -open in X. This implies gof is contra $W\mu g$ -irresolute.

References

- [1] Bishwambar Roy, On a type generalized open sets, Applyed General Topology, 12(2)(2011), 163-173.
- [2] A.Császár, Generalized topology, generalized continuity, Acta. Math. Hungar., 96(2002), 351-357.
- [3] D.Jayanthi, Contra continuity on generalized topological space, Acta Math. Hunger., 137(4)(2012), 263-271.
- [4] W.K.Min, Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hunger., 128(2009).
- [5] S.Syed Ali Fathima, On weakly μg-continuous functions in generalized topological space, International Journal Of Mathematical Archive, 7(4)(2016), 33-36.