

International Journal of Mathematics And its Applications

On Soft $g^{**}\mu$ -Closed Sets in Soft Generalized Topological Spaces

S. Rohini^{1,*} and S. Syed Ali Fathima¹

1 Department of Mathematics, Sadakathullah Appa College, Tirunelveli, Tamil Nadu, India.

Keywords: Soft $g\mu$ -closed sets, soft $g^*\mu$ -closed sets, soft $g^{**}\mu$ -closed sets and soft $T_{\mu_{g^{**}}}$ -space. © JS Publication.

Accepted on: 02.03.2018

1. Introduction

In 1999 Molodtsov [4] was introduced the concept of soft set theory as a new mathematical tool for dealing with uncertain problems. Shabir and Naz [5] introduced the notion of soft topological spaces which is defined over a universe with a fixed set of parameters. In 2002, A.Császár [2] introduced the theory of generalized topological spaces. Soft Generalized Topology (**SGT**) is based on soft set theory. In 2014, Jyothis and Sunil [3] introduced the concept of Soft Generalized Topological Space and discussed some separation axioms in **SGTS**. Recently M.Vigneshwaran, K. Baby [6] were introduced soft $\beta^* g \alpha \mu$ closed sets in Soft Generalized Topology. The Soft Generalized Topology is different from Soft Topology by its axioms. The purpose of this paper is to introduce soft $g\mu$, $g^*\mu$, $g^{**}\mu$ -closed sets in SGTS and investigate some of their properties.

2. Preliminaries

Let U be an initial universe and E be the set of all possible parameters with respect to U. Let P(U) denote the power set of U and A be a nonempty subset of E.

Definition 2.1 ([1]). Let F_A be a soft set over U defined by the set of ordered pairs $F_A = \{(e, f_A(e)) | e \in E, f_A(e) \in P(U)\}$, where f_A is a mapping given by $f_A: A \to P(U)$ such that $f_A(e) = \varphi$ if $e \notin A$. Here f_A is called an approximate function of the soft set F_A . The family of all these soft sets over U with E is denoted by S(U) or $S(U)_E$.

Definition 2.2 ([1]). Let $F_G, F_H \in S(U)$. Then the soft union of soft sets F_G, F_H is defined by the approximate function $f_{G \cup H}(e) = f_G(e) \cup f_H(e)$.

Abstract: In this paper we introduce some new class of sets called soft $g\mu$ -closed sets, soft $g^*\mu$ -closed sets and soft $g^{**}\mu$ -closed sets in soft generalized topological spaces and some of their properties are established. Further, by using soft $g^{**}\mu$ -closed sets we introduce soft $T_{\mu_{g^{**}}}$ -space.

^{*} E-mail: saro2712@gmail.com

Definition 2.3 ([1]). Let $F_G, F_H \in S(U)$. Then the soft intersection of soft sets F_G, F_H is defined by the approximate function $f_{G\cap H}(e) = f_G(e) \cap f_H(e)$.

Definition 2.4 ([1]). Let $F_G \in S(U)$. Then the soft complement of F_G is defined by the approximate function $f_{G^c}(e) = (f_G(e))^c$ where $(f_G(e))^c$ is the complement of $f_G(e)$, that is $(f_G(e))^c = U \setminus f_G(e) \forall e \in E$.

Definition 2.5 ([1]). Let $F_G, F_H \in S(U)$. Then the soft difference of F_G and F_H , denoted by $F_G \setminus F_H$, is defined by the approximate function $f_{G \setminus H}(e) = f_G(e) \setminus f_H(e)$.

Definition 2.6 ([3]). Let $F_A \in S(U)$. A soft generalized Topology (SGT) on F_A , denoted by μ or μ_{F_A} is a collection of soft subsets of F_A having the following properties:

- $F\phi \in \mu_{F_A}$
- μ_{F_A} is closed under arbitrary union.

The pair (F_A, μ_{F_A}) is called a Soft Generalized Topological Spaces (**SGTS**). A space (F_A, μ_{F_A}) is said to be strong if $F_A \in \mu_{F_A}$. Every element of μ_{F_A} is called a soft μ -open set. Note that F_{ϕ} is a soft μ -open set.

Definition 2.7 ([3]). Let (F_A, μ_{F_A}) be a soft generalized topological space over F_A and F_G be a soft set over F_A . Then $c_{\mu}(F_G)$ is the smallest soft μ -closed set over F_A which contains F_G and $i_{\mu}(F_G)$ is the largest soft μ -open set which is contained in F_G .

Definition 2.8 ([6]). Let (F_A, μ_{F_A}) be a SGTS. A soft subset F_G of F_A is said to be soft $\alpha\mu$ -closed if $c_\mu(i_\mu(c_\mu(F_G)) \subseteq F_G$.

Definition 2.9 ([6]). Let (F_A, μ_{F_A}) be a SGTS and $\alpha, \beta \in F_A$ such that $\alpha \neq \beta$. If there exists soft μ -open sets F_G and F_H such that $\alpha \in F_G$ and $\beta \notin F_G$ or $\beta \in F_H$ and $\alpha \notin F_H$, then (F_A, μ_{F_A}) is called a soft generalized μ -T₀ space.

3. Soft $g\mu$ -closed Sets, Soft $g^*\mu$ -closed Sets and Soft $g^{**}\mu$ -closed Sets in SGTS

Definition 3.1. A soft subset $F_G \in S(U)$ is called a soft $g\mu$ -closed in SGTS (F_A, μ_{F_A}) if $c_{\mu}(F_G) \subseteq F_E$ whenever $F_G \subseteq F_E$ and F_E is soft μ -open.

Definition 3.2. A soft subset $F_G \in S(U)$ is called a soft $g^*\mu$ -closed in SGTS (F_A, μ_{F_A}) if $c_\mu(F_G) \subseteq F_E$ whenever $F_G \subseteq F_E$ and F_E is soft $g\mu$ -open.

Definition 3.3. Let (F_A, μ_{F_A}) be a soft generalized topological space over F_A and F_G be a soft set over F_A . Then $c_{\mu_{g^*}}(F_G)$ is the smallest soft $g^*\mu$ -closed set over F_A which contains F_G and $i_{\mu_{g^*}}(F_G)$ is the largest soft $g^*\mu$ -open set which is contained in F_G .

Definition 3.4. A soft subset $F_G \in S(U)$ is called a soft $g^{**}\mu$ -closed in SGTS (F_A, μ_{F_A}) if $c_{\mu_{g^*}}(F_G) \subseteq F_E$ whenever $F_G \subseteq F_E$ and F_E is soft $g^*\mu$ -open.

Definition 3.5. A soft subset $F_G \in S(U)$ is said to be soft $g^{**}\mu$ -open if $(F_G)^c$ is soft $g^{**}\mu$ -closed.

Remark 3.6. The union (intersection) of two soft $g^{**}\mu$ -closed sets is not a soft $g^{**}\mu$ -closed set.

Example 3.7. Let $U = \{a, b, c\}$, $E = \{e_1, e_2, e_3\}$ and $A = \{e_1, e_2\}$; $\mu = \{F_{\phi}, F_1, F_2, F_3, F_4, F_5, F_7\}$, where

$$F_{\phi} = \{(e_1, \phi), (e_2, \phi)\},\$$

$$\begin{split} F_1 &= \{(e_1, \{b\}), (e_2, \{b\})\}, \\ F_2 &= \{(e_1, \{c\}), (e_2, \{c\})\}, \\ F_3 &= \{(e_1, \{a, b\}), (e_2, \{a, b\})\}, \\ F_4 &= \{(e_1, \{a, c\}), (e_2, \{a, c\})\}, \\ F_5 &= \{(e_1, \{a\}), (e_2, \{a\})\}, \\ F_6 &= \{(e_1, \{a\}), (e_2, \{a\})\}, \\ F_7 &= \{(e_1, \{a, b, c\}), (e_2, \{a, b, c\})\}, \end{split}$$

 $Take \ F_G = \{(e_1, \{a\}), (e_2, \{a, b\})\}, \ F_H = \{(e_1, \{a\}), (e_2, \{a, c\})\} \ are \ soft \ g^{**}\mu\text{-closed sets.} \ But \ f_G(e) \cup f_H(e) = \{(e_1, \{a\}), (e_2, \{a, b, c\})\} \ is \ not \ a \ soft \ g^{**}\mu\text{-closed sets.} \ And, \ Take \ F_G = \{(e_1, \{a, b\}), (e_2, \{b, c\})\}, \ F_H = \{(e_1, \{b, c\}), (e_2, \{a, c\})\} \ are \ soft \ g^{**}\mu\text{-closed sets.} \ But \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ is \ not \ a \ soft \ g^{**}\mu\text{-closed sets.} \ But \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ is \ not \ a \ soft \ g^{**}\mu\text{-closed sets.} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ is \ not \ a \ soft \ g^{**}\mu\text{-closed sets.} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ is \ not \ a \ soft \ g^{**}\mu\text{-closed sets.} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ is \ not \ a \ soft \ g^{**}\mu\text{-closed sets.} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ is \ not \ a \ soft \ g^{**}\mu\text{-closed sets.} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ is \ not \ a \ soft \ g^{**}\mu\text{-closed sets.} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ is \ not \ a \ soft \ g^{**}\mu\text{-closed sets.} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ is \ not \ a \ soft \ g^{**}\mu\text{-closed sets.} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ is \ not \ a \ soft \ g^{**}\mu\text{-closed sets.} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\}), (e_2, \{c\})\} \ but \ f_G(e) \cap f_H(e) = \{(e_1, \{b\})$

Remark 3.8. We can see from the following example that a soft $g^{**}\mu$ -closed set is independent of soft $\alpha\mu$ -closed.

Example 3.9. Let $U = \{h_1, h_2\}$, $E = \{e_1, e_2, e_3\}$ and $A = \{e_1, e_2\}$. The set of soft sets over U with the parameter E is given by

$$\begin{split} F_{\phi} &= \{(e_{1}, \phi), (e_{2}, \phi)\}, \\ F_{1} &= \{(e_{1}, \phi), (e_{2}, \{h_{1}\})\}, \\ F_{2} &= \{(e_{1}, \phi), (e_{2}, \{h_{2}\})\}, \\ F_{3} &= \{(e_{1}, \phi), (e_{2}, \{h_{1}, h_{2}\})\}, \\ F_{4} &= \{(e_{1}, \{h_{1}\}), (e_{2}, \phi)\}, \\ F_{5} &= \{(e_{1}, \{h_{1}\}), (e_{2}, \{h_{1}\})\}, \\ F_{6} &= \{(e_{1}, \{h_{1}\}), (e_{2}, \{h_{1}\})\}, \\ F_{7} &= \{(e_{1}, \{h_{1}\}), (e_{2}, \{h_{2}\})\}, \\ F_{8} &= \{(e_{1}, \{h_{2}\}), (e_{2}, \{h_{1}\})\}, \\ F_{9} &= \{(e_{1}, \{h_{2}\}), (e_{2}, \{h_{1}\})\}, \\ F_{10} &= \{(e_{1}, \{h_{2}\}), (e_{2}, \{h_{1}\})\}, \\ F_{11} &= \{(e_{1}, \{h_{2}\}), (e_{2}, \{h_{1}, h_{2}\})\}, \\ F_{12} &= \{(e_{1}, \{h_{1}, h_{2}\}), (e_{2}, \{h_{1}\})\}, \\ F_{13} &= \{(e_{1}, \{h_{1}, h_{2}\}), (e_{2}, \{h_{1}\})\}, \\ F_{14} &= \{(e_{1}, \{h_{1}, h_{2}\}), (e_{2}, \{h_{1}, h_{2}\})\}, \\ F_{15} &= \{(e_{1}, \{h_{1}, h_{2}\}), (e_{2}, \{h_{1}, h_{2}\})\}, \\ \mu &= \{F_{\phi}, F_{2}, F_{4}, F_{6}, F_{7}, F_{13}, F_{15}\}; \\ \mu^{c} &= \{F_{\phi}, F_{2}, F_{8}, F_{9}, F_{11}, F_{13}, F_{15}\} \end{split}$$

Here soft $\alpha\mu$ -closed sets = { $F_{\phi}, F_1, F_2, F_3, F_8, F_9, F_{10}, F_{11}, F_{13}, F_{15}$ }. Soft g^{**} { $F_{\phi}, F_1, F_2, F_8, F_9, F_{10}, F_{11}, F_{12}, F_{13}, F_{14}, F_{15}$ }.

Soft $g^{**}\mu$ -closed sets =

Theorem 3.10. Every soft μ -closed set is soft $g^*\mu$ - closed.

Proof. Let F_G be a soft μ -closed set. Suppose $F_G \subseteq F_E$ and F_E is soft $g\mu$ -open. Since F_G is a soft μ -closed set, $c_{\mu}(F_G) = F_G$. This implies $c_{\mu}(F_G) \subseteq F_E$. Hence F_G is soft $g^*\mu$ -closed.

The converse of the above theorem need not be true as seen from the following example.

Example 3.11. Let $U = \{h_1, h_2\}$, $E = \{e_1, e_2, e_3\}$ and $A = \{e_1, e_2\}$; $\mu = \{F_{\phi}, F_1, F_3, F_6, F_7\}$; $\mu^c = \{F_4, F_8, F_9, F_{13}, F_{15}\}$. Soft $g^*\mu$ -closed sets= $\{F_4, F_8, F_9, F_{12}, F_{13}, F_{14}, F_{15}\}$. Here $\{F_{12}, F_{14}\}$ are not soft μ -closed sets.

Theorem 3.12. Every soft μ -closed set is soft $g^{**}\mu$ -closed.

Proof. Let F_G be a soft μ -closed set .Suppose $F_G \subseteq F_E$ and soft F_E is $g^*\mu$ -open.Since F_G is a soft μ - closed set, $c_{\mu}(F_G) = F_G$. This implies $c_{\mu}(F_G) \subseteq F_E$. Hence F_G is soft $g^{**}\mu$ -closed.

The converse of the above theorem need not be true as seen from the following example.

Example 3.13. Let $U = \{h_1, h_2\}$, $E = \{e_1, e_2, e_3\}$ and $A = \{e_1, e_2\}$; $\mu = \{F_{\phi}, F_6, F_7, F_{12}, F_{14}, F_{15}\}$; $\mu^c = \{F_{\phi}, F_1, F_3, F_8, F_9, F_{15}\}$. Soft $g^{**}\mu$ -closed sets= $\{F_{\phi}, F_1, F_2, F_3, F_8, F_9, F_{10}, F_{11}, F_{13}, F_{15}\}$. Here $\{F_2, F_{10}, F_{11}, F_{13}\}$ are not soft μ -closed sets.

Theorem 3.14. Every soft $g^*\mu$ -closed set is soft $g\mu$ -closed.

Proof. Let F_G be a soft $g^*\mu$ -closed set. Suppose $F_G \subseteq F_E$ and F_E is soft μ -open. Since every soft μ -open is soft $g\mu$ - open. Then $c_{\mu}(F_G) \subseteq F_E$. Hence F_G is soft $g\mu$ -closed.

The converse of the above theorem need not be true as seen from the following example.

Example 3.15. Let $U = \{h_1, h_2\}$, $E = \{e_1, e_2, e_3\}$ and $A = \{e_1, e_2\}$; $\mu = \{F_{\phi}, F_1, F_3, F_6, F_7\}$; $\mu^c = \{F_4, F_8, F_9, F_{13}, F_{15}\}$. Soft $g\mu$ -closed sets = $\{F_4, F_8, F_9, F_{10}, F_{11}, F_{12}, F_{13}, F_{14}, F_{15}\}$. Here $\{F_{10}, F_{11}\}$ are not soft $g^*\mu$ -closed set.

Theorem 3.16. Every soft $g^*\mu$ -closed set is soft $g^{**}\mu$ -closed.

Proof. Let F_G be a soft $g^*\mu$ -closed set. Suppose $F_G \subseteq F_E$ and F_E is soft $g^*\mu$ -open. Since every soft $g^*\mu$ -open is soft $g\mu$ -open. Then $c_{\mu}(F_G) \subseteq F_E$. Also we have $c_{\mu_{q^*}}(F_G) \subseteq c_{\mu}(F_G)$. Thus $c_{\mu_{q^*}}(F_G) \subseteq F_E$. Hence F_G is soft $g^{**}\mu$ -closed. \Box

The converse of the above theorem need not be true as seen from the following example.

Example 3.17. Let $U = \{h_1, h_2\}$, $E = \{e_1, e_2, e_3\}$ and $A = \{e_1, e_2\}$; $\mu = \{F_{\phi}, F_4, F_6, F_{10}, F_{14}\}$; $\mu^c = \{F_1, F_5, F_9, F_{11}, F_{15}\}$. Soft $g^{**}\mu$ -closed sets = $\{F_1, F_3, F_5, F_7, F_8, F_9, F_{11}, F_{12}, F_{13}, F_{15}\}$. Here $\{F_3, F_7, F_8, F_{12}\}$ are not soft $g^*\mu$ -closed.

Remark 3.18. According to the above discussion, we have the following relation.

 $A \rightarrow B$ means A implies B but not conversely, $A \leftrightarrow B$ means A and B are independent of each other.

Theorem 3.19. If F_G is soft μ -open and soft $g\mu$ -closed, then F_G is soft $g^{**}\mu$ -closed.

Proof. Given F_G is soft μ -open and soft $g\mu$ -closed. Suppose $F_G \subseteq F_E$ and F_E is soft $g^*\mu$ -open. Since F_G is soft μ -open, $F_G \subseteq F_G$. By our hypothesis, $c_\mu(F_G) \subseteq F_G$. This implies $c_\mu(F_G) \subseteq F_E$. Then $c_{\mu_{g^*}}(F_G) \subseteq c_\mu(F_G) \subseteq F_E$. Hence F_G is soft $g^{**}\mu$ -closed.

Theorem 3.20. A subset F_G of a SGTS (F_A, μ_{F_A}) is soft $g^{**}\mu$ -closed then $c_{\mu_{g^*}}(F_G)\setminus F_G$ contains no non empty soft $g^*\mu$ -closed sets.

Proof. Let F_H be a soft $g^*\mu$ -closed set such that $F_H \subseteq c_{\mu_{g^*}}(F_G) \setminus F_G$. Then $F_G \subseteq F_A \setminus F_H$ where F_G is soft $g^{**}\mu$ -closed and $F_A \setminus F_H$ is soft $g^*\mu$ -open. By the definition of soft $g^{**}\mu$ -closed, we have $c_{\mu_{g^*}}(F_G) \subseteq F_A \setminus F_H$. This implies $F_H \subseteq F_A \setminus c_{\mu_{g^*}}(F_G)$. Thus $F_H \subseteq [c_{\mu_{g^*}}(F_G)] \cap [F_A \setminus c_{\mu_{g^*}}(F_G)] = F_{\phi}$. That is $F_H = F_{\phi}$. Hence $c_{\mu_{g^*}}(F_G) \setminus F_G$ contains no non empty soft $g^*\mu$ -closed sets.

The converse of the above theorem need not be true as seen from the following example.

Example 3.21. Let $U = \{h_1, h_2\}$, $E = \{e_1, e_2, e_3\}$ and $A = \{e_1, e_2\}$; $\mu = \{F_{\phi}, F_4, F_6, F_{10}, F_{14}, F_{15}\}$; $\mu^c = \{F_{\phi}, F_1, F_5, F_9, F_{11}, F_{15}\}$. Now, $c_{\mu_{g^*}}(F_{12}) \setminus F_{12} = F_{13} \setminus F_{12} = F_1$ which is a soft $g^*\mu$ -closed set. Hence $c_{\mu_{g^*}}(F_{12}) \setminus F_{12}$ contains a nonempty soft g^* - μ -closed set. Further, F_{12} is a soft $g^{**}\mu$ -closed set.

Theorem 3.22. If soft $g^{**}\mu$ -closed subset F_G of a SGTS (F_A, μ_{F_A}) be such that $c_{\mu_g*}(F_G)\setminus F_G$ is soft $g^*\mu$ -closed, then F_G is soft $g^*\mu$ -closed.

Proof. Given F_G is a soft $g^{**}\mu$ -closed subset such that $c_{\mu_{g^*}}(F_G)\setminus F_G$ is a soft $g^*\mu$ -closed set. Now, $c_{\mu_{g^*}}(F_G)\setminus F_G$ is a soft $g^*\mu$ -closed subset to itself. By Theorem 3.19, $c_{\mu_{g^*}}(F_G)\setminus F_G = F_{\phi}$. Therefore $c_{\mu_{g^*}}(F_G) = F_G$. Hence F_G is soft $g^*\mu$ -closed.

Theorem 3.23. Let F_G be a soft $g^{**}\mu$ -closed set in a SGTS (F_A, μ_{F_A}) and $F_G \subseteq F_B \subseteq c_{\mu_{a^*}}(F_G)$. Then F_B is a soft $g^{**}\mu$ -closed set.

Proof. Let F_H be a soft $g^*\mu$ -open set in (F_A, μ_{F_A}) such that $F_B \subseteq F_H$. Then $F_G \subseteq F_H$. Since F_G is soft $g^{**}\mu$ -closed, $c_{\mu_g^*}(F_G) \subseteq F_H$. Now, $c_{\mu_g^*}(F_B) \subseteq c_{\mu_g^*}(F_G) \subseteq c_{\mu_g^*}(F_G) \subseteq F_H$. Hence F_B is soft $g^{**}\mu$ -closed.

Theorem 3.24. A subset F_G of a SGTS (F_A, μ_{F_A}) is soft $g^{**}\mu$ -open if and only if $F_H \subseteq i_{\mu_{g^*}}(F_G)$ whenever $F_H \subseteq F_G$ and F_H is soft $g^*\mu$ -closed.

Proof. Let F_H be a soft $g^*\mu$ -closed set contained in F_G . Then $(F_H)^c$ is a soft $g^*\mu$ -open set containing $(F_G)^c$. Since $(F_G)^c$ is soft $g^{**}\mu$ -closed, $c_{\mu_{q^*}}(F_G)^c \subseteq (F_H)^c$. This implies $F_H \subseteq i_{\mu_{q^*}}(F_G)$.

Conversely, suppose that $F_H \subseteq i_{\mu_{g^*}}(F_G)$, where $F_H \subseteq F_G$ and F_H is soft $g^*\mu$ -closed. This implies $(F_H)^c$ is a soft $g^*\mu$ -open set containing $(F_G)^c$. Then $(i_{\mu_{g^*}}(F_G))^c \subseteq (F_H)^c$. That is $c_{\mu_{g^*}}(F_G)^c \subseteq (F_H)^c$. Hence F_G is soft $g^{**}\mu$ -open.

Theorem 3.25. A subset F_G is soft $g^{**}\mu$ -open in a SGTS (F_A, μ_{F_A}) then $F_U = F_A$ whenever F_U is soft $g^*\mu$ -open and $i_{\mu_{g^*}}(F_G) \cup (F_G)^c \subseteq F_U$.

Proof. Given F_G is soft $g^{**}\mu$ -open. Suppose F_U is soft $g^*\mu$ -open and $i_{\mu_{g^*}}(F_G) \cup (F_G)^c \subseteq F_U$. Now, $(F_U)^c \subseteq i_{\mu_{g^*}}(F_G)^c \cap (F_G)$. That is, $(F_U)^c \subseteq [c_{\mu_{g^*}}(F_A \setminus F_G)] \setminus [F_A \setminus F_G]$. Since $(F_U)^c$ is soft $g^*\mu$ -closed and $F_A \setminus F_G$ is soft $g^{**}\mu$ -closed. By Theorem 3.19, $(F_U)^c = F_{\phi}$. Then $F_U = F_A$.

Theorem 3.26. For any point **a** of a strong SGTS (F_A, μ_{F_A}) , $F_A \setminus \{a\}$ is soft $g^{**}\mu$ -closed or soft $g^*\mu$ -open.

Proof. Suppose $F_A \setminus \{\mathbf{a}\}$ is not soft $g^*\mu$ -open. Then F_A is the only soft $g^*\mu$ -open set containing $F_A \setminus \{\mathbf{a}\}$. This implies $c_{\mu_g^*}(F_A \setminus \{\mathbf{a}\}) \subseteq F_A$. Hence $F_A \setminus \{\mathbf{a}\}$ is soft $g^{**}\mu$ -closed.

Definition 3.27. A space (F_A, μ_{F_A}) is said to be $T_{\mu_{g^{**}}}$ -space if every soft $g^{**}\mu$ -closed set is soft μ -closed.

Theorem 3.28. If a strong SGTS (F_A, μ_{F_A}) is a soft $T_{\mu_{q^{**}}}$ -space, then every singleton is soft μ -open or soft $g^*\mu$ -closed.

Proof. Assume that $\{\mathbf{a}\}$ is not soft $g^*\mu$ -closed. Then by Theorem 3.25, $F_A \setminus \{\mathbf{a}\}$ is soft $g^{**}\mu$ -closed. Since F_A is a soft $T_{\mu_{g^{**}}}$ -space, $F_A \setminus \{\mathbf{a}\}$ is soft μ -closed. Hence $\{\mathbf{a}\}$ is soft μ -open.

References

- [1] N.Cagman and S.Enginoglu, Soft set theory and uni-int decision making, Europ. J. Operat. Res., 207(2010), 848-855.
- [2] A.Császár, Generalized topology, generalized continuity, Acta. Math. Hungar., 96(2002), 351-357.
- [3] Jyothis Thomas and Sunil Jacob John, On soft generalized topological spaces, Journal of New Results in Science, 4(2014), 01-15.
- [4] D.Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications, 37(1999), 19-31.
- [5] M.Shabir and Naz, On soft topological spaces, Computers and Mathematics with Applications, 61, 1786-1799.
- [6] M.Vigneshwaran and K.Baby, Generalization of soft μ-Closed Sets in Soft Generalized Topological Spaces, International Journal of Mathematics Trends and Technology, 32(2)(2016).