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Abstract: In this article, we establish some oscillation criteria for the fractional order partial differential equation with continuous
distributed deviating arguments of the form

∂

∂t

[
r(t)Dα+,t

(
u(x, t)−

∫ δ

γ
q0(t, ζ)u(x, ρ(t, ζ))dη(ζ)

)]
= a(t)∆u(x, t) +

∫ d

c
p(t, ξ)∆u[x, τ(t, ξ)]dω(ξ)

−
∫ d

c
q(x, t, ξ)g (u[x, σ(t, ξ)]) dω(ξ) + f(x, t), (x, t) ∈ G = Ω× R+,

with subject to the boundary conditions

∂u(x, t)

∂ν
+ µ(x, t)u(x, t) = ψ(x, t), (x, t) ∈ ∂Ω× R+

and u = χ(x, t), (x, t) ∈ ∂Ω×R+. Using the generalized Riccati technique and integral averaging method, new oscillation

criteria are obtained.
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1. Introduction

For the past few decades, the problem of oscillation and non oscillation of solutions of partial differential equations is one

of the active area of research in the qualitative theory of partial differential equations. See the monograph Yoshida [32]. In

[14] Kreith et al., and Yoshida [33] were investigated the oscillation properties of hyperbolic equations without functional

arguments by using the averaging techniques. In [18], Mishev et al., introduced the oscillation criteria for solutions of

hyperbolic equations with delay. In the recent times, there has been an increasing interest in studying the oscillation

of hyperbolic equation with continuous distributed deviating arguments. For linear hyperbolic equation with continuous

distributed deviating arguments, one can refer [7, 8, 27, 30] and for nonlinear hyperbolic continuous distributed deviating

arguments, one can refer [6, 11, 12, 25, 26].

One can find a number of applications, for example, population ecology, climate models, control theory, coupled oscillators,

∗ E-mail: ovsadha@gmail.com

33

http://ijmaa.in/


Oscillation of Fractional Nonlinear Partial Differential Equations with Continuous Distributed Deviating Arguments

viscoelastic materials, and structured population models studied distributed delay with boundary conditions Dirichlet,

Neumann and Robin in [31]. Distributed delay models appears in logistics [4], traffic flow [24], micro organism growth [20],

and hematopoiesis [2, 3].

Fractional differential equations arise in many engineering and scientific disciplines as the mathematical modeling of systems

and processes in the field of physics, chemistry, aerodynamics, electro dynamics of complex medium, polymer rheology, etc.,

involves derivatives of fractional order [5, 13, 17, 23, 28, 29].

Fractional - order differential equations also serve better for the discription of hereditary properties of various materials and

processes than integer - order differential equations. For example, the nonlinear oscillation of earthquake can be modeled

with fractional derivatives and the fluid dynamic traffic model with fractional derivatives can eliminate the deficiency arising

from the assumption of continumum traffic flow. Also, the use of fractional partial differential equations in mathematical

models become increasingly popular in recent years. One of the simplest example is fractional order diffusion equation which

is the generalization of classical diffusion equations treating super diffusive flow processes. For the basic theory one can refer

[1, 9, 10, 15, 19, 21, 22, 34] and references cited therein.

In [16], Liu et al., studied oscillation properties of nonlinear inhomogeneous hyperbolic equations with distributed deviating

arguments. To the best of our knowledge, there exists almost no literature on the oscillation of fractional nonlinear partial

differential equations with inhomogeneous boundary conditions using generalized Riccati technique. Motivated by this gap

we propose to initiate the following fractional nonlinear partial differential equations with continuous distributed deviating

arguments of the form,

∂

∂t

[
r(t)Dα

+,t

(
u(x, t)−

∫ δ

γ

q0(t, ζ)u(x, ρ(t, ζ))dη(ζ)

)]
= a(t)∆u(x, t)

+

∫ d

c

p(t, ξ)∆u[x, τ(t, ξ)]dω(ξ)−
∫ d

c

q(x, t, ξ)g (u[x, σ(t, ξ)]) dω(ξ) + f(x, t), (x, t) ∈ G = Ω× R+, (1)

where Ω is a bounded domain in RN with piecewise smooth boundary ∂Ω; α ∈ (0, 1) is a constant; G = Ω×R+, R+ = (0,∞),

Dα
+,tu is the Riemann- Liouville fractional derivative of order α of u with respect to t; ∆ is the Laplacian operator in the

Euclidean N-space RN . Equation (1) subject to the boundary conditions

∂u(x, t)

∂ν
+ µ(x, t)u(x, t) = ψ(x, t), (x, t) ∈ ∂Ω× R+ (2)

and

u = χ(x, t), (x, t) ∈ ∂Ω× R+, (3)

where ν is the unit outward normal vector to ∂Ω and µ ∈ C (∂Ω× R+, [0,∞)), ψ, χ ∈ C (∂Ω× R+,R) .

Throughout this paper, we will assume that the following conditions hold:

(A1) r(t) ∈ C1 ([0,∞);R+) , a(t) ∈ C ([0,∞); [0,∞)) , ω(ξ) ∈ ([c, d],R) and η(ζ) ∈ C ([γ, δ],R) are nondecreasing functions

on [c, d] and [γ, δ] respectively, the integrals of the equation (1) are Stieltjes integrals;

(A2) q0 ∈ C ([0,∞)× [γ, δ]; [0,∞)) , there exists a positive constant k0 satisfying
∫ δ
γ
q0(t, ζ)dη(ζ) ≤ k0 < 1, p ∈

C (R+ × [c, d],R+) , q ∈ C
(
G× [c, d],R+

)
, g ∈ C(R,R) is convex in R+, ug(u) > 0 and g(u)

u
≥ k > 0 for u 6= 0

and −g(−u) = g(u) > 0, u ∈ R+;

(A3) ρ ∈ C ([0,∞)× [γ, δ],R) , ρ(t, ζ) ≤ t for (t, ζ) ∈ (0,∞)× [γ, δ],

τ, σ ∈ C (R+ × [c, d],R) ,
d

dt
σ(t, c) = σ′(t, c) exists and σ(t, ξ) ≤ t, τ(t, ξ) ≤ t for ξ ∈ [c, d], τ and σ are nondecreasing

with t and ξ respectively and lim
t→∞

min
ξ∈[c,d]

σ(t, ξ) = +∞, lim
t→∞

min
ξ∈[c,d]

τ(t, ξ) = +∞;
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(A4) f ∈ C
(
G;R

)
.

This paper is organized as follows: In section 2, we present the definitions and notations that will be needed in the sequel.

In section 3, we discuss the oscillation of the problems (1)-(2) and (1)-(3). In section 4, we illustrate the main results with a

suitable example. The results obtained in this current article generalize and improve numerous findings in the earlier works.

2. Preliminaries

First let us introduce, the following notations will be used for our convenience.

v(t) =
1

|Ω|

∫
Ω

u(x, t)dx, where |Ω| =
∫

Ω

dx. (4)

Q(t, ξ) = min
{
q(x, t, ξ) : x ∈ Ω

}
, (5)

ψ(t) =
1

|Ω|

∫
∂Ω

ψ(x, t)dx, (6)

F (t) =
1

|Ω|

∫
Ω

f(x, t)dx, (7)

R(t) = a(t)ψ(t) + F (t) +

∫ d

c

p(t, ξ)ψ [τ(t, ξ)] dσ(ξ). (8)

Definition 2.1. By a solution of (1) we mean a function u ∈ C1+α
(
Ω× [t−1,∞);R

)
∩ C

(
Ω× [t̃−1,∞);R

)
that satisfies

(1), where

t−1 = min

{
0, min
ζ∈[γ,δ]

{
inf
t≥0

ρ(t, ζ)

}
, min
ξ∈[c,d]

{
inf
t≥0

τ(t, ξ)

}}
,

t̃−1 = min

{
0, min
ξ∈[c,d]

{
inf
t≥0

g(t, ξ)

}}
.

Definition 2.2. The solution u(x,t) of the problem (1) and (2) (or (1) and(3)) is said to be oscillatory in the domain G

if for any positive number µ there exists a point (x0, t0) ∈ Ω× [µ,∞) such that u(x0, t0) = 0 holds.

Definition 2.3. The Riemann-Liouville fractional partial derivative of order 0 < α < 1 with respect to t of a function

u(x, t) is given by

(Dα
+,tu)(x, t) :=

∂

∂t

1

Γ(1− α)

∫ t

0

(t− ξ)−αu(x, ξ)dξ (9)

provided the right hand side is pointwise defined on R+, where Γ is the gamma function.

Definition 2.4. The Riemann-Liouville fractional integral of order α > 0 of a function y : R+ → R on the half-axis R+ is

given by

(Iα+y)(t) :=
1

Γ(α)

∫ t

0

(t− ξ)α−1y(ξ)dξ for t > 0 (10)

provided the right hand side is pointwise defined on R+.

Definition 2.5. The Riemann-Liouville fractional derivative of order α > 0 of a function y : R+ → R on the half-axis R+

is given by

(Dα
+y)(t) :=

ddαe

dtdαe

(
I
dαe−α
+ y

)
(t) for t > 0 (11)

provided the right hand side is pointwise defined on R+, where dαe is the ceiling function of α.
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3. Main Results

In this section we will employ some integral means of solutions to reduce the multi dimensional oscillation problem to one

dimensional problem. Also, we will give some oscillation criteria of (1) with the inhomogeneous boundary conditions (2)

and (3).

Theorem 3.1. Assume that the conditions (A1)− (A4) hold and let the fractional differential inequality

[
r(t)Dα

+

(
y(t)−

∫ δ

γ

q0(t, ζ)y(ρ(t, ζ))dη(ζ)

)]′
+

∫ d

c

Q(t, ξ)g(y[σ(t, ξ)])dω(ξ) ≤ ±R̄(t) (12)

has no eventually positive unbounded solutions, then every solution of (1), (2) is oscillatory in G.

Proof. Assume to the contrary that there is a nonoscillatory solution u(x, t) to the problem (1), (2) with the property

that v(t) is unbounded . Without loss of generality, we may assume that u(x, t) > 0, (x, t) ∈ Ω × [t0,∞), t0 > 0. By the

assumption (A3), there exists a t1 ≥ t0 such that σ(t, ξ) ≥ t0 and τ(t, ξ) ≥ t0 for (t, ξ) ∈ [t1,∞)× [c, d] then

u(x, τ(t, ξ)) > 0 and u(x, σ(t, ξ)) > 0 for (x, t, ξ) ∈ Ω× [t1,∞)× [c, d]. (13)

Integrating (1) with respect to x over the domain Ω, using (5) and (7) we have

d

dt

[
r(t)Dα

+

(
v(t)−

∫ δ

γ

q0(t, ζ)v(ρ(t, ζ))dη(ζ)

)]
= a(t)

1

|Ω|

∫
Ω

∆u(x, t)dx+

∫ d

c

p(t, ξ)
1

|Ω|

∫
Ω

∆u[x, τ(t, ξ)]dω(ξ)dx

−
∫ d

c

Q(t, ξ)
1

|Ω|

∫
Ω

g (u[x, σ(t, ξ)]) dω(ξ)dx+ F̄ (t), t ≥ t1.

Using Green’s formula and (2) we obtain

1

|Ω|

∫
Ω

∆u(x, t)dx =
1

|Ω|

∫
∂Ω

∂u(x, t)

∂ν
dS

= − 1

|Ω|

∫
∂Ω

[µ(x, t)u(x, t)− ψ(x, t)] dS

≤ ψ(t), t ≥ t1, (14)

where dS is surface element on ∂Ω. Similarly, we have

1

|Ω|

∫
Ω

∆u(x, τ(t, ξ))dx ≤ ψ(τ(t, ξ)), t ≥ t1.

Moreover, using Jensen’s inequality, it follows that

∫ d

c

Q(t, ξ)
1

|Ω|

∫
Ω

g (u[x, σ(t, ξ)]) dx dω(ξ) ≥
∫ d

c

Q(t, ξ)g (v[σ(t, ξ)]) dω(ξ), t ≥ t1. (15)

Combining (14)− (15) and using (8), we have

[
r(t)Dα

+

(
v(t)−

∫ δ

γ

q0(t, ζ)v(ρ(t, ζ))dη(ζ)

)]′
+

∫ d

c

Q(t, ξ)g(v[σ(t, ξ)])dω(ξ) ≤ R̄(t), t ≥ t1. (16)

It is clear that v(t) > 0 on [t1,∞). Hence, v(t) is an eventually positive unbounded solution of (12) with +R̄(t). This

contradicts the hypothesis. If u < 0 in Ω× [t0,∞) for some t0 > 0, we observe that v∗(t) = −v(t) is an eventually positive

unbounded solution of (12) with −R̄(t). This also contradicts the hypothesis. The proof is complete.
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Theorem 3.2. Assume that the conditions (A1)− (A4) hold and let the fractional differential inequality

[
r(t)Dα

+

(
y(t)−

∫ δ

γ

q0(t, ζ)y(ρ(t, ζ))dη(ζ)

)]′
+

∫ d

c

Q(t, ξ)g(y[σ(t, ξ)])dω(ξ) ≤ ±R̃(t), (17)

t ≥ t1, has no eventually positive unbounded solutions, then every solution of (1), (3) is oscillatory in G.

Theorem 3.3. Assume that the hypothesis (A1)− (A4) hold, sufficient condition for the fractional differential inequality

[
r(t)Dα

+

(
y(t)−

∫ δ

γ

q0(t, ζ)y(ρ(t, ζ))dη(ζ)

)]′
+

∫ d

c

Q(t, ξ)g(y[σ(t, ξ)])dω(ξ) ≤ R(t), (18)

t ≥ t1, where R(t) is a continuous function and that the following hypothesis is satisfied

(A5) there is a c1+α - function θ(t) such that θ(t) is bounded and (r(t)Dα
+θ(t))

′ = R(t). If the following condition is satisfied:

∫ ∞
b

[∫ d

c

Q(t, ξ)dω(ξ)

]
dt = +∞, (19)

for some b > 0, then (18) has no eventually positive unbounded solution.

Proof. Assume that (18) has an eventually positive unbounded solution y(t). Letting

z(t) = y(t)−
∫ δ

γ

q0(t, ζ)y(ρ(t, ζ))dη(ζ)− θ(t) (20)

and taking into account (A5), we find that

(r(t)Dα
+z(t))

′ ≤ −
∫ d

c

Q(t, ξ)g(y[σ(t, ξ)])dω(ξ) ≤ 0. (21)

Therefore, r(t)Dα
+z(t) ≥ 0 or r(t)Dα

+z(t) < 0 eventually. Since r(t) > 0, we see that Dα
+z(t) ≥ 0 or Dα

+z(t) < 0. Hence,

z(t) is a monotone function, and z(t) > 0 or z(t) ≤ 0 eventually. We prove that lim
t→∞

z(t) =∞. Hence, z(t) > 0 eventually.

Since y(t) is unbounded from above, there exists a sequence {tn}∞n=1 satisfying limn→∞ tn = ∞, lim
n→∞

y(tn) = ∞ and

maxt0≤t≤tn y(t) = y(tn). The hypothesis (A2) and (A3) implies that

z(tn) = y(tn)−
∫ δ

γ

q0(tn, ζ)y(ρ(tn, ζ))dη(ζ)− θ(tn)

≥ y(tn)− y(tn)

∫ δ

γ

q0(tn, ζ)dη(ζ)− θ(tn)

=

(
1−

∫ δ

γ

q0(tn, ζ)dη(ζ)

)
y(tn)− θ(tn)

≥ (1− k0) y(tn)− θ(tn)

for sufficiently large n. Since θ(t) is bounded and limn→∞(1−k0)y(tn) =∞, we find that limt→∞ z(tn) =∞. This combined

with the monotonicity property of z(t) implies that limt→∞ z(t) =∞. In this case it is easy to seen that Dα
+z(t) ≥ 0. Since

θ(t) is bounded and limt→∞ z(t) =∞, for any ε > 0 there is a sufficiently large number T such that θ(t) ≥ −εz(t) (t ≥ T ).

Hence

y(t) ≥ z(t) + θ(t) ≥ (1− ε)z(t)
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and

y(σ(t, ξ)) ≥ (1− ε)z(σ(t, ξ)).

Using (A3), the inequality (21) implies that

(r(t)Dα
+z(t))

′ ≤ −
∫ d

c

Q(t, ξ)g((1− ε)z(σ(t, ξ)))dω(ξ)

≤ −g((1− ε)z(σ(t))

∫ d

c

Q(t, ξ)dω(ξ)

= −b0
∫ d

c

Q(t, ξ)dω(ξ), t ≥ T, (22)

where T > 0 sufficiently large and b0 > 0 by (A2). Integrating (22) over [T, t], we get

r(t)Dα
+z(t)− r(T )Dα

+z(T ) ≤ −b0
∫ t

T

[∫ d

c

Q(s, ξ)dω(ξ)

]
ds,

which implies that

r(T )Dα
+z(T ) ≥ b0

∫ t

T

[∫ d

c

Q(s, ξ)dω(ξ)

]
ds.

Taking t→∞ in the above inequality, we obtain

∫ ∞
T

[∫ d

c

Q(s, ξ)dω(ξ)

]
ds ≤ 1

b0
r(T )Dα

+z(T ) <∞,

which contradicts the hypothesis (19). The proof is complete.

Theorem 3.4. Assume that the hypothesis (A1) − (A4) hold, and that there exists a C1+α- function θ(t) such that θ(t) is

bounded and (r(t)Dα
+θ(t))

′ = R̄(t). If the condition (19) is satisfied, then every solution u of the boundary value problem

(1), (2) with unbounded solution is oscillatory in G.

Proof. A combination of Theorem 3.1 and Theorem 3.3 yields the conclusion.

Theorem 3.5. Assume that the hypothesis (A1) − (A4) hold, and that there exists a C1+α- function θ(t) such that θ(t) is

bounded and (r(t)Dα
+θ(t))

′ = R̃(t). If the condition (19) is satisfied, then every solution u of the boundary value problem

(1), (3) with unbounded solution is oscillatory in G.

Proof. The conclusion follows by combining Theorem 3.2 with Theorem 3.3.

Next, we discussed some new oscillation criteria for (1), (2) by using integral average conditions of Philo’s type. Let

D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) : t ≥ s ≥ t0}. The function H ∈ C(D;R) is said to belong to the class P if

(T1) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 on D0,

(T2) H has a continuous and nonpositive partial derivative on D0 with respect to the second variable and there exists a

function h ∈ C(D0,R) such that

−∂H(t, s)

∂s
= h(t, s)

√
H(t, s)

for all (t, s) ∈ D0.
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Theorem 3.6. Suppose that (A1)− (A4) hold. If there exists a function λ ∈ C1 ([t0,∞),R+) and let H belong to the class

P such that

lim sup
t→∞

1

H(t, t0)

∫ t

t0

(
H(t, s)ϕ(s)− 1

4

[
h(t, s)√

Θ(s)
+

√
H(t, s)π(s)√

Θ(s)

]2)
ds =∞, (23)

where

Φ(s) = exp(−2

∫ t

λ(s)ds), Q(s) =

∫ d

c

kQ(s, ξ)dσ(ξ), ϕ(t) = Φ(t)(Q(t)− λ′(t))

Θ(t) =
z′[σ(t, c)]σ′(t, c)

Φ(t)r(t)Dα
+(z(t) + θ(t))

, Π(t) = 2λ(t)− z′[σ(t, c)]σ′(t, c)2λ(t)

r(t)Dα
+(z(t) + θ(t))

− R(t)

r(t)Dα
+(z(t) + θ(t))

,

then each solution of (1) and (2) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of the problem (1), (2). Without loss of

generality, we may assume that u(x, t) > 0, u(x, t) ∈ Ω× [t0,∞). By (A3), there exists a t1 ≥ t0 such that (13) holds. From

the inequality (18) and by (A2), we obtain,

[r(t)Dα
+ (z(t) + θ(t))]′ +

∫ d

c

kQ(t, ξ)(z[σ(t, ξ)])dω(ξ) ≤ R(t), t ≥ t1,

where Q(t, ξ) and z(t) are defined by (5), (6). It is easy to calculate z(t) > 0, Dα
+z(t) > 0 for t ≥ t1 and σ(t, ξ) is

nondecreasing in ξ, we have

[r(t)Dα
+ (z(t) + θ(t))]′ +Q(t)z(σ(t, c)) ≤ R(t) (24)

for t ≥ t1. Set

W (t) = Φ(t)

[
r(t)Dα

+ (z(t) + θ(t))

z(σ(t, c))
+ λ(t)

]
, (25)

then W (t) > 0 for t ≥ t1. From (24),(25) and (A3),

W ′(t) ≤ −Θ(t)W 2(t)−Π(t)W (t)− ϕ(t), t ≥ t1. (26)

From (26) for all t ≥ t1 we have

∫ t

t1

H(t, s)ϕ(s)ds ≤ −
∫ t

t1

H(t, s)W ′(s)ds−
∫ t

t1

[
H(t, s)W 2(s)Θ(s) +H(t, s)Π(s)W (s)

]
ds

≤ H(t, t1)W (t1)−
∫ t

t1

(
H(t, s)W 2(s)Θ(s) +

[
h(t, s)

√
H(t, s) +H(t, s)Π(s)

]
W (s)

)
ds (27)

∫ t

t1

[
H(t, s)ϕ(s)− 1

4

(
h(t, s)√

Θ(s)
+

√
H(t, s)Π(s)√

Θ(s)

)2]
ds ≤ H(t, t1)W (t1)

−
∫ t

t1

(√
H(t, s)Θ(s) +

[
h(t, s)

2
√

Θ(s)
+

√
H(t, s)Π(s)√

Θ(s)

])2

ds
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∫ t

t1

[
H(t, s)ϕ(s)− 1

4

(
h(t, s)√

Θ(s)
+

√
H(t, s)Π(s)√

Θ(s)

)2]
ds ≤ H(t, t0)|W (t1)|

+

∫ t

t0

[
H(t, s)ϕ(s)− 1

4

(
h(t, s)√

Θ(s)
+

√
H(t, s)Π(s)√

Θ(s)

)2]
ds

≤
∫ t

t0

H(t, s)ϕ(s)ds+H(t, t0)|W (t1)|

≤ H(t, t0)

∫ t1

t0

|ϕ(s)|ds+H(t, t0)|W (t1)|.

which implies

1

H(t, t0)

∫ t

t0

(
H(t, s)ϕ(s)− 1

4

[
h(t, s)√

Θ(s)
+

√
H(t, s)π(s)√

Θ(s)

]2)
ds ≤

∫ t1

t0

|ϕ(s)|ds+ |W (t1)|,

which contradicts (23). If u(x, t) < 0 for Ω × [t0,∞), then −u(x, t) is a positive solution of (1) and (2) and the proof is

similar.

Theorem 3.7. Let all the conditions of Theorem 3.6 hold. Then every solution of the problem (1) and (3) oscillates in G.

4. Example

Example 4.1. Consider the fractional partial differential equation

∂

∂t

[
e−tD

1
2
+,t

(
u(x, t)− 1

4

∫ π

0

u(x, t− 2π + ζ)dζ

)]
= e−t∆u(x, t) +

∫ π
2

0

eπ

et
∆u[x, t− 5π

2
+ ξ]dξ

−
∫ π

2

0

(
u[x, t− 3π

2
+ ξ]

)
dξ −

√
2 + 1√

2
sinx sin t+

√
2− 1√

2
sinx cos t+

(eπ + 1)e−2π

8
sinx(cos t− sin t(

√
2 + 1)),

(x, t) ∈ (0, π)× (0,∞). (28)

Here α =
1

2
, r(t) = a(t) = e−t, q0(t, ζ) =

1

4
, [γ, δ] = [0, π], ρ(t, ζ) = t − 2π + ζ, η(ζ) = ζ, [c, d] = [0,

π

2
], p(t, ξ) =

eπ

et
, τ(t, ξ) =

t−5π

2
+ξ, ω(ξ) = ξ, q(x, t, ξ) = Q(t, ξ) = 1, g(u) = u, σ(t, ξ) = t−3π

2
+ξ and f(x, t) = −

√
2 + 1√

2
sinx sin t+

√
2− 1√

2
sinx cos t+

(eπ + 1)e−2π

8
sinx(cos t − sin t(

√
2 + 1)). Thus all the conditions of Theorem 3.3 hold. Therefore every solution of (28) is

oscillatory.

5. Conclusion

In this paper, we have obtained some new oscillation criteria for fractional nonlinear partial differential equations with

continuous distributed deviating arguments supplemented with the effect of inhomogeneous boundary conditions by using

generalized Riccati transformation method and inequality technique. These results extends and compliments of some of the

existing litrature.
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