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1. Introduction

Let A and B are two non-empty closed subsets of a metric space and T be a non-selfmap from A to B. The natural question is

whether one can find an element x0 ∈ A such that d(x0, Tx0) = min{d(x, Tx) : x ∈ A}. Since d(x, Tx) ≥ d(A,B), the optimal

solution to the problem of minimizing the real valued function x → d(x, Tx) over the domain A of the mapping T will be

the one for which the value d(A,B) is attained. A point x0 ∈ A is called a best proximity point of T if d(x0, Tx0) = d(A,B).

Note that if d(A,B) = 0, then the best proximity point is nothing but a fixed point of T . After several generalisations of

Banach’s fixed point theorem, in 2004, Ran and Reuring[13] proved the existence of fixed point in partially ordered metric

space setting. The result of Ran and Reuring is very much interesting due to its application to linear and non-linear matrix

equations. So, existence of fixed point on partially ordered metric space is proved by many authors for weak contraction

mappings. Amoung all those generalisations, one of the interesting result is due to Luong and Thuan’s [10], in which they

have proved the existence of fixed point for generalised weak contraction satisfying rational expression. In this paper, our

attempt is to give a generalisation to the results of Luong and Thuan [10], by considering a non-self-map T . The existence

and convergence of best proximity points is an interesting topic of optimization theory which recently attracted the attention

of many authors [2, 4–6, 14, 16]. Also one can find the existence of best proximity point in the setting of partially order

metric space in [11, 12].

The purpose of this article is to present best proximity point theorems for non-self mappings in the setting of partially

ordered metric spaces, thereby producing optimal approximate solutions for Tx = x, where T is a non-self mapping.
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2. Preliminaries

Given non-empty subsets A and B of a metric space X, the following notions are used subsequently:

d(A,B) := inf{d(x, y) : x ∈ A and y ∈ B},

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},

B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

In [9], the authors discussed sufficient conditions which guarantee the non-emptiness of A0 and B0. Moreover, in [14], the

authors proved that A0 is contained in the boundary of A in the setting of normed linear spaces. In [10] Luong and Thuan

proved the following theorem.

Theorem 2.1 ([10]). Let (X,�) be an ordered set and suppose that there exists a metric d in X such that (X, d) is a

complete metric space. Let T : X → X be a non-decreasing mapping such that

d(Tx, Ty) ≤ m(x, y)− φ(m(x, y)) for x, y ∈ X,x � y, x 6= y, (1)

where φ : [0,∞) → [0,∞) is a lower semi-continuous function with φ(t) = 0 if and only if t = 0, and m(x, y) =

max
{d(x, Tx)d(y, Ty)

d(x, y)
, d(x, y)

}
. Also, assume either T is continuous or X has the property that

{xn} is a nondecreasing sequence in X such that xn → x,then x = sup{xn}. (2)

If there exists x0 ∈ X such that x0 � Tx0, then T has a fixed point.

Definition 2.2 ([15]). A mapping T : A→ B is said to be proximally increasing if it satisfies the condition that

y1 � y2

d(x1, T y1) = d(A,B)

d(x2, T y2) = d(A,B)


=⇒ x1 � x2

where x1, x2, y1, y2 ∈ A.

One can see that, for a self-mapping, the notion of proximally increasing mapping reduces to that of increasing mapping.

In 2014, Ansari defined the concept of C-class functions and presented new fixed point results which improve and extend

some results in the literature.

Definition 2.3 ([1]). A continuous function F : [0,∞)2 → R is called C-class function if for any s, t ∈ [0,∞), the following

conditions hold:

(1). F (s, t) ≤ s;

(2). F (s, t) = s implies that either s = 0 or t = 0.

Example 2.4 ([1]). Following examples show that the class C is nonempty:

(1). F (s, t) = s− t.

(2). F (s, t) = ms,for some m ∈ (0, 1).
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(3). F (s, t) = s
(1+t)r

for some r ∈ (0,∞).

(4). F (s, t) = log(t+ as)/(1 + t), for some a > 1.

(5). F (s, t) = ln(1 + as)/2, for e > a > 1. Indeed F (s, t) = s implies that s = 0.

(6). F (s, t) = (s+ l)(1/(1+t)r) − l, l > 1, for r ∈ (0,∞).

(7). F (s, t) = s logt+a a, for a > 1.

(8). F (s, t) = s− ( 1+s
2+s

)( t
1+t

).

(9). F (s, t) = sβ(s), where β : [0,∞)→ [0, 1) and continuous

(10). F (s, t) = s− t
k+t

.

(11). F (s, t) = s− ϕ(s), where ϕ : [0,∞)→ [0,∞) is a continuous function such that ϕ(t) = 0 if and only if t = 0.

(12). F (s, t) = sh(s, t), where h : [0,∞)× [0,∞)→ [0,∞) is a continuous function such that h(t, s) < 1 for all t, s > 0.

(13). F (s, t) = s− ( 2+t
1+t

)t.

(14). F (s, t) = n
√

ln(1 + sn).

(15). F (s, t) = φ(s), where φ : [0,∞)→ [0,∞) is a upper semicontinuous function such that φ(0) = 0 and φ(t) < t for t > 0.

(16). F (s, t) = s
Γ(1/2)

∫∞
0

e−x
√
x+t

dx, where Γ is the Euler Gamma function.

Definition 2.5 ([8]). A function ψ : [0,∞) → [0,∞) is called an altering distance function if the following properties are

satisfied:

(1). ψ is non-decreasing and continuous,

(2). ψ (t) = 0 if and only if t = 0.

Definition 2.6. An ultra altering distance function is a continuous, nondecreasing mapping ϕ : [0,∞) → [0,∞) such that

ϕ(t) > 0 , t > 0 and ϕ(0) ≥ 0.

Remark 2.7. We denote Ψ for set of all altering distance functions and Φu for set of all ultra altering distance functions.

Lemma 2.8 ([3]). Suppose (X, d) is a metric space. Let {xn} be a sequence in Xsuch that d(xn, xn+1) → 0 as n → ∞.

If {xn} is not a Cauchy sequence then there exist an ε > 0 and sequences of positive integers {m(k)} and {n(k)} with

m(k) > n(k) > k such that d(xm(k), xn(k)) ≥ ε, d(xm(k)−1, xn(k)) < ε and

(1). lim
k→∞

d(xm(k)−1, xn(k)+1) = ε;

(2). lim
k→∞

d(xm(k), xn(k)) = ε;

(3). lim
k→∞

d(xm(k)−1, xn(k)) = ε

It also follows that limk→∞ d(xm(k)+1, xn(k)+1) = ε and limk→∞ d(xm(k), xn(k)−1) = ε.

In this paper, using the concept of C -class function, we prove the existence of proximity point for proximal C-contraction

of rational-type proximal maps. We also give an example to show that our result is a proper extension of the result in [10].
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3. Main Results

Definition 3.1. Let A and B are two non-empty closed subsets of the partially ordered metric space (X, d). A mapping

T : A→ B is said to be proximal C-contraction of rational type if, for u1, u2, x, y ∈ A, it satisfies the condition that

x � y, x 6= y

d(u1, Tx) = d(A,B)

d(u2, T y) = d(A,B)


=⇒ ψ(d(u1, u2)) ≤ F (ψ(m(x, y)), φ(m(x, y))) (3)

where, ψ ∈ Ψ, φ ∈ Φu, F ∈ C and m(x, y) = max
{d(x, u1)d(y, u2)

d(x, y)
, d(x, y)

}
.

One can see that, when T is a self-mapping, ψ is defined as identity function and F (s, t) = s − t, the notion of proximal

C−contraction of rational type reduces to generalised weak contraction of rational type.

Theorem 3.2. Let X be a non-empty set such that (X,�) is a partially ordered set and (X, d) is a complete metric space.

Let A and B be non-empty closed subsets of the metric space (X, d) such that A0 6= ∅. Let T : A → B satisfy the following

conditions.

(1). T is continuous, proximally increasing and proximal C-contraction of rational type such that T (A0) ⊆ B0.

(2). There exist x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and x0 � x1.

Then, there exists an element x in A such that

d(x, Tx) = d(A,B).

Further, the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B) for n ≥ 1,

converges to the element x.

Proof. By hypothesis there exist elements x0 and x1 in A0 such that d(x1, Tx0) = d(A,B) and x0 � x1. Because of the

fact that T (A0) ⊆ B0, there exists an element x2 in A0 such that d(x2, Tx1) = d(A,B). Since T is a proximally increasing,

we get x1 � x2. Continuing this process, we can construct a sequence, {xn} in A0 such that

d(xn+1, Txn) = d(A,B) for all n ∈ N (4)

with x0 � x1 � x2 � · · ·xn � xn+1 . . . . If there exist n0 such that xn0 = xn0+1, then d(xn0+1, Txn0) = d(xn0 , Txn0) =

d(A,B). This means that xn0 is a best proximity point of T and the proof is finished. Thus, we can suppose that xn 6= xn+1

for all n. Since xn−1 6= xn for all n, we get

ψ
(
d(xn, xn+1)

)
≤ F

(
ψ
(

max
{d(xn−1, xn)d(xn, xn+1)

d(xn−1, xn)
, d(xn−1, xn)

})
, φ
(

max
{d(xn−1, xn)d(xn, xn+1)

d(xn−1, xn)
, d(xn−1, xn)

}))
(5)

= F

(
ψ
(

max
{
d(xn, xn+1), d(xn−1, xn)

})
, φ
(

max
{
d(xn, xn+1), d(xn−1, xn)

}))
(6)

Suppose that there exists m0 such that d(xm0 , xm0+1) > d(xm0−1, xm0), from (5), we have

ψ
(
d(xm0 , xm0+1)

)
≤ F

(
ψ
(
d(xm0 , xm0+1)

)
, φ
(
d(xm0 , xm0+1)

))
.
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So, ψ (d(xm0 , xm0+1)) = 0 or φ(d(xm0 , xm0+1)) = 0 . Hence d(xm0 , xm0+1) = 0, that is xm0 = xm0+1, which is a con-

tradiction. Hence, the sequence {d(xn, xn+1)} is monotone non-increasing and bounded. Thus, there exists r ≥ 0 such

that

lim
n→∞

d(xn, xn+1) = r ≥ 0. (7)

Since, {d(xn, xn+1)} is a non-increasing sequence, from (5), we get

ψ
(
d(xn, xn+1)

)
≤ F

(
ψ
(
d(xn−1, xn)

)
, φ
(
d(xn−1, xn)

))
, ∀ xn−1 < xn, n ≥ 1 (8)

Suppose that, limn→∞ d(xn, xn+1) = r > 0, then using inequality (8)

ψ( lim
n→∞

d(xn, xn+1)) ≤ F
(
ψ
(

lim
n→∞

d(xn−1, xn)
)
, φ
(

lim
n→∞

d(xn−1, xn)
))

that is

ψ(r) ≤ F
(
ψ(r), φ(r)

)
(9)

So, ψ (r) = 0 or φ(r) = 0 . Hence, r = 0 and therefore,

lim
n→∞

d(xn, xn+1) = 0. (10)

Next, the claim is that {xn} is a Cauchy sequence. Suppose, {xn} is not a Cauchy sequence, then by lemma 2.8, there exists

ε >0 for which we can find subsequences {xnk}and {xmk} of {xn}with nk> mk>k such that

ε = lim
k→∞

d(xm(k), xn(k)) = lim
k→∞

d(xm(k), xn(k)+1) (11)

= lim
k→∞

d(xm(k)+1, xn(k)) = lim
k→∞

d(xm(k)+1, xn(k)+1)

By choosing, u1 = xm(k)+1, u2 = xn(k)+1, x = xm(k), y = xn(k) from (3), we have

ψ
(
d(xm(k)+1, xn(k)+1)

)
≤ F

(
ψ
(

max
{d(xm(k), xm(k)+1)d(xn(k), xn(k)+1)

d(xm(k), xn(k))
, d(xm(k), xn(k))

})
,

φ
(

max
{d(xm(k), xm(k)+1)d(xn(k), xn(k)+1)

d(xm(k), xn(k))
, d(xm(k), xn(k))

}))

Using (10) and (11) with k →∞ we obtain

ψ(ε) ≤ F
(
ψ(ε), φ(ε)

)
So, ψ (ε) = 0 or φ(ε) = 0. Hence ε = 0 which contradicts that ε >0. Thus, {xn} is a Cauchy sequence in A and hence

converges to some element x in A. Since T is a continuous, we have Txn → Tx. Hence, the continuity of the metric function

d implies that d(xn+1, Txn)→ d(x, Tx). But (4) shows that the sequence d(xn+1, Txn) is a constant sequence with the value

d(A,B). Therefore, d(x, Tx) = d(A,B). This completes the proof.

Corollary 3.3. Let X be a non-empty set such that (X,≤) is a partially ordered set and (X, d) is a complete metric space.

Let A be a non-empty closed subset of the metric space (X, d). Let T : A→ A satisfy the following conditions.

(1). T is continuous, proximally increasing and proximal C-contraction of rational type.

(2). There exist elements x0 and x1 in A such that d(x1, Tx0) = 0 with x0 ≤ x1.
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Then, there exist an element x in A such that d(x, Tx) = 0.

Next, we prove that Theorem-(3.2) is still valid for T not necessarily continuous, assuming the following hypothesis in A.

{xn} is a nondecreasing sequence in A such that xn → x, then x = sup{xn}. (12)

Theorem 3.4. Assume the condition-(12) and A0 is closed in X instead of continuity of T in the Theorem-(3.2), then the

conclusion of Theorem-(3.2) holds.

Proof. Following the proof of Theorem-(3.2), there exists a sequence {xn} in A satisfying the following condition

d(xn+1, Txn) = d(A,B) for all n ∈ N (13)

with x0 � x1 � x2 � · · ·xn � xn+1 . . . and xn converges to x in A. Note that the sequence {xn} in A0 and A0 is closed.

Therefore, x ∈ A0. Since T (A0) ⊆ B0, we get Tx ∈ B0. Since, Tx ∈ B0, there exist y1 ∈ A such that

d(y1, Tx) = d(A,B). (14)

Since, {xn} is a non-decreasing sequence and xn → x, then x = sup{xn}. Particularly, xn � x for all n. Since, T is a

proximally increasing and from (13) and (14), we obtain xn+1 � y1. But x = sup{xn} which implies x � y1. Therefore, we

get there exist elements x and y1 in A0 such that

d(y1, Tx) = d(A,B)and x � y1. (15)

Consider the sequence {yn} that is constructed as follows

d(yn+1, T yn) = d(A,B) for all n ∈ N. (16)

with x = y0 � y1 � y2 � · · · yn � yn+1 . . . . Arguing like above Theorem-(3.2), we obtain that {yn} is a non-decreasing

sequence and yn → y for certain y ∈ A. From (12), we have y = sup{yn}. Since, xn � x = y0 � y1 � yn � y for all n,

suppose that, x 6= y, then we have from (13) and (16), by T is proximal C−contraction of rational type,

ψ
(
d(xn+1, yn+1)

)
≤ F

(
ψ
(

max
{d(xn, xn+1)d(yn, yn+1)

d(xn, yn)
, d(xn, yn)

})
, φ
(

max{d(xn, xn+1)d(yn, yn+1)

d(xn, yn)
, d(xn, yn)

}))
.

Taking limit as n→∞ in the above inequality, we have

ψ
(
d(x, y)

)
≤ F

(
ψ
(

max{0, d(x, y)}
)
, φ
(

max{0, d(x, y)}
))

= F
(
ψ(d(x, y)), φ(d(x, y))

)

So ψ (d(x, y)) = 0 or φ(d(x, y)) = 0. Hence, d(x, y) = 0 which is a contradiction. Hence, x = y. We have, x = y0 � y1 �

yn = x, therefore yn = x, for all n. From (16), we obtain x is a best proximity point for T. The proof is complete.

Corollary 3.5. Assume the condition-(12) instead of continuity of T in the Corollary-(3.3), then the conclusion of Corollary-

(3.3) holds.
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Now, we present an example where it can be appreciated that hypotheses in Theorem-(3.2) and Theorem-(3.4) do not

guarantee uniqueness of the best proximity point.

Example 3.6. Let X = {(0, 2), (2, 0), (−2, 0), (0,−2)} ⊂ R2 and consider the usual order (x, y) � (z, t)⇔ x ≤ z and y ≤ t.

Thus, (X,�) is a partially ordered set. Besides, (X, d2) is a complete metric space considering d2 the euclidean metric. Let

A = {(0, 2), (2, 0)} and B = {(0,−2), (−2, 0)} be a closed subset of X. Then, d(A,B) = 2
√

2, A = A0 and B = B0. Let

T : A → B be defined as T (x, y) = (−y,−x). Then, it can be seen that T is continuous, proximally increasing mappings

such that T (A0) ⊆ B0. The only comparable pairs of elements in A are x � x for x ∈ A and there are no elements such that

x ≺ y for x, y ∈ A. Hence, T is proximal C−contraction of rational type. It can be shown that the other hypotheses of the

Theorem-(3.2) and 3.4 are also satisfied. However, T has two best proximity points (0, 2) and (2, 0).

Theorem 3.7. In addition to the hypotheses of Theorem 3.2 (respectively Theorem 3.4), suppose that

for every x, y ∈ A0, there exist z ∈ A0 that is comparable to x and y (17)

then T has a unique best proximity point.

Proof. From Theorem 3.2 (resp. Theorem 3.4), the set of best proximity points of T is non-empty. Suppose that there

exist elements x, y in A which are best proximity points. We distinguish two cases:

Case 1: If x and y are comparable. Since, d(x, Tx) = d(A,B) and d(y, Ty) = d(A,B). Since, T is a proximal C−contraction

of rational type, we get

ψ
(
d(x, y)

)
≤ F

(
ψ
(

max
{d(x, x)d(y, y)

d(x, y)
, d(x, y)

})
, φ
(

max
{d(x, x)d(y, y)

d(x, y)
, d(x, y)

}))
= F

(
ψ(d(x, y)), φ(d(x, y))

)
So, ψ (d(x, y)) = 0 or φ(d(x, y)) = 0. Hence, d(x, y) = 0 that is x = y.

Case 2: If x is not comparable to y. By the condition (17) there exist z0 ∈ A0 comparable to x and y. We define a sequence

{zn} as d(zn+1, T zn) = d(A,B). Since, z0 is comparable with x, we may assume that z0 � x. Since, T is a proximally

increasing, zn � x for all n. Suppose that there exist n0 > 1 such that x = zn0 , again by using T is proximally increasing,

we get x � zn0+1. But, zn � x for all n. Therefore, x = zn0+1. Arguing like above, we obtain x = zn for all n ≥ n0. Hence,

zn → x as n→∞. On the other hand, if zn−1 6= x for all n. Now using T is a proximal C−contraction of rational type, we

have

ψ
(
d(zn, x)

)
≤ F

(
ψ
(

max
{d(zn−1, zn)d(x, x)

d(zn−1, x)
, d(zn−1, x)

})
, φ
(

max
{d(zn−1, zn)d(x, x)

d(zn−1, x)
, d(zn−1, x)

}))
= F

(
ψ(d(zn−1, x)), φ(d(zn−1, x))) ≤ ψ(d(zn−1, x)

)
.

Since ψ is a nondecreasing, we get d(zn, x) ≤ d(zn−1, x) Hence, the sequence {d(zn, x)} is monotone non-increasing and

bounded. Thus, there exist r ≥ 0 such that

lim
n→∞

d(zn, x) = r ≥ 0. (18)

Suppose that limn→∞ d(zn, x) = r > 0. Taking n→ ∞, ψ(r) ≤ F
(
ψ(r), φ(r)

)
. So ψ (r) = 0 or φ(r) = 0. Hence r = 0 and

therefore,

lim
n→∞

(d(zn, x)) = 0. (19)

Analogously, it can be proved that limn→∞ d(zn, y) = 0. Finally, the uniqueness of the limit gives us x = y.
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Let us illustrate the above theorem with the following example.

Example 3.8. Let X = R2 and consider the order (x, y) � (z, t) ⇔ x ≤ z and y ≤ t, where ≤ is usual order in

R. Thus, (X,�) is a partially ordered set. Besides, (X, d1) is a complete metric space where the metric is defined as

d1((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|. Let A = {(0, x) : x ∈ [0, 2]} and B = {(2, x) : x ∈ [0, 2]} be a closed subset of

X. Then, d(A,B) = 2, A = A0 and B = B0. Let T : A → B be defined as T (0, x) = (2, x
4
). Then, it can be seen that T is

continuous and proximally increasing mappings such that T (A0) ⊆ B0. Now, we prove that T is a proximal C−contraction

of rational type with F (s, t) = s
1+t

, ψ(t) = 4t and φ(t) = 3. That is to prove

x ≤ y, x 6= y

d((0,
x

2
), T (0, x)) = 1

d((0,
y

2
), T (0, y)) = 1


⇒ ψ

(
d
(
(0,

x

4

)
,
(
0,
y

4
)
))
≤ F

(
ψ
(
m((0, x), (0, y))

)
, φ
(
m((0, x), (0, y))

))

where m((0, x), (0, y)) = max{ 9xy
16(y−x)

, y − x}.Note that d
(
(0, x

4
), (0, y

4
)
)

= 1
4
|y − x| and

m((0, x), (0, y)) =


9xy

16(y−x)
if 41

16
xy ≥ x2 + y2

y − x if 41
16
xy ≤ x2 + y2.

so,

ψ
(
d
(
(0,

x

4
), (0,

y

4
)
))
≤ F

(
ψ
(
m((0, x), (0, y))

)
, φ
(
m((0, x), (0, y))

))

=
ψ(m((0, x), (0, y)))

1 + φ(m((0, x), (0, y)))
=


9xy

16(y−x)
if 41

16
xy ≥ x2 + y2

y − x if 41
16
xy ≤ x2 + y2.

Thus, the mapping T is a proximal C−contraction of rational type. Hence all the hypotheses of the Theorem 3.7 are satisfied.

where (0, 0) is the unique best proximity point of the mapping T.

The following result, due to Nguyen Van Luong and Nguyen Xuan Thuan [10] is a corollary from the above theorem 3.7, by

taking A = B.

Corollary 3.9. In addition to the hypothesis of Corollary 3.3 (respectively Corollary 3.5), suppose that

for every x, y ∈ A, there exist z ∈ A that is comparable to x and y (20)

then T has a unique fixed point.
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