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1. Introduction

Fractional calculus is as old as the conventional calculus, and it is the generalization of integral order differentiation and

integration to arbitrary noninteger order. For detailed study, see the books such as [10, 12–14]. The attraction towards this

subject is due to the fact that fractional derivatives and integrals are not a local property. That is why fractional differential

and integral models captured the reality of the nature better, as these models considered the history and nonlocal distributed

effects. Fractional calculus has a large number of applications in different branches of science, engineering as well as in medical

fields. The fractional differential models describe many real world phenomena in different fields, i.e., biology, dynamical

systems, physics, control theory, chemistry and in many other fields, in a more efficient and realistic way. FDEs and control

problems involving the Riemann-Liouville fractional derivative or the Caputo fractional derivative have been paid more and

more attention. Very recently, a generalized Caputo-Katugampola derivative was proposed in [7, 8] by Katugampola, and

further he proved the existence of solutions of Caputo-Katugampola FDEs in [9].

Impulsive differential equations, which provide a natural description of observed evolution processes, are regarded as im-

portant mathematical tools for the better understanding of several real world problems in applied sciences. The theory of

impulsive differential equations of integer order has found extensive applications in realistic mathematical modeling of a wide

variety of practical situations and has emerged as an important area of investigation in recent years. For the general theory

and applications of impulsive differential equations, we refer the reader to the references [11, 15]. For some recent work on

impulsive and implicit differential equations of fractional order, see [1–5, 16] and the references therein. Motivated by the

∗ E-mail: janakimaths@gmail.com

53

http://ijmaa.in/


Analytic Study on Fractional Implicit Differential Equations with Impulses via Katugampola Fractional Derivative

above-mentioned work, we treat fractional implicit differential equations with impulses involving Katugampola fractional

derivative of the following form:



ρDω
xmu(x) = h(x, u, ρDω

xmu(x)), for each x ∈ (xm, xm+1], m = 0, 1, . . . k, 0 < ω ≤ 1,

∆u|x=xm = Im(u(x−m)), m = 1, . . . , k,

u(0) = u0,

(1)

where ρDω
xm is the Katugampola fractional derivative in Caputo sense, h : J× R× R→ R is a given function, Im : R→ R,

and u0 ∈ R, 0 = x0 < x1 < · · · < xk < xk+1 = T , ∆u|x=xm = u(x+
m) − u(x−m), u(x+

m) = liml→0+ u(xm + l) and

u(x−m) = liml→0− u(xm + l) denotes the right and left limits of u(x) at x = xm.

In this paper, two results are presented for the problem (1). That is, the Banach contraction principle and the Schaefer’s

fixed point theorem.

2. Prerequisites

In this section, we introduce background definitions and lemmas that are needed for the proof of the main results.

Let C(J,R) be the Banach space of all continuous functions from J into R with the norm

‖u‖∞ := sup{|u(x)| : x ∈ J}.

Definition 2.1 ([9]). The generalized left-sided fractional integral ρIω0+h of order ω ∈ C(Re(ω) > 0) is defined by

(ρIω0+h)(x) =
ρ1−ω

Γ(ω)

∫ x

0

(xρ − sρ)ω−1sρ−1h(s)ds, (2)

for x > 0, if the integral exists.

Definition 2.2 ([9]). The generalized fractional derivative, corresponding to the generalized fractional integral (2), is defined

by

(ρDω
0+h)(x) =

ρω−n+1

Γ(n− ω)

(
x1−ρ d

dx

)n ∫ x

0

(xρ − sρ)n−ω−1sρ−1h(s)ds, (3)

if the integral exists.

Lemma 2.3. Let ω ≥ 0 and n = [ω] + 1. Then

ρIω (ρDω
0+h(x)) = h(x)−

n−1∑
m=0

hm(0)

m!
xm.

Lemma 2.4. Let ω > 0, then the differential equation ρDω
0+u(x) = 0 has solutions

u(x) = b0 + b1x
ρ + b2x

2ρ + · · ·+ bn−1x
(n−1)ρ,

bi ∈ R, i = 0, 1, 2, . . . , n− 1, n = [ω] + 1.
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Lemma 2.5. Let ω > 0, then

ρIω (ρDω
0+u(x)) = u(x) + b0 + b1x

ρ + b2x
2ρ + · · ·+ bn−1x

(n−1)ρ,

for some bi ∈ R, i = 0, 1, 2, . . . , n− 1, n = [ω] + 1.

Theorem 2.6 (Banach’s fixed point theorem [6]). Let C be a non empty closed subset of a Banach space X , then any

contraction mapping T of C into itself has a unique fixed point.

Theorem 2.7 (Schaefer’s fixed point theorem [6]). Let X be a Banach space, and M : X → X a completely continuous

operator. If the set

S = {u ∈ X : u = µMu, for someµ ∈ (0, 1)}

is bounded, then M has fixed points.

3. Existence of solutions

Let C(J,R) be the Banach space of continuous functions J→ R, with the supremum norm

‖u‖∞ = sup{|u(x)| , x ∈ J}.

Consider the set of functions

PC(J,R) = {u : J→ R : u ∈ C ((xm, xm+1],R) ,m = 0, 1, . . . , k, and there exist

u(x−m) and u(x+
m), m = 1, 2, . . . , k with u(x−m) = u(xm)}.

PC(J,R) is a Banach space with the norm

‖u‖PC = sup
x∈J
|u(x)| .

Let J0 = [x0, x1] and Jm = (xm, xm+1], where m = 1, 2, . . . , k.

Definition 3.1. A function u ∈ PC(J,R) whose ω-derivative exists on Jm, is said to be a solution of (1), if u satisfies the

equation

ρDω
xmu(x) = h(x, u(x), ρDω

xmu(x))

on Jm, and satisfies the conditions ∆u|x=xm = Im(u(x−m)), m = 0, 1, . . . , k, u(0) = u0.

To prove the existence of solutions of (1), we need the following lemma.

Lemma 3.2. Let 0 < ω ≤ 1 and let h : J→ R be continuous. A function u is a solution of the fractional integral equation

u(x) =



u0 + ρ1−ω

Γ(ω)

∫ x
0

(xρ − sρ)ω−1sρ−1 h(s)ds, if x ∈ [0, x1],

u0 + ρ1−ω

Γ(ω)

∑m
i=1

∫ xi
xi−1

(xρi − s
ρ)ω−1sρ−1 h(s)ds

+ ρ1−ω

Γ(ω)

∫ x
xm

(xρ − sρ)ω−1sρ−1 h(s)ds

+
∑m
i=1 Ii(u(x−i )), if x ∈ Jm := (xm, xm+1],

(4)
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where m = 1, 2, . . . , k, if and only if, u is a solution of the fractional initial value problem



ρDω
xmu(x) = h(x), x ∈ Jm,

∆u|x=xm = Im(u(x−m)), m = 1, 2, . . . , k,

u(0) = u0.

(5)

Now, we prove the existence result for the problem (1) based on the Banach’s fixed point theorem.

Theorem 3.3. Assume that,

(A1) The function h : J× R× R→ R is continuous.

(A2) There exist constants c1 > 0 and 0 < c2 < 1 such that |h(x, u1, u2)− h(x, u1, u2)| ≤ c1 |u1 − u1|+ c2 |u2 − u2|, for any

u1, u2, u1, u2 ∈ R and x ∈ J.

(A3) There exists a constant c3 > 0 such that |Im(u1)− Im(u2)| ≤ c3 |u1 − u2|, for each u1, u2 ∈ R and m = 1, 2, . . . , k.

If

c1(k + 1)T ρω

(1− c2)ρωΓ(ω + 1)
+ kc3 < 1, (6)

then there exists a unique solution for the initial value problem (1) on J.

Proof. Transform the problem (1) into a fixed point problem. Consider the operator M : PC(J,R) → PC(J,R) defined

by,

M(u)(x) = u0 +
ρ1−ω

Γ(ω)

∑
0<xm<x

∫ xm

xm−1

(xρm − sρ)ω−1sρ−1f(s)ds (7)

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ)ω−1sρ−1f(s)ds+
∑

0<xm<x

Im
(
u(x−m)

)
,

where f ∈ C(J,R) is such that f(x) = h(x, u(x), f(x)). Clearly, the fixed points of operator M are solutions of problem (1).

Let u1, u2 ∈ PC(J,R), then for x ∈ J, we have

|M(u1)(x)−M(u2)(x)| ≤ ρ1−ω

Γ(ω)

∑
0<xm<x

∫ xm

xm−1

(xρm − sρ)ω−1sρ−1 |f1(s)− f2(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ)ω−1sρ−1 |f1(s)− f2(s)| ds

+
∑

0<xm<x

∣∣Im(u1(x−m))− Im(u2(x−m))
∣∣ ,

where f1, f2 ∈ C(J,R) are such that f1(x) = h(x, u1(x), f1(x)), and f2(x) = h(x, u2(x), f2(x)). By (A2), we have

|f1(x)− f2(x)| ≤ c1 |u1(x)− u2(x)|+ c2 |f1(x)− f2(x)| .

Thus

|f1(x)− f2(x)| ≤
(

c1
1− c2

)
|u1(x)− u2(x)| .

Then, for x ∈ J,

|M(u1)(x)−M(u2)(x)| ≤ ρ1−ω

Γ(ω)

(
c1

1− c2

) k∑
m=1

∫ xm

xm−1

(xρm − sρ)ω−1sρ−1 |u1(x)− u2(x)|ds
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+
ρ1−ω

Γ(ω)

(
c1

1− c2

)∫ x

xm

(xρ − sρ)ω−1sρ−1 |u1(x)− u2(x)| ds+

k∑
m=1

c3
∣∣u1(x−m)− u2(x−m)

∣∣
≤ c1kT

ρω

(1− c2)ρωΓ(ω + 1)
‖u1 − u2‖PC +

c1T
ρω

(1− c2)ρωΓ(ω + 1)
‖u1 − u2‖PC + kc3‖u1 − u2‖PC.

Thus,

‖M(u1)−M(u2)‖PC ≤
[

c1(k + 1)T ρω

(1− c2)ρωΓ(ω + 1)
+ kc3

]
‖u1 − u2‖PC.

By (6), the operator M is a contraction. Hence, by Banach’s contraction principle, M has a unique fixed point which is a

unique solution of the problem (1).

Now we prove the second result based on Schaefer’s fixed point theorem.

Theorem 3.4. Assume that (A1),(A2) and

(A4) There exists p1, p2, p3 ∈ C(J,R+) with p∗3 = supx∈J p3(x) < 1 such that |h(x, u1, u2)| ≤ p1(x) + p2(x) |u1|+ p3(x) |u2|,

for x ∈ J and u1, u2 ∈ R.

(A5) The functions Im : R → R are continuous and there exist constants M∗1 , M
∗
2 > 0 such that |Im(u)| ≤ M∗1 |u| + M∗2 ,

for each u ∈ R, m = 1, 2, . . . , k. If

kM∗1 +
(k + 1)T ρωp∗2

(1− p∗3)ρωΓ(ω + 1)
< 1,

then the initial value problem (1) has at least one solution on J.

Proof. Consider the operator M defined in (7). Now we use the Schaefer’s fixed point theorem to prove that M has a

fixed point. The proof contains several steps.

Step 1: M is continuous. Let {un} be a sequence such that un → u in PC(J,R). Then for each x ∈ J,

|M(un)(x)−M(u)(x)| ≤ ρ1−ω

Γ(ω)

∑
0<xm<x

∫ xm

xm−1

(xρm − sρ)ω−1sρ−1 |fn(s)− f(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ)ω−1sρ−1 |fn(s)− f(s)|ds+
∑

0<xm<x

∣∣Im(un(x−m))− Im(u(x−m))
∣∣ ,

where fn, f ∈ C(J,R) are such that fn(x) = h(x, un(x), fn(x)) and f(x) = h(x, u(x), f(x)). By (A2), we have

|fn(x)− f(x)| ≤ c1 |un(x)− u(x)|+ c2 |fn(x)− f(x)|

≤
(

c1
1− c2

)
|un(x)− u(x)| .

Since un → u, then we get fn(x) → f(x) as n → ∞ for each x ∈ J. And let Ω > 0 be such that, for each x ∈ J, we have

|gn(x)| ≤ Ω and |f(x)| ≤ Ω. Then, we have

(xρ − sρ)ω−1 |fn(s)− f(s)| ≤ (xρ − sρ)ω−1 [|fn(s)|+ |f(s)|] ≤ 2Ω(xρ − sρ)ω−1,

and

(xρm − sρ)ω−1 |fn(s)− f(s)| ≤ (xρm − sρ)ω−1 [|fn(s)|+ |f(s)|] ≤ 2Ω(xρm − sρ)ω−1.

For each x ∈ J, the functions s → 2Ω(xρ − sρ)ω−1 and s → 2Ω(xρm − sρ)ω−1 are integrable on [0, x]; then by the

Lebesgue dominated convergence theorem and (5) implies that |M(un)(x)−M(u)(x)| → 0 as n → ∞, and hence
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‖M(un)−M(u)‖PC → 0 as n→∞. Consequently, M is continuous.

Step 2: F maps bounded sets into bounded sets in PC(J,R). Now, it is enough to show that for any Ω∗ > 0, there exists a

positive constant k1 such that for each

u ∈ BΩ∗ =
{
u ∈ PC(J,R) : ‖u‖PC ≤ Ω∗

}
,

we have ‖M(u)‖PC ≤ k1. Then for each x ∈ J,

M(u)(x) = u0 +
ρ1−ω

Γ(ω)

∑
0<xm<x

∫ xm

xm−1

(xρm − sρ)ω−1sρ−1f(s)ds (8)

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ)ω−1sρ−1f(s)ds+
∑

0<xm<x

Im
(
u(x−m)

)
,

where f ∈ C(J,R) is such that f(x) = h(x, u(x), f(x)). By (A4), we have for each x ∈ J,

|f(x)| = |h(x, u(x), f(x))|

≤ p1(x) + p2(x) |u(x)|+ p3(x) |f(x)|

≤ p1(x) + p2(x)Ω∗ + p3(x) |f(x)|

≤ p∗1 + p∗2Ω∗ + p∗3 |f(x)| ,

where p∗1 = supx∈Jp1(x) and p∗2 = supx∈Jp2(x). Then

|f(x)| ≤ p∗1 + p∗2Ω∗

(1− p∗3)
:= N

Thus (8) implies,

|M(u)(x)| ≤ |u0|+
kNT ρω

ρωΓ(ω + 1)
+

NT ρω

ρωΓ(ω + 1)
+ k(M∗1 |u|+M∗2 )

≤ |u0|+
kNT ρω

ρωΓ(ω + 1)
+

NT ρω

ρωΓ(ω + 1)
+ k(M∗1 Ω∗ +M∗2 ).

Then,

‖M(u)‖PC ≤ |u0|+
(k + 1)NT ρω

ρωΓ(ω + 1)
+ k(M∗1 Ω∗ +M∗2 ) := k1.

Step 3: F maps bounded sets into equicontinuous sets of PC(J,R). Let t1, t2 ∈ J, t1 < t2, BΩ∗ be a bounded set of PC(J,R)

as in Step 2, and let u ∈ BΩ∗ . Then,

|M(u)(t2)−M(u)(t1)| ≤ ρ1−ω

Γ(ω)

∫ t1

0

∣∣∣(tρ2 − sρ)ω−1 − (tρ1 − s
ρ)ω−1

∣∣∣ sρ−1 |f(s)|ds

+
ρ1−ω

Γ(ω)

∫ t2

t1

|tρ2 − s
ρ|ω−1sρ−1 |f(s)|ds+

∑
0<xm<(t2−t1)

∣∣Im(u(x−m))
∣∣

≤ Nρ1−ω

ρωΓ(ω + 1)
[2(tρ2 − t

ρ
1)ω + (tρω2 − t

ρω
1 )] + (tρ2 − t

ρ
1)(M∗1 |u|+M∗2 )

≤ Nρ1−ω

ρωΓ(ω + 1)
[2(tρ2 − t

ρ
1)ω + (tρω2 − t

ρω
1 )] + (tρ2 − t

ρ
1)(M∗1 Ω∗ +M∗2 ).

As t1 → t2, the right hand side of the above inequality tends to zero. Therefore, from Steps 1 to 3 together with the

Arzelá-Ascoli theorem, we can conclude that M : PC(J,R)→ PC(J,R) is completely continuous.

Step 4: A priori bounds. Now we need to show that the set

G = {u ∈ PC(J,R) : u = µM(u), for some 0 < µ < 1} ,
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is bounded. Let u ∈ G, then u = µM(u) for some 0 < µ < 1. Thus, for each x ∈ J, we have

u(x) = µu0 +
µρ1−ω

Γ(ω)

∑
0<xm<x

∫ xm

xm−1

(xρm − sρ)ω−1sρ−1f(s)ds

+
µρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ)ω−1sρ−1f(s)ds+ µ
∑

0<xm<x

Im(u(x−m)).

And, by (A3), we have for each x ∈ J,

|f(x)| = |h(x, u(x), f(x))|

≤ p1(x) + p2(x) |u(x)|+ p3(x) |f(x)|

≤ p∗1 + p∗2 |u(x)|+ p∗3 |f(x)| .

Thus,

|f(x)| ≤ 1

(1− p∗3)
(p∗1 + p∗2 |u(x)|).

This implies, by (A4) and (A5) (as in Step 2), that for each x ∈ J, we get

|u(x)| ≤ |u0|+
kT ρω( 1

1−p∗3
) (p∗1 + p∗2 |u(x)|)

ρωΓ(ω + 1)
+
T ρω( 1

1−p∗3
) (p∗1 + p∗2 |u(x)|)

ρωΓ(ω + 1)
+ k(M∗1 |u(x)|+M∗2 )

≤ |u0|+
kT ρω( 1

1−p∗3
)(p∗1 + p∗2‖u‖PC)

ρωΓ(ω + 1)
+
T ρω( 1

1−p∗3
)(p∗1 + p∗2‖u‖PC)

ρωΓ(ω + 1)
+ k(M∗1 ‖u‖PC +M∗2 ).

Then, we get,

‖u‖PC ≤ |u0|+
kT ρω( 1

1−p∗3
)(p∗1 + p∗2‖u‖PC)

ρωΓ(ω + 1)
+
T ρω( 1

1−p∗3
)(p∗1 + p∗2‖u‖PC)

ρωΓ(ω + 1)
+ k(M∗1 ‖u‖PC +M∗2 ).

Thus,

‖u‖PC ≤
|u0|+ kM∗2 +

p∗1(k+1)Tρω

(1−p∗3)ρωΓ(ω+1)

1− kM∗1 −
p∗2(k+1)Tρω

(1−p∗3)ρωΓ(ω+1)

:= L

This shows that the set G is bounded. By Schaefer’s fixed point theorem, we conclude that M has a fixed point which is a

solution of the problem (1).

4. Nonlocal Fractional Implicit Differential Equations with Impulses

In this section, we present the existence and uniqueness result for the following nonlocal fractional implicit differential

equations with impulses involving Katugampola derivative,



ρDω
xmu(x) = h(x, u, ρDω

xmu(x)), for each x ∈ (xm, xm+1], m = 0, 1, . . . k, 0 < ω ≤ 1,

∆u|x=xm = Im(u(x−m)), m = 1, 2, . . . k,

u(0) + ψ(u) = u0,

(9)

where h, u0, Im are defined as in Section 3 and ψ : C(J,R)→ R is a continuous function.

Theorem 4.1. Assume (A1)-(A3) and the following hypothesis holds:

(A6) There exists a constant δ > 0 such that |ψ(u)− ψ(v)| ≤ δ |u− v|, for each u, v ∈ PC(J,R).
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If [
c1(k + 1)T ρω

(1− c2)ρωΓ(ω + 1)
+mc3 + δ

]
< 1,

then the problem (9) has a unique solution on J.

Proof. We transform the nonlocal problem (8) into a fixed point problem. Consider the operator M̃ : PC(J,R)→ PC(J,R)

defined by

M̃(u)(x) = u0 − ψ(u) +
ρ1−ω

Γ(ω)

∑
0<xm<x

∫ xm

xm−1

(xρm − sρ)ω−1sρ−1f(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ)ω−1sρ−1f(s)ds+
∑

0<xm<x

Im(u(x−m)),

where f ∈ C(J,R) be such that f(x) = h(x, u(x), f(x)). Clearly, the fixed points of the operator M̃ are solution of the

problem (8). From Section 3, we can easily prove that M̃ is a contraction.

5. Examples

Example 5.1. Consider the following fractional implicit differential equations with impulses Katugampola derivative,

ρD
1
2
xmu(x) = 1

28ex+3

(
1+|u(x)|+

∣∣∣∣ρD 1
2 u(x)

∣∣∣∣) , for each x ∈ J0 ∪ J1,

∆u|x= 1
3

=
|u( 1

3
−

)|
76+|u( 1

3
−

)| ,

u(0) = 1,

(10)

where J0 = [0, 1
3
], J1 = ( 1

3
, 1], x0 = 0 and x1 = 1

3
. Let us assume,

h(x, u1, u2) =
1

28ex+3 (1 + |u1|+ |u2|)
, x ∈ [0, 1], u1, u2 ∈ R.

Clearly, the function h is jointly continuous. For each u1, u2, u1, u2 ∈ R and x ∈ [0, 1]:

|h(x, u1, u2)− h(x, u1, u2)| ≤ 1

28e3
(|u1 − u1|+ |u2 − u2|) .

Hence the condition (A2) is satisfied with c1 = c2 = 1
28e3

. And let,

I1(u1) =
u1

76 + u1
, u1 ∈ [0,∞).

Let u1, u2 ∈ [0,∞), then we have,

|I1(u1)− I1(u2)| ≤ 76 |u1 − u2|
(76 + u1)(76 + u2)

≤ 1

76
|u1 − u2| .

Thus the condition,

c1(k + 1)T ρω

(1− c2)ρωΓ(ω + 1)
+ kc3 =

4

(28e3 − 1)(0.4)0.5
√
π

+
1

76
< 1

is satisfied with T = 1, k = 1, and c3 = 1
76

, ω = 0.5, ρ = 0.4. It folows from Theorem 3.3 that the problem (10) has a unique

solution on J = [0, 1].
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Example 5.2. Consider the following fractional implicit differential equations with impulses involving Katugampola deriva-

tive,



ρD
1
2
xmu(x) =

2+|u(x)|+
∣∣∣∣ρD 1

2 u(x)

∣∣∣∣
98ex+4

(
1+|u(x)|+

∣∣∣∣ρD 1
2 u(x)

∣∣∣∣) , for each x ∈ J0 ∪ J1,

∆u|x= 1
4

=
|u( 1

4
−

)|
66+|u( 1

4
−

)| ,

u(0) = 1,

(11)

where J0 = [0, 1
4
], J1 = ( 1

4
, 1], x0 = 0 and x1 = 1

4
. Set

h(x, u1, u2) =
2 + |u1|+ |u2|

98ex+4 (1 + |u1|+ |u2|)
, x ∈ [0, 1], u1, u2 ∈ R.

Clearly, the function h is jointly continuous. For any u1, u2, u1, u2 ∈ R and x ∈ [0, 1]:

|h(x, u1, u2)− h(x, u1, u2)| ≤ 1

98e4
(|u1 − u1|+ |u2 − u2|) .

Hence the condition (A2) is satisfied with c1 = c2 = 1
98e4

. We get, for each x ∈ [0, 1],

|h(x, u1, u2)| ≤ 1

98ex+4
(2 + |u1|+ |u2|) .

Thus the condition (A4) is satisfied with p1(x) = 1
49ex+4 and p2(x) = p3(x) = 1

98ex+4 , and let

I1(u1) =
u1

66 + u1
, u1 ∈ [0,∞),

we have, for each u1 ∈ [0,∞),

|I1(u1)| ≤ 1

66
u1 + 1.

Thus the condition (A5) is satisfied with M∗1 = 1
66

and M∗2 = 1. Thus the condition

kM∗1 +
(k + 1)T ρωp∗2

(1− p∗3)ρωΓ(ω + 1)
=

1

66
+

4

(98e4 − 1)(0.4)0.5
√
π
< 1

is satisfied with T = 1, k = 1 and p∗2(x) = p∗3(x) = 1
98e4

, ρ = 0.4, ω = 0.5. It follows from Theorem 3.4 that the problem

(11) has at least one solution on J = [0, 1].
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