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1. Introduction

In this study, generalized Fibonacci graphs, which were first defined by Golumbic and Perl and used for fast and efficient

communication on networks, are considered (see [5]). Let the graph G contain two different vertices labelled s and t. Define

N(G) to be the number of different paths in G from s to t. Golumbic and Perl dealt with the following problem: Given

integer m and n, find an acyclic digraph G with m edges and n vertices maximizing the number N(G). As a solution to

this problem, they have defined Fibonacci graphs (see [5]). Fibonacci graphs have been used for the purpose of performing

efficient communications in networks (see [2] and references therein). More precisely, consider a network of n nodes, and

assume that communications among the nodes proceed by a sequence of synchronous calls between neighboring vertices.

A round is defined as the set of calls performed at the same time. Several studies address the problem of computing the

minimum number of rounds necessary to perform an all-to-all broadcasting (that is, gossiping) between n nodes.

There are several different studies on generalized Fibonacci graphs. In [9] authors investigate the structure of mincuts in an

n-vertex generalized Fibonacci graph of degree 3 and calculate exact value of mincuts in this graph. In [8] authors investigate

the relationship between algebraic expressions and graphs. They consider Fibonacci graph which gives a generic example

of non-series-parallel graphs and they simplify the expressions of Fibonacci graphs and find their shortest representations.

Although generalized Fibonacci graphs are mostly used for communication on networks, but there are also a variety of

applications in chemistry (see. [3, 4, 6]). A generalized Fibonacci graph of degree k has vertices {1, 2, 3, . . . , n} and edges

{
{v, w}|1 ≤ v, w ≤ n and |w − v| ≤ k

}
,

and it is usually denoted by Fn(k) (see Figure 1). In particular, if k = 2 then it is called a Fibonacci graph.
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Figure 1. F7(2) and F7(3) generalized Fibonacci graphs
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Figure 2. F5(3)�F4(2) Cartesian product graph of F5(3) and
F4(2) generalized Fibonacci graphs.

2. Cartesian Product of Generalized Fibonacci Graphs

In this section we discuss the certain properties of Cartesian product of two
generalized Fibonacci graphs. The motivation behind this work comes from multi-
computer interconnection networks, which are almost exclusively based on cartesian
product of graphs.

The Cartesian product of graphs G and H , written G�H , is the graph with
vertex set V (G) × V (H) specified by putting (u1, u2) adjacent to (v1, v2) if and
only if

(1) u1 = v1 and {u2, v2} ∈ E(H), or
(2) u2 = v2 and {u1, v1} ∈ E(G).

Thus, the cartesian product Fn(k)�Fm(l) of two generalized Fibonacci graphs
Fn(k) and Fm(l) is a graph with nm vertices (see Figure 2). Since Fn(k) and Fm(l)
are connected graphs, Fn(k)�Fm(l) is also connected. But, the Cartesian product
of generalized Fibonacci graphs Fn(k) and Fm(l) is not planar when k > 1 and
l > 1. Because it is well-known that the Cartesian product of connected graphs G
and H on at least three vertices is planar if and only if both G and H are paths or
if one is a path and the other a cycle (see [7]).
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It is not difficult to prove that the degree sequence of generalized Fibonacci graph Fn(k) is

(k, k, k + 1, k + 1, k + 2, k + 2, . . . , 2k − 1, 2k − 1, 2k, 2k, . . . , 2k),

when k < n/2. Here, the number of vertices having degree 2k is (n− 2k). Similarly, if k ≥ n/2 then the degree sequence of

generalized Fibonacci graph Fn(k) is

(k, k, k + 1, k + 1, k + 2, k + 2, . . . , n− 1, n− 1, . . . , n− 1).
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Here, the number of vertices having degree (n− 1) is 2k − n+ 2. Thus we have

∆
(
Fn(k)

)
=

 2k , for k < n/2

n− 1 , for k ≥ n/2
(1)

and

δ
(
Fn(k)

)
=

 k , for k < n

n− 1 , for k ≥ n.
(2)

Using formulas (1), (2) and following equalities

∆
(
Fn(k)�Fm(l)

)
= ∆

(
Fn(k)

)
+ ∆

(
Fm(l)

)
and

δ
(
Fn(k)�Fm(l)

)
= δ
(
Fn(k)

)
+ δ
(
Fm(l)

)
one can calculate the maximum and minimum degrees of the Cartesian product of generalized Fibonacci graphs Fn(k) and

Fm(l).

Proposition 2.1.

|E
(
Fn(k)�Fm(l)

)
| = m(2n− k − 1)k

2
+
n(2m− l − 1)l

2
.

Proof. Let G and H be any graphs and (u, v) ∈ V (G�H). Then

degG�H

(
(u, v)

)
= degG(u) + degH(v).

Using the hand-shaking lemma for graphs or alternatively, since for any graphs G and H,

|E(G�H)| = |V (G)| |E(H)|+ |V (H)| |E(G)|

and

|E (Fn(k)) | = (2n− k − 1)k

2

(see [1, 5, 7]), we obtain the desired result.

Proposition 2.2. For k ≥ 2, Fn(k) generalized Fibonacci graphs are Hamiltonian; that is, there exists a (Hamilton) cycle

through the graph that visits each vertex exactly once.

Proof. Indeed, if n is odd then

1→ 2→ 4→ . . .→ (n− 1)→ n→ (n− 2)→ . . .→ 3→ 1,

if n is even then

1→ 2→ 4→ . . .→ n→ (n− 1)→ (n− 3)→ . . .→ 3→ 1

is a Hamilton cycle in Fn(k) for k ≥ 2. Recall that if the graphs G and H are both hamiltonian, then G�H is also

hamiltonian. As a result, Fn(k)�Fm(l) is hamiltonian for k, l ≥ 2.
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For instance,

(1, 1)→ (1, 2)→ (1, 3)→ (1, 4)→ (1, 5)→ (1, 6)→ (2, 6)→ (2, 4)→ (2, 2)→ (2, 1)

→ (2, 3)→ (2, 5)→ (3, 5)→ (3, 3)→ (3, 1)→ (3, 2)→ (3, 4)→ (3, 6)→ (4, 6)→ (4, 4)

→ (4, 2)→ (4, 1)→ (4, 3)→ (4, 5)→ (5, 5)→ (5, 3)→ (5, 2)→ (5, 4)→ (5, 6)→ (6, 6)

→ (6, 4)→ (6, 2)→ (6, 1)→ (6, 3)→ (6, 5)→ (7, 5)→ (7, 6)→ (7, 4)→ (7, 2)→ (7, 3)

→ (7, 1)→ (5, 1)→ (1, 1)

is a Hamilton cycle in F7(4)�F6(3). We recall that the diameter D(G) of a connected graph G is defined as

D(G) = max
u,v∈G

dG(u, v),

the eccentricity ε(v) of a vertex v in G is defined as

ε(v) = max
u∈U

dG(v, u),

and the radius R(G) is defined as

R(G) = min
v∈G

ε(v).

Proposition 2.3.

D
(
Fn(k)�Fm(l)

)
=

⌈
n− 1

k

⌉
+

⌈
m− 1

l

⌉
,

and

R
(
Fn(k)�Fm(l)

)
=
⌈ n

2k

⌉
+
⌈m

2l

⌉
.

Here dxe represents the smallest integer greater than or equal to x.

Proof. For the connected graphs G and H, we have

D(G�H) = D(G) +D(H) and R(G�H) = R(G) +R(H).

Therefore, since D(Fn(k)) =
⌈
n−1
k

⌉
(see [1]) we obtain

D
(
Fn(k)�Fm(l)

)
=

⌈
n− 1

k

⌉
+

⌈
m− 1

l

⌉
.

n
k

1 2 3 4 5 6 7 8 9 10 11

2 1
3 2 1
4 3 2 1

5 4 2 2 1
6 5 3 2 2 1

7 6 3 2 2 2 1
8 7 4 3 2 2 2 1
9 8 4 3 2 2 2 2 1

10 9 5 3 3 2 2 2 2 1
11 10 5 4 3 2 2 2 2 2 1

12 11 6 4 3 3 2 2 2 2 2 1

Table 1. D(Fn(k)) diameters of generalized Fibonacci graphs Fn(k) for certain values of n and k

Using Table 1 and Proposition 2.3 one can calculate the diameter of Cartesian product graph Fn(k)�Fm(l).
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Proposition 2.4.

R(Fn(k)) =

⌈
n−

⌈
n
2

⌉
k

⌉
Proof. Clearly, by the definition of eccentricity, the value of ε(dn/2e) is the minimum value on the set of all eccentricities.

Furthermore,

ε(dn/2e) =

⌈
n−

⌈
n
2

⌉
k

⌉
.

Hence, we complete the proof.

Using Proposition 2.4 one can obtain Table 2.

n
k

1 2 3 4 5 6 7 8 9 10 11

2 1

3 1 1

4 2 1 1
5 2 1 1 1

6 3 2 1 1 1

7 3 2 1 1 1 1
8 4 2 2 1 1 1 1

9 4 2 2 1 1 1 1 1
10 5 3 2 2 1 1 1 1 1

11 5 3 2 2 1 1 1 1 1 1

12 6 3 2 2 2 1 1 1 1 1 1

Table 2. R(Fn(k)) radii of generalized Fibonacci graphs Fn(k) for certain values of n and k

Therefore, in view of Proposition 2.4 we obtain,

R
(
Fn(k)�Fm(l)

)
=

⌈
n−

⌈
n
2

⌉
k

⌉
+

⌈
m−

⌈
m
2

⌉
l

⌉
.

The center C(G) of a graph G of radius r is the set of all vertices v that have the eccentricity ε(v) = r. By the definition of

generalized Fibonacci graphs and their centers it is easy to see that the center of the Cartesian product graph Fn(k)�Fm(l)

is the Cartesian product of the centers of its factors (see Table 3).

n
k

1 2 3 4 5 6 7 8

2 {1, 2}
3 {2} {1, 2, 3}
4 {2, 3} {2, 3} {1, 2, 3, 4}
5 {3} {3} {2, 3, 4} {1, 2, 3, 4, 5}
6 {3, 4} {2, 3, 4, 5} {3, 4} {2, 3, 4, 5} {1, 2, 3, 4, 5, 6}
7 {4} {3, 4, 5} {4} {3, 4, 5} {2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6, 7}
8 {4, 5} {4, 5} {2, 3, 4, 5, 6, 7} {4, 5} {3, 4, 5, 6} {2, 3, 4, 5, 6, 7} {1, 2, 3, 4, 5, 6, 7, 8}
9 {5} {5} {3, 4, 5, 6, 7} {5} {4, 5, 6} {3, 4, 5, 6, 7} {2, 3, 4, 5, 6, 7, 8} {1, 2, 3, 4, 5, 6, 7, 8, 9}

10 {5, 6} {4, 5, 6, 7} {4, 5, 6, 7} {2, 3, 4, 5, 6, 7, 8, 9} {5, 6} {4, 5, 6, 7} {3, 4, 5, 6, 7, 8} {2, 3, 4, 5, 6, 7, 8, 9}
11 {6} {5, 6, 7} {5, 6, 7} {3, 4, 5, 6, 7, 8, 9} {6} {5, 6, 7} {4, 5, 6, 7, 8} {3, 4, 5, 6, 7, 8, 9}
12 {6, 7} {6, 7} {6, 7} {4, 5, 6, 7, 8, 9} {2, 3, 4, 5, 6, 7, 8, 9, 10, 11} {6, 7} {5, 6, 7, 8} {4, 5, 6, 7, 8, 9}

Table 3. C(Fn(k)) centers of generalized Fibonacci graphs Fn(k) for certain values of n and k

Example 2.5. Let us consider the Cartesian product graph F5(3)�F4(2) (see Figure 2). The center of F5(3) and F4(2) are

{2, 3, 4} and {2, 3} respectively. Since R(F5(3)�F4(2)) = 2 it is not difficult to see that

C
(
F5(3)�F4(2)

)
= {(2, 2), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3)}.

The distance center Cd(G) of a connected graph G is defined as

Cd(G) = {v ∈ V (G) :
∑

u∈V (G)

dG(u, v) is minimum}.
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It is different from the center of Fn(k) (see Table 4). The distance center of a Cartesian product is the Cartesian product

of the distance centers of the factors. Hence, we obtain

Cd

(
Fn(k)�Fm(l)

)
= Cd

(
Fn(k)

)
× Cd

(
Fm(l)

)
.

n
k

1 2 3 4 5 6 7 8 9

2 {1, 2}
3 {2} {1, 2, 3}
4 {2, 3} {2, 3} {1, 2, 3, 4}
5 {3} {3} {2, 3, 4} {1, 2, 3, 4, 5}
6 {3, 4} {3, 4} {3, 4} {2, 3, 4, 5} {1, 2, 3, 4, 5, 6}
7 {4} {3, 4, 5} {4} {3, 4, 5} {2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6, 7}
8 {4, 5} {4, 5} {4, 5} {4, 5} {3, 4, 5, 6} {2, 3, 4, 5, 6, 7} {1, 2, 3, 4, 5, 6, 7, 8}
9 {5} {5} {4, 5, 6} {5} {4, 5, 6} {3, 4, 5, 6, 7} {2, 3, 4, 5, 6, 7, 8} {1, 2, 3, 4, 5, 6, 7, 8, 9}

10 {5, 6} {5, 6} {4, 5, 6, 7} {5, 6} {5, 6} {4, 5, 6, 7} {3, 4, 5, 6, 7, 8} {2, 3, 4, 5, 6, 7, 8, 9} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
11 {6} {5, 6, 7} {5, 6, 7} {5, 6, 7} {6} {5, 6, 7} {4, 5, 6, 7, 8} {3, 4, 5, 6, 7, 8, 9} {2, 3, 4, 5, 6, 7, 8, 9, 10}
12 {6, 7} {6, 7} {6, 7} {5, 6, 7, 8} {6, 7} {6, 7} {5, 6, 7, 8} {4, 5, 6, 7, 8, 9} {3, 4, 5, 6, 7, 8, 9, 10}

Table 4. Cd(Fn(k)) distance centers of generalized Fibonacci graphs Fn(k) for certain values of n and k

Graphs arising in chemistry are a primary source of examples for graph theory such as benzenoid graphs, chemical trees,

and fullerenes are just a few of the well-known examples. The main goal of chemical graph theory is to investigate the graph

and to predict the molecule’s properties. This is frequently obtained by computing cautious selected graph invariants. The

Wiener index, introduced by Wiener (1947), is the oldest such invariant (see [10]). The Wiener index W (G) of a graph G

is defined as the sum of the distances between all pairs of vertices of G, that is,

W (G) =
1

2

∑
u∈V (G)

∑
v∈V (G)

dG(u, v).

Thus the Wiener index of a generalized Fibonacci graph Fn(k) is

W (Fn(k)) =
1

2

n∑
i=1

n∑
j=1

dFn(k)(i, j).

Since dFn(k)(i, j) =
⌈
|i−j|

k

⌉
, Table 5 can be easily constructed.

n
k

1 2 3 4 5 6 7 8 9

2 1

3 4 3

4 10 7 6
5 20 13 11 10
6 35 22 18 16 15

7 56 34 27 24 22 21
8 84 50 39 34 31 29 28

9 120 70 54 46 42 39 37 36

10 165 95 72 61 55 51 48 46 45

Table 5. W (Fn(k)) Wiener index values of generalized Fibonacci graphs Fn(k) for certain values of n and k

Since Fn(1) ∼= Pn, W (Fn(1)) = n3−n
6

and since for k ≥ n− 1, Fn(k) ∼= Kn, W (Fn(k)) = n(n−1)
2

for k ≥ n− 1.

Proposition 2.6. Wiener index of a generalized Fibonacci graph Fn(k) satisfies following basic equality:

W (Fn(k)) =

n∑
i=1

dFn(k)(n, i) +W (Fn−1(k))
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Proof.

W (Fn(k)) =
1

2

n∑
i=1

n∑
j=1

dFn(k)(i, j)

=
1

2

( n−1∑
i=1

n−1∑
j=1

[
dFn(k)(i, j)

]
+ dFn(k)(1, n) + dFn(k)(2, n) + · · ·+ dFn(k)(n, n)

+dFn(k)(n, 1) + dFn(k)(n, 2) + · · ·+ dFn(k)(n, n− 1)
)

Since dFn(k)(i, j) = dFn(k)(j, i) for 1 ≤ i, j ≤ n and dFn(k)(n, n) = 0 we obtain

W (Fn(k)) =
1

2

(
n−1∑
i=1

n−1∑
j=1

[
dFn(k)(i, j)

]
+ 2dFn(k)(n, 1) + 2dFn(k)(n, 2) + · · ·+ 2dFn(k)(n, n− 1)

)

=

n∑
i=1

dFn(k)(n, i) +
1

2

n−1∑
i=1

n−1∑
j=1

dFn(k)(i, j)

=

n∑
i=1

dFn(k)(n, i) +W (Fn−1(k))

which completes the proof.

Theorem 2.7.

W (Fn(k)�Fm(l)) = n2W (Fm(l)) +m2W (Fn(k))

Proof.

W (Fn(k)�Fm(l)) =
1

2

∑
1≤i,s≤n

∑
1≤j,t≤m

dFn(k)�Fm(l)

(
(i, j), (s, t)

)
=

1

2

∑
1≤i,s≤n

∑
1≤j,t≤m

(
dFn(k)(i, s) + dFm(l)(j, t)

)
=

1

2

n∑
i=1

n∑
s=1

m∑
j=1

m∑
t=1

(
dFn(k)(i, s) + dFm(l)(j, t)

)
=

n∑
i=1

n∑
s=1

(
1

2

m∑
j=1

m∑
t=1

dFm(l)(j, t)

)

+

m∑
j=1

m∑
t=1

(
1

2

n∑
i=1

n∑
s=1

dFn(k)(i, s)

)
= n2W (Fm(l)) +m2W (Fn(k)).
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