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Abstract: Integer factorization problem had a great impact on security of many public key cryptosystems. Advancement in factoring
increases the need to develop innovative public key cryptosystems. In this paper, a special purpose factorization method

to find the factors of a composite number, which is the product of two distinct primes, is proposed. Fermat’s method is

theoretically important and many modern factorization algorithms like the quadratic sieve, multiple polynomial quadratic
sieve, and number field sieves are based upon this method. The proposed scheme is equivalent to Fermat’s method, and

hence it can be used in such popular modern factorization methods. The steps involved in the algorithm are proved

theoretically. Algorithm is illustrated numerically using Mathematica.
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1. Introduction

Primality testing and Factorization are considered by many number theorists including Fermat and Gauss. Integer fac-

torization problem, the apparent difficulty of factoring large integers is the basis of some modern public key cryptographic

algorithms. The security of the popular cryptosystems like, RSA encryption algorithm by Rivest [1], Rabin Cryptosystem by

M.O.Rabin [2] and the pseudo random number generator Blum Blum Shub cryptographic pseudorandom number generator

by Blum et al [3] depends on the intractability of computational hard integer factorization problem. In the probabilis-

tic encryption proposed by Blum [4] and Goldwasser [5], integer factorization problem plays a vital role in the security.

Factorization algorithms are classified in to two categories: special purpose algorithms and general purpose algorithms.

(i). In special purpose algorithm, the integer being factored is of a particular form; for example an algorithm which

factorizes a composite integer that is not a prime power. Examples include trial division, Pollard’s p − 1 algorithm,

Pollard rho, Number field Sieve algorithm proposed by J.M.Pollard [6–8] and Elliptic curve algorithm proposed by

HW.Lenstra Jr [9].

(ii). In general purpose algorithm, the integer being factored is not in any of the special structure. Examples include

Quadratic Sieve introduced by C.Pomerance [10, 11] and General number field Sieve.

In trial division algorithm, one simply checks whether s|N for s = 2, 3, ..., b
√
Nc, then s and t = N

s
are the factors of N .

Fermat [12] proposed a factorization method in which the composite number N is expressed as the difference of squares
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N = x2 − y2, then (x + y) and (x − y) are factors of N . Solving N = x2 − y2 is equivalent to finding x and y such that

x2 = y2(mod N) and if x is not congruent to ∓y(mod N) then GCD (x− y,N) or GCD(x + y,N) must be a non-trivial

factor of N. Arjen K.Lenstra [13], HW. Lenstra Jr [14], Richard P. Brent [15] and N.M.Stephens [16] had done related work

on integer factorization. In this paper, a special purpose factorization algorithm equivalent to Fermat method is proposed.

The proposed algorithm is justified theoretically.

Notations: Throughout this paper, it is assumed that N = pq, where p and q are prime numbers such that p < q. Thus

p < N0 and q > N0, where N0 = b
√
Nc; dNe-Ceiling of N; bNc-Floor of N; GCD(a, b)-Greatest common divisor of a and b;

a|b-a divides b.

2. Proposed Algorithm

Input: A Composite number N , a product of two distinct primes p and q with p < q.

Output: Prime factors p and q.

Step 2.1: Compute N0 = b
√
Nc.

Step 2.2: Divide N by N0, compute the quotient q0 and remainder r0.

Step 2.3: If r0 = 0 then p = N0 and q = q0 are the factors of N .

Step 2.4: If r0 6= 0 and GCD(N0, r0) 6= 1, then p = GCD(N0, r0) and q = N/p.

Step 2.5: If r0 6= 0 and GCD(q0, r0) 6= 1, then p = GCD(q0, r0) and q = N/p.

Step 2.6: If r0 6= 0, GCD(N0, r0) = 1 and GCD(q0, r0) = 1,

Case 1: If q0 = N0 For k = 1 : d
√
N − r0e. Compute rk = r0 +k2, N0 +k, N0−k, GCD(N0 +k,Rk), and GCD(N0−k,Rk).

Step 2.6.1: If GCD(N0 + k,Rk) 6= 1 then p = GCD(N0 + k,Rk) and q = N/p. If GCD(N0 − k,Rk) 6= 1 then p =

GCD(N0 − k,Rk) and q = N/p.

Case 2: If q0 = N0 + 1. For k = 1 : d 1+
√
1+4N−4r0

2
e compute rk = r0 + k(k− 1), N0 − k + 1, N0 + k, GCD(N0 + k,Rk), and

GCD(N0 − k + 1, Rk).

Step 2.6.2: If GCD(N0 + k,Rk) 6= 1 then p = GCD(N0 + k,Rk) and q = N/p. If GCD(N0 − k + 1, Rk) 6= 1 then

p = GCD(N0 − k + 1, Rk) and q = N/p.

3. Mathematical Back Ground of the Algorithm

In this section the results related to the algorithm are mathematically proved.

Theorem 3.1. On dividing any integer N by N0 = b
√
Nc, the quotient is either N0 or (N0 + 1).

Proof. On dividing N by N0 = b
√
Nc, let the quotient be q0 and remainder be r0. By division algorithm, N = N0q0 + r0,

0 < r0 < N0. Clearly, N2
0 < N < (N0 + 1)2.

Case (1): Suppose, q0 > (N0 + 1), say (N0 + 2). Then

N = N0(n0 + 2) + r0, 0 < r0 < N0

N = N2
0 + 2N0 + r0

N = (N0 + 1)2 + a positive integer

N > (N0 + 1)2 a contradiction.
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Case (2): Suppose, q0 < N0, say (N0 − 1). Then

N = N0(N0 − 1) + r0, 0 < r0 < N0

N = N2
0 −N0 + r0

As N > N2
0 , N2

0 − N0 + r0 > N2
0 ⇒ r0 − N0 > 0 ⇒ r0 > N0. It is a contradiction. Hence the quotient q0 is either N0 or

(N0 + 1).

Theorem 3.2.

(1). Any integer N = N2
0 + r0 with N0 = b

√
Nc is expressed as N = (N0 + k) (N0 − k) + rk, where Rk = r0 + k2,

k = 0, 1, 2, . . . , N0.

(2). Any integer N = N0(N0 + 1) + r0 with N0 = b
√
Nc is expressed as N = (N0 + k) (N0 − k + 1) + Rk, where Rk =

r0 + k (k − 1), k = 0, 1, 2, . . . , N0 + 1.

Theorem 3.3.

(1). If N = (N0 + k) (N0 − k) + Rk, Rk = r0 + k2 for k = 0, 1, 2, . . . , N0 and u = GCD (N0 + k,Rk) 6= 1 or u =

GCD (N0 − k,Rk) 6= 1, then u is the smallest prime factor p of N .

(2). If N = (N0 + k) (N0 − k + 1) + Rk, Rk = r0 + k (k − 1) for k = 0, 1, . . . , N0 + 1 and if u = GCD (N0 + k,Rk) 6= 1 or

u = GCD (N0 − k + 1, Rk) 6= 1, then u is the smallest prime factor p of N .

Proof. Claim 1: u is a factor of N .

Suppose u = GCD (N0 + k,Rk) or u = GCD (N0 − k,Rk). Then, u |(N0 + k) , u|Rk or u| (N0 − k) , u|Rk. In turn,

u |(N0 + k) (N0 − k) , u|Rk or u| (N0 + k) (N0 − k) , u|Rk, u|[(N0 + k) (N0 − k) + Rk] i.e. u|N . Thus, u is a factor of

N . If, u = GCD (N0 + k,Rk) or u = GCD (N0 − k + 1, Rk). Then, u |(N0 + k) , u|Rk or u| (N0 − k + 1) , u|Rk. Thus,

u |(N0 + k) (N0 − k + 1) , u|Rk or u| (N0 + k) (N0 − k + 1) , u|Rk, u|[(N0 + k) (N0 − k + 1) + Rk] i.e. u|N . Thus, u is a

factor of N .

Claim 2: u is the smallest prime factor.

On contradiction assume, u = q, where q is the largest prime factor.

Case (i): u = GCD (N0 + k,Rk), N = (N0 + k) (N0 − k) + Rk, with Rk = r0 + k2, k = 0, 1, 2, . . . , N0; u =

GCD (N0 + k,Rk) implies N0 + k = tq and Rk = sq, where t > 0, s > 0 Also, tq = N0 + k = 2N0, since k assumes

any one of the values 0, 1, 2, . . . , N0. Thus q = 2N0
t

and q > N0 and implies t = 1. Now t = 1, implies

N = q (N0 − k) + sq

pq = (N0 − k) q + sq

p = N0 − (k − s)

Now p < N0, implies (k − s) > 0 and in turn k > s. Now N = q (N0 − k)+sq < qN0, a contradiction. Thus u is the smallest

prime factor p.

Case (ii): u = GCD (N0 − k,Rk), N = (N0 + k) (N0 − k)+Rk, with Rk = r0+k2, k = 0, 1, 2, . . . , N0. Suppose, N0−k = tq

and Rk = sq, where t > 0, s > 0. We get, N = pq = (N0 + k) tq + sq. Thus, p = (N0 + k) t + s. It is a contradiction to the

fact that p < N0. Thus u is the smallest prime factor p.
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Case (iii): u = GCD (N0 + k,Rk), N = (N0 + k) (N0 − k + 1) + Rk, with Rk = r0 + k(k − 1); u = GCD (N0 + k,Rk)

implies N0 + k = tq and Rk = sq, where t > 0, s > 0 Also, tq = n0 + k = 2N0, since k assumes any one of the values

0, 1, 2, . . . , N0. Thus q = 2N0
t

and q > N0 and implies t = 1. Now t = 1, implies

N = q (N0 − k + 1) + sq

pq = (N0 − k + 1) q + sq

p = N0 − (k − s− 1)

Now p < N0, implies (k − s− 1) > 0 and in turn k > s + 1. Now N = q (N0 − k + 1) + sq < qN0, a contradiction. Thus u

is the smallest prime factor p.

Case (iv): u = GCD (N0 − k + 1, Rk), N = (N0 + k) (N0 − k + 1) +Rk, with Rk = R0 + k(k− 1). If N0 − k + 1 = tq and

Rk = sq, where t > 0, s > 0. We get, N = pq = (N0 + k) tq + sq. Thus, p = (N0 + k) t+ s and p > N0. It is a contradiction

to the fact that p < N0.

Theorem 3.4. The upper bound for k to get the factors of N = pq are given by k <
⌈√

N − r0
⌉

when N =

(N0 + k) (N0 − k) +Rk, Rk = r0 + k2 and k <
⌈

1+
√
1+4N−4r0

2

⌉
when N = (N0 + k) (N0 − k + 1) +Rk, Rk = r0 + k (k − 1).

Proof. The factors of N = pq is obtained as p, when GCD (N0 + k,Rk) = p or GCD (N0 − k,Rk) = q. Thus Rk = N0 +k

or Rk = N0 − k and Rk = N . Thus Rk = N0 − k.

Case (i): Rk = r0 + k2 ⇒ r0 + k2 = N ⇒ k =
√
N − r0.

Case (ii): Rk = r0 + k (k − 1)⇒ r0 + k(k − 1) = N ⇒ k = 1∓
√
1+4N−4r0

2
⇒ k =

⌈
1+
√
1+4N−4r0

2

⌉
.

Example 3.5. N = 24961; N0 = b
√
Nc = 157, r0 = N mod N0 = 155. For k = 61, N0 + k = 218, Rk = 3815,

GCD (216, 3815) = 109. Thus, the smallest prime factor of 24961 is 109 and other factor is 229.

4. Conclusion

In this paper a factorization method equivalent to Fermat factorization method is proposed. Fermat’s method is theoretically

important in the factorization methods such as: the quadratic sieve, multiple polynomial quadratic sieve, and the special

and the number field sieves are all based upon this method. As the proposed scheme is similar to Fermat’s method, it can

be used in such factorization methods. The steps involved in the algorithm are theoretically proved. The computational

complexity of the method depends on the value of ‘k’, which is involved in the computation of Rk. The upper bound for k

is provided theoretically. But the complexity of the proposed algorithm can be improved by computing the exact value of k

which is an open problem. Our future enhancement is to find out the exact value of k.
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