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Abstract: The aim of this paper is to discuss the case of (0, 1, 2) interpolation by trigonometric polynomial on the zeros of sinmx

at the point xk=
2πk
n

, where k = 0, 1, 2, . . . , n − 1, where n is even (n = 2m) and the convergence behavior of this

trigonometric polynomial. Let Rn(x) be a trigonometric polynomial of order such that

Rn(xk) = ak

R′n(xk) = bk

R′′n(xk) = ck

where xk=
2πk
n

, k = 0, 1, 2, . . . , n− 1 and n is even (n = 2m).
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1. Introduction

This paper is about to consider the case of (0, 1, 2) interpolation by trigonometric polynomials when nodes are taken to be

xk = 2πk
n

, k = 0, 1, 2, . . . , n− 1. Here we find the explicit form of the trigonometric polynomial Rn(x) of order n for which

Rn(xk) = ak, R′n(xk) = bk, R′′n(xk) = ck,

where ak, bk, ck are arbitrary numbers and xk = 2πk
n

, k = 0, 1, 2, . . . , n − 1 are prescribed at the given nodes. In view of

previous works chronically in 1960 O.Kǐs [7] discuss the simple case of (0, 2) trigonometric interpolation. In 1965 A.Sharma

and A.K.Varma [3] generalized this case as (0,M) trigonometric interpolation. A.Sharma and A.K.Varma have done the

plausible work to consider the (0,M,N) case M < N . For the justification of this case A.Sharma and A.K.Varma [4]

consider in 1968 a very simple case (0, 2, 3). Many more convincing works have done by A.K.Varma [1, 2] as Some remarks

on trigonometric interpolation consider the (0, 1, 2, 4) in 1969. Hermite-Birkhoff trigonometric interpolation the (0,1,2,M)

case in 1973. In the series of these work several mathematician have considered different cases. There is a difference between

the case (0, 2) studied by O.Kǐs [7] and (0, 2, 3) case studied by A.Sharma and A.K.Varma [4] that in the (0, 2, 3) case

interpolatory polynomials exist and unique for both n even and n odd. Another distinction between these two cases the

interpolatory polynomials of case (0, 2, 3) converges uniformly. These cases motivated us to consider (0, 1, 2) trigonometric

interpolation . Here we are interested to determine the explicit forms and convergence of the trigonometric polynomial

Rn(x) for n even(= 2m).

∗ E-mail: ravindra.katheriya104@gmail.com

113

http://ijmaa.in/


On (0,1,2) Trigonometric Interpolation

2. Statement of the Main Theorem

We are interested in the trigonometric polynomial Rn(x) of suitable order such that

Rn(xk) = ak, R′n(xk) = bk, R′′n(xk) = ck, (1)

where xk = 2πk
n

, k = 0, 1, 2.......n− 1. This is called the case of (0, 1, 2) interpolation, when n is even (= 2m). We require

the trigonometric polynomial Rn(x) to have the form

d0 +

3m−1∑
k=1

(dk cos kx+ ek sin kx) + d3m cos 3mx (2)

by A.Zygmund [5]. We shall prove the following.

Theorem 2.1. The trigonometric polynomial Rn(x) satisfying (1) having form (2) is given by

Rn(x) =

n−1∑
k=0

akU(x− xk) +

n−1∑
k=0

bkV (x− xk) +

n−1∑
k=0

ckW (x− xk) (3)

where

W (x) =
1

n3

[
1 + 2

m−1∑
j=1

cos jx−
3m−1∑
j=m+1

cos jx+
cosmx

2
− cos 3mx

2

]
(4)

V (x) =
1

n2

[
4 sin 2mx+

4

n

m−1∑
j=1

j sin jx+ 2

2m−1∑
j=m

sin jx−
3m−1∑
j=m+1

(
1 +

2j

n

)
sin jx

]
(5)

U(x) =
1

n

[
1 +

m−1∑
j=1

(
3n− 4j

2n

)
− 1

2

m−1∑
j=1

sin jx sinmx+
1

n2

3m−1∑
j=m+1

(j2 − 3nj + 2n2) cos jx+
1

8
(5 cosmx− cos 3mx)

]
(6)

Let us consider

Rn(x) =

n−1∑
k=0

f(xk)U(x− xk) +

n−1∑
k=0

bkV (x− xk) +

n−1∑
k=0

ckW (x− xk) (7)

f(x) is a 2π-periodic continuous function and bk , ck are arbitrary numbers. We have to prove the following

Theorem 2.2. Let f(x) be 2π-periodic continuous function with f(x) ∈ Lipα, α > 0 and if

| bk |= o

(
n

logn

)
, | ck |= o

(
n2

logn

)
, k = 0, 1, 2, . . . , n− 1 (8)

then Rn(x) as given by (7) converges uniformly to f(x) on every closed finite interval on the x-axis.

3. Proof of Theorem 2.1

Here we shall discuss the method of finding U(x) , V (x) , W (x) which satisfies the given conditions respectively.

U(xk) =


1, for k = 0

0, for 1 ≤ |k| ≤ n− 1

, U ′(xk) = 0, U ′′(xk) = 0 (9)

V (xk) = 0, V ′(xk) =


1, for k = 0

0, for 1 ≤ |k| ≤ n− 1

, V ′′(xk) = 0 (10)
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W (xk) = 0, W ′(xk) = 0, W ′′(xk) =


1, for k = 0

0, for 1 ≤ |k| ≤ n− 1

(11)

We shall find the U(x). Let

U(x) =
1

2m
sinmx cot

x

2
+ sinmxh(x) (12)

where h(x) is a trigonometric polynomial of order 2m. Let U ′(x) = sinmxg(x), where g(x) is a trigonometric polynomial of

order ≤ 2m. Then U ′′(xk) = 0 gives g(xk) = 0, k = 0, 1, 2, . . . , n− 1.

Hence

g(x) = r(x) sinmx

where r(x) is a trigonometric polynomial of order ≤ m, which gives us

U ′(x) = r(x) sin2mx (13)

On differentiating the (12) and equalize with (13), which gives us

h(xk) =
1

m2

m−1∑
j=1

(j −m) sin jxk (14)

for k = 0, 1, 2, . . . , n− 1. Hence

h(x) =
1

m2

m−1∑
j=1

(j −m) sin jx+ p(x) sinmx (15)

where p(x) is trigonometric polynomial of order m. Using (15) in (12), we get

p(x) =
1

2m3

m−1∑
j=1

j2 cos jx+
1

m3

m−1∑
j=1

j(m− j) cos jx+
cosmx

4m
+ a sinmx (16)

where a is arbitrary constant. Using (15) and (16) in (12), which gives us U(x). We have a = 0, because of U(x − xk)

does not contain the term of sin 3mx. Similarly one can obtain the explicit forms of V (x) and W (x) owing to condition

(10), (11) respectively. Hence the theorem follows.

4. Estimates of the Fundamental Polynomials

Lemma 4.1. The W (x) defined in (4). Then

n−1∑
k=0

|W (x− xk)| ≤ C1n
−2 logn, (17)

where C1 is a numerical constant.

Proof. In order to prove (17) we can write W (x) in this form

W (x) =
sinmx

4m3

{
2m−1∑
j=1

sin jx+
1

2
sin 2mx

}
(18)
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Since

n−1∑
k=0

|W (x− xk) |≤
n−1∑
k=0

max
1≤p≤2m−1

1

4m3

∣∣∣∣sinm(x− xk)

{
p∑
j=1

sin j(x− xk) +
1

2
sin 2m(x− xk)

}∣∣∣∣ (19)

By using the well known inequality (Jackson [6], page 120)

n−1∑
k=0

max
p

∣∣∣∣ p∑
j=o

sin j(x− xk)

∣∣∣∣ ≤ 4 logn (20)

the lemma follows.

Lemma 4.2. The V (x) defined in (5). Then

n−1∑
k=0

|V (x− xk)| ≤ C2n
−1 logn, (21)

where C2 is a numerical constant.

Proof. We have V (x)in (5). Then

n−1∑
k=0

| V (x− xk) | ≤
n−1∑
k=0

∣∣∣∣4 sin 2m(x− xk)

n2

∣∣∣∣+

n−1∑
k=0

∣∣∣∣m−1∑
j=1

4j

n3
sin j(x− xk)

∣∣∣∣
+

n−1∑
k=0

∣∣∣∣2m−1∑
j=m

2

n2
sin j(x− xk)

∣∣∣∣+

n−1∑
k=0

∣∣∣∣ 3m−1∑
j=m+1

(
n+ 2j

n3

)
sin j(x− xk)

∣∣∣∣ (22)

Since

n−1∑
k=0

| V (x− xk) |≤| S1 | + | S2 | + | S3 | + | S4 |

We have

| S2 |≤
∣∣∣∣m−1∑
j=1

4j

n3
sin j(x− xk)

∣∣∣∣
Now we use Abel’s inequality on the series as the coefficient in the above sum is increasing function of j for 1 ≤ j ≤ m− 1.

Thus

| S2 |≤
1

2m2
max

1≤p≤m−1

∣∣∣∣ p∑
j=0

sin j(x− xk)

∣∣∣∣
and now

| S4 |≤
∣∣∣∣ 3m−1∑
j=m+1

(
n+ 2j

n3

)
sin j(x− xk)

∣∣∣∣
Now again using the Abel’s inequality

(
n+2j
n3

)
is an increasing function of j for 1 ≤ j ≤ 3m− 1. Thus

| S4 |≤
∣∣∣∣ 1

m2
max

1≤p≤3m−1

p∑
j=1

sin j(x− xk)

∣∣∣∣
Similarly we can find the estimate of S1 and S3. Now combining the estimates of S1, S2, S3, and S4 and using (20) we

have lemma (18).
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Lemma 4.3. The U(x) defined in (6). Then

n−1∑
k=0

|U(x− xk)| ≤ C3 logn, (23)

where C3 is a numerical constant.

Proof. The fundamental polynomial U(x) is given in (6). Thus

n−1∑
k=o

| U(x− xk) | ≤
n−1∑
k=0

∣∣∣∣ 1

2m

∣∣∣∣+

n−1∑
k=0

∣∣∣∣ 5

16m
cosm(x− xk)

∣∣∣∣+

n−1∑
k=0

∣∣∣∣ 1

16m
cos 3m(x− xk)

∣∣∣∣
+

n−1∑
k=0

∣∣∣∣ 1

4m

m−1∑
j=1

sin j(x− xk) sinm(x− xk)

∣∣∣∣+

n−1∑
k=0

∣∣∣∣m−1∑
j=1

aj cos j(x− xk)

∣∣∣∣
+

n−1∑
k=0

∣∣∣∣ 3m−1∑
j=m+1

bj cos j(x− xk)

∣∣∣∣ (24)

where aj = 3m−2j
4m2 ; bj = j2−6mj+8m2

8m3 . Since, aj is a decreasing function of j for 1 ≤ j ≤ m − 1 while bj is an increasing

function as 0 ≤ bj ≤ 1
4m

for m+ 1 ≤ j ≤ 3m− 1. using Abel’s inequality and using (20) we get the required result.

5. Proof of Theorem 2.2

In order to prove that

Lemma 5.1. If f(x) is a continuous 2π-periodic function and satisfying f(x) ∈ Lipα, 0 < α ≤ 1, Then there exist a

trigonometric polynomial Tn(x) of order ≤ n such that

| f(x)− Tn(x) | = O(n−α) (25)

| T (p)
n (x) | = O(np−α), p = 1, 2 (26)

The formula (25) is well know due to Jackson. The proof of (26) is exactly similar to a corresponding lemma of O.Kǐs.(P.270−

271). A trigonometric polynomial Tn(x) of order n which satisfies (25), (26) By the uniqueness theorem we have

| f(x)−Rn(x) | =| f(x)− Tn(x) + Tn(x)−Rn(x) |

≤| f(x)− Tn(x) | + | Tn(x)−Rn(x) |

=| f(x)− Tn(x) | +
∣∣∣∣n−1∑
k=0

(Tn(xk)− f(xk))U(x− xk)

+

n−1∑
k=0

(T ′n(xk)− bk)V (x− xk) +

n−1∑
k=0

(T ′′n (xk)− ck)W (x− xk)

∣∣∣∣
=

3∑
r=1

Sr+ | f(x)− Tn(x) |

By using the (23) and (25) we have

S1 = C3 logno(n−α) = o(1),

as 0 < α ≤ +1. By using (26), (21), (8) we get

S2 = C2n
−1 logno(n1−α)− o

(
n

logn

)
C2n

(−1) logn = o(1),
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as 0 < α ≤ 1 and | bk |= o
(

n
logn

)
. Now at last use (26), (8), (17) we have

S3 = C1n
−2 logno(n2−α)− C1n

−2 logno

(
n−2

logn

)
= o(1),

as α > 0 and | ck |= o
(

n2

logn

)
. By using (25). Therefore

| f(x)−Rn(x) | ≤ o(1)+ | f(x)− Tn(x) |

| f(x)−Rn | = o(1)

The theorem as follows.
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