ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Independent and Upper Steiner Domination Number of Graphs

K. Ramalakshmi^{1,*} and K. Palani¹

- 1 Department of Mathematics, Sri Sarada College for Women (Affiliated to Manonmaniam Sundaranar University), Tamilnadu, India.
- 2 Department of Mathematics, A.P.C Mahalakshmi College(Affiliated to Manonmaniam Sundaranar University), Tamilnadu, India.

Abstract: In this paper, independent and upper steiner domination number of graphs are introduced. Also, these numbers were

found for some standard graphs.

MSC: Primary: 05C.

Keywords: Steiner number, steiner domination number, independent steiner domination number, upper steiner domination number.

© JS Publication. Accepted on: 01.05.2018

1. Introduction

The concept of domination in graphs was introduced by Ore and Berge [4]. Throughout this paper G = (V, E) denotes a finite undirected simple graph with vertex set V and edge set E. A subset D of V(G) is a dominating set of G if every vertex in V - D is adjacent to at least one vertex in D. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. The concept of Steiner number of a graph was introduced by G. Chatrand and G. Zhang [1]. For a nonempty set G of vertices in a connected graph G, the Steiner distance G0 is the minimum size of a connected subgraph of G containing G0. Necessarily each such subgraph is a tree and is called a Steiner tree with respect to G0 or a Steiner G0. The set of all vertices of G1 that lie in some Steiner G1. If G2 is denoted by G3. The concept of Steiner domination number of a graph was introduced by G3. John et al., [3]. For a connected graph G3, a set of vertices G4 is called a Steiner dominating set if G4 is both a Steiner set and a dominating set. The minimum cardinality of a Steiner dominating set of G3 is its Steiner domination number and is denoted by G3. A steiner dominating set of cardinality G3 is said to be a G5-set.

The minimum of $\{degv : v \in V(G)\}$ is denoted by $\delta(G)$. A k-dominating set is a subset S of V(G) such that every vertex $v \in V - S$ is adjacent to at least k vertices in S. A vertex and an edge are said to cover each other if they are incident. A set of vertices which covers all the edges of a graph G is called a vertex cover for G. The smallest number of vertices in any vertex cover for G is called its vertex covering number and is denoted by $\alpha_0(G)$ or α_0 . A set S of vertices in a graph G is independent if no two of its vertices are adjacent in G. The largest number of vertices in such a set is called the vertex independence number of G and is denoted by $\beta_0(G)$ or β_0 . If G is a graph with p vertices, then $\alpha_0(G) + \beta_0(G) = p$. A

^{*} E-mail: krams1983@amail.com

dominating set S of a graph G which is also independent is called an independent dominating set of G. The minimum cardinality of all independent dominating sets of G is called its independent domination number and is denoted by i(G).

Theorem 1.1 ([3]). For the complete bipartite graph $G = K_{m,n}$,

$$s(G) = \gamma_s(G) = \begin{cases} 2 & \text{if } m = n = 1; \\ n & \text{if } n \ge 2, m = 1; \\ \min\{m, n\} & \text{if } m, n \ge 2 \end{cases}$$

Theorem 1.2 ([7]). For a Wheel graph $W_{1,n}, n \geq 5, \gamma_s(W_{1,n}) = n - 2$

Theorem 1.3 ([3]). Each extreme vertex of a connected graph G belongs to every minimum Steiner dominating set of G.

Theorem 1.4 ([3]). For the complete graph $K_p(p \ge 2)$, $\gamma_s(K_p) = p$.

Lemma 1.5 ([5]). Let $n \geq 6$. Then, $\lceil \frac{n}{3} \rceil = \lfloor \frac{n}{2} \rfloor$ if and only if n = 7.

Theorem 1.6 ([6]).
$$\gamma_s(P_n) = \begin{cases} \lceil \frac{n-4}{3} \rceil + 2 & \text{if } n \geq 5; \\ 2 & \text{if } n = 2, 3 \text{ or } 4. \end{cases}$$

Theorem 1.7 ([6]). For n > 5, $\gamma_s(C_n) = \lceil \frac{n}{3} \rceil$.

2. Independent Steiner Domination Number

Definition 2.1. A Steiner dominating set W of G is said to be an independent steiner dominating set of G if the subgraph induced by W is independent.

Definition 2.2. Let ζ denote the collection of all graphs having at least one independent steiner dominating set. Let $G \in \zeta$. Then, the minimum cardinality among all independent steiner dominating set of G is called the independent steiner domination number of G. It is denoted by $I\gamma_s(G)$. An independent steiner dominating set of cardinality $I\gamma_s(G)$ is called an $I\gamma_s$ -set of G.

Example 2.3. Consider the graph G in Figure 1

Here, $W = \{v_1, v_2, v_5\}$ is the minimum steiner dominating set of G. Therefore, $\gamma_s(G) = 3$. But, the subgraph induced by W is not independent. Here, $\{v_1, v_3, v_5, v_7\}$ is a minimum independent steiner dominating set of G and hence $I\gamma_s(G) = 4$.

Observation 2.4. Let G be a connected graph. Then,

- (i). All graphs do not possess independent steiner dominating sets.
- (ii). For a complete graph on n vertices, the vertex set V(G) is the unique steiner dominating set. But it is not independent and so complete graphs have no independent steiner dominating sets.
- (iii). C_3, C_5 and C_7 have no independent steiner dominating set.

Observation 2.5. Let $G \in \zeta$. Then, the following are observed.

- (i). Every independent steiner dominating set is a steiner dominating set of G. Therefore, $2 \le \gamma_s(G) \le I\gamma_s(G) \le p$.
- (ii). Every extreme vertex of G belongs to every independent steiner dominating set of G.
- (iii). Let W be the set of all extreme vertices of G. If it is an independent steiner dominating set of G, then W is the unique minimum independent steiner dominating set of G.
- (iv). If G contains at least two adjacent extreme vertices, then G has no independent steiner dominating set.

Remark 2.6. Let G be a connected graph $G \in \zeta$. Clearly, every independent steiner dominating set of G is an independent dominating set of G. Therefore, the following are true:

- (i). $I\gamma_s(G) \geq i(G)$.
- (ii). If W is a minimum independent steiner dominating set of G, then V-W is a dominating set of G.

Theorem 2.7. Let G be a connected graph with p vertices. Let $G \in \zeta$. Then, $I\gamma_s(G) \leq p - \gamma(G)$.

Proof. Let W be a minimum independent steiner dominating set of G. By Remark 2.6 (ii), $\gamma(G) \leq |V - W|$. Therefore, $\gamma(G) \leq |V| - |W| = p - I\gamma_s(G)$. Therefore, $I\gamma_s(G) \leq p - \gamma(G)$.

Theorem 2.8. Let $G \in \zeta$ and let W be an independent steiner dominating set of G. If $\delta(G) \geq k$, then V - W is a k-dominating set of G. Further, $I\gamma_s(G) \leq p - \gamma_k(G)$.

Proof. Let $v \in W$. Then, W is independent and $\delta(G) \geq k$ imply that v is adjacent to at least k vertices of V-W. Therefore, V-W is a k-dominating set of G and $\gamma_k(G) \leq |V-W| = |V| - |W| \leq p - I\gamma_s(G)$. Therefore, $I\gamma_s(G) \leq p - \gamma_k(G)$.

Remark 2.9. Let G be a connected graph with $p(\geq 3)$ vertices. Then, $I\gamma_s(G) \leq \beta_0(G) = p - \alpha_0(G)$.

Theorem 2.10. Let $G \in \zeta$ be a connected graph with $p(\geq 3)$ vertices. Then, $I\gamma_s(G) = 2$ if and only if $\gamma_s(G) = 2$.

Proof. Suppose $I\gamma_s(G)=2$. Then, by Observation 2.5 (i), $2 \le \gamma_s(G) \le I\gamma_s(G)=2$. Therefore, $\gamma_s(G)=2$. Conversely, if $p \ge 3$ and $\gamma_s(G)=2$, then every minimum steiner dominating set is independent and so an independent steiner dominating set. Hence, $I\gamma_s(G) \le \gamma_s(G)=2$.

Theorem 2.11. For $n \geq 3$, $I\gamma_s(P_n) = \gamma_s(P_n)$.

Proof. Let $n \geq 3$ and $P_n = (v_1, v_2, ..., v_n)$. If $n \equiv 0 \pmod{3}$ or $n \equiv 1 \pmod{3}$ or $n \equiv 2 \pmod{3}$, then $W = \{v_1, v_4, ..., v_{n-2}, v_n\}$ or $W = \{v_1, v_4, ..., v_{n-3}, v_n\}$ or $W = \{v_1, v_4, ..., v_{n-2}, v_n\}$ is a minimum steiner dominating set of P_n . Also, W is independent. Therefore, $I\gamma_s(P_n) \leq \gamma_s(P_n)$. Hence, by Observation 2.5(i), $I\gamma_s(P_n) = \gamma_s(P_n)$.

Theorem 2.12. For $n \ge 4(n \ne 5, 7)$, $I\gamma_s(C_n) = \gamma_s(C_n) = \lceil \frac{n}{2} \rceil$.

Proof. Let $C_n = (v_1, v_2, ..., v_n, v_1)$.

Case (i): n = 4. In this case, every steiner dominating set is independent. Hence, $I\gamma_s(C_4) = \gamma_s(C_4) = 2$.

Case (ii): n > 4. By observation 2.4 (iii), it is enough to prove the theorem for $n \neq 5$ and 7. If $n \equiv 0 \pmod{3}$ or $n \equiv 1 \pmod{3}$ or $n \equiv 2 \pmod{3}$, then $W = \{v_1, v_4, ..., v_{n-2}\}$ or $W = \{v_1, v_3, v_6, v_9, ..., v_{n-4}, v_{n-2}\}$ or $W = \{v_1, v_4, ..., v_{n-4}, v_{n-1}\}$ is a minimum steiner dominating set of C_n . Also, W is independent implies, $I_{\gamma_s}(C_n) \leq \gamma_s(C_n)$. Therefore, by Observation 2.5 (i), $I_{\gamma_s}(C_n) = \gamma_s(C_n)$. Hence, by Theorem 1.7, for $n \geq 4 (n \neq 5, 7)$, $I_{\gamma_s}(C_n) = \gamma_s(C_n) = \lceil \frac{n}{3} \rceil$.

Theorem 2.13. The Wheel graph $W_{1,p}(p > 4)$, has no independent steiner dominating set.

Proof. Let p > 4, then $W = \{v_1, v_3, v_4, v_5, ..., v_{p-1}\}$ is the minimum steiner dominating set of $W_{1,p}$ and is not independent. Hence, the wheel graph $W_{1,p}$ where p > 4 has no independent steiner dominating set.

Observation 2.14. For the wheel graph $W_{1,p}$ where p=4, $I\gamma_s(W_{1,p})=\gamma_s(W_{1,p})=2$.

Theorem 2.15. Let $m, n \geq 2$. Then, $I\gamma_s(K_{m,n}) = min\{m, n\}$.

Proof. Let S and T be the bi partitions of $K_{m,n}$ with |S| = m and |T| = n. Let W be a minimum steiner dominating set of $K_{m,n}$. Then, by Theorem 1.1, W = S or T. Clearly, W is independent and so W is an independent steiner dominating set of $K_{m,n}$. Therefore, $I\gamma_s(K_{m,n}) = \gamma_s(K_{m,n}) = min\{m,n\}$.

Theorem 2.16. Let G be a connected graph on p vertices. Then, $G^+ \in \zeta$ and $I\gamma_s(G^+) = p$.

Proof. Let $V(G) = (v_1, v_2, ..., v_p)$ and $w_1, w_2, ..., w_p$ be the end vertices attached to $v_1, v_2, ..., v_p$ respectively in G^+ . Then, $W = \{w_1, w_2, ..., w_p\}$ is the unique minimum independent steiner dominating set of G^+ and so $I\gamma_s(G^+) = p$.

3. Upper Steiner Domination Number

Definition 3.1. A steiner dominating set W is said to be minimal steiner dominating set of G if no proper subset of W is a steiner dominating set of G. The maximum cardinality of all minimal steiner dominating sets of G is called the upper steiner domination number of G and is denoted by $\Gamma_s(G)$. A steiner dominating set of cardinality $\Gamma_s(G)$ is called a Γ_s -set of G.

Example 3.2. Consider the graph G in Figure 2. Here, $W = \{v_1, v_2, v_3, v_4, v_{11}, v_{12}, v_{13}\}$, $W_1 = \{v_1, v_2, v_3, v_5, v_6, v_7, v_{11}, v_{12}, v_{13}\}$ and $W_2 = \{v_1, v_2, v_3, v_8, v_9, v_{10}, v_{11}, v_{12}, v_{13}\}$ are the minimal γ_s -sets of G. Also, no subset T of V(G) is a γ_s -set of G if |T| < |W| or $|T| > |W_1| = |W_2|$. Therefore, W is a γ_s -set of G and W_1 and W_2 are Γ_s -sets of G. Hence, $\gamma_s(G) = 7$ and $\Gamma_s(G) = 9$.

Figure 2

Example 3.3. Consider the graph G in Figure 3.

Figure 3

Here, $W = \{v, u_3, v_3, w_3\}, W_1 = \{u_1, u_2, v_2, w_2, u_3, v_3, w_3\}, W_2 = \{v_1, u_2, v_2, w_2, u_3, v_3, w_3\}, W_3 = \{w_1, u_2, v_2, w_2, u_3, v_3, w_3\}$ are the minimal γ_s -sets of G. Also, no subset T of V(G) is a γ_s -set of G if |T| < |W| or $|T| > |W_1| = |W_2| = |W_3|$. Therefore, W is a γ_s -set of G and W_1, W_2 and W_3 are Γ_s -sets of G. Hence, $\gamma_s(G) = 4$ and $\Gamma_s(G) = 7$.

Example 3.4. Consider the graph $G = C_6$ in Figure 4. Here, $\{v_1, v_4\}, \{v_2, v_5\}$ and $\{v_3, v_6\}$ are the only γ_s -sets of G and are all minimum. Therefore, $\gamma_s(G) = \Gamma_s(G) = 2$.

Figure 4

Remark 3.5. Let G be a (p,q) connected graph. Then, $2 \le \gamma_s(G) \le \Gamma_s(G) \le p$. The above bounds are sharp. For, $\gamma_s(C_6) = \Gamma_s(C_6) = 2$ and $\gamma_s(K_p) = \Gamma_s(K_p) = p$. The above bounds are also strict. For example, consider the graph G in Example 3.2. We observe that, $V(G) = 13, \gamma_s(G) = 7$ and $\Gamma_s(G) = 9$. Hence, $2 < \gamma_s(G) < \Gamma_s(G) \le p$.

Remark 3.6. For a complete graph K_p on p vertices, $\gamma_s(K_p) = \Gamma_s(K_p) = p$.

Theorem 3.7. For the path $P_n, n \geq 3, \Gamma_s(P_n) = \lceil \frac{n}{2} \rceil$.

Proof. Let $V(P_n) = \{v_1, v_2, ..., v_n\}$. Let $W = \{v_1, v_3, ..., v_{n-2}, v_n\}$ when n is odd and $W' = \{v_1, v_3, ..., v_{n-3}, v_n\}$ when n is even. Clearly, W and W' are upper steiner dominating sets of P_n , in the corresponding cases. Therefore,

$$\Gamma_s(P_n) = \begin{cases}
|W| & \text{if n is odd} \\
|W'| & \text{if n is even}
\end{cases} = \lceil \frac{n}{2} \rceil.$$

Proof. Let $n \geq 6$ and $C_n = (v_1, v_2, ..., v_n, v_1)$. By Theorem 1.7, $\gamma_s(C_n) = \lceil \frac{n}{3} \rceil$. Now, $W = \{v_1, v_3, ..., v_{n-2}\}$ and $W' = \{v_1, v_3, ..., v_{n-1}\}$ are the upper steiner dominating sets of C_n according as n is odd or n is even and so

$$\Gamma_s(C_n) = \begin{cases}
|W| & \text{if n is odd} \\
|W'| & \text{if n is even}
\end{cases} = \lfloor \frac{n}{2} \rfloor.$$

It is easy to observe that, $\Gamma_s(C_3) = \gamma_s(C_3) = 2$, $\Gamma_s(C_4) = \gamma_s(C_4) = 2$ and $\Gamma_s(C_5) = \gamma_s(C_5) = 3$. Also by Lemma 1.5, for $n \ge 6$, $\Gamma_s(C_n) = \gamma_s(C_n)$ if and only if $\lceil \frac{n}{3} \rceil = \lfloor \frac{n}{2} \rfloor$ if and only if n = 7. Hence, $\Gamma_s(C_n) = \gamma_s(C_n)$ if and only if n = 3, 4, 5 or 7.

References

- [1] G. Chatrand and P. Zhang, The Steiner number of a graph, Discrete Math., 242(2002), 41-54.
- [2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs, Marcel Decker, Inc., New York, (1998).
- [3] J. John, G. Edwin and P. Paul Sudhahar, *The Steiner domination number of a graph*, International Journal of Mathematics and Computer Applications Researchs, 3(3)(2013), 37-42.
- [4] Ore and Berge, Theory of Graphs, American Mathematical Society, Colloquium Publications, XXXVIII(1962).
- [5] K. Palani, A. Nagarajan and A. Subramanian, Upper (G,D) Number of Some Standard Graphs, Outreach A Multi Disciplinary Refereed Journal, IV(2)(2010-2011), 37-40.
- [6] K. Ramalakshmi, K. Palani and T. Tamil Chelvam, Steiner Domination Number of Graphs, Proceedings of International Conference on Recent Trends in Mathematical Modelling, ISBN 13-978-93-82592-00-06, 128-134.
- [7] S.K. Vaidya and R.N. Mehta, Steiner domination number of some wheel related graphs, International journal of Mathematics and Soft Computing, 5(2)(2015), 15-19.