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Abstract: In this paper, the effects of viscous dissipation on an unsteady MHD viscous incompressible fluid flow past an impulsively

started infinite isothermal vertical plate in the presence of radiation has been presented. The fluid is considered gray,

absorbing-emitting radiation but a non-scattering medium. Thermal radiation effects are simulated via a radiation
parameter N , based on the Rossseland diffusion approximation. The momentum and thermal boundary layer equations

are non-dimensionalized using appropriate transformations and then solved numerically subject to physically realistic

boundary conditions by using the Ritz finite element method. The influence of physical parameters on the velocity
profiles (u), temperature distribution (θ), skin-friction (τ), and the Nusselt number (Nu) are presented with the help of

graphs and tables. The obtained results show that a decrease in the velocity and temperature as the radiation parameter is

increased. The velocity u is decreased as the magnetic parameter increases and increases with increasing Grashof number
and time parameter. The skin-friction increases with increase in the magnetic parameter and decreases with increasing

Grashof number and Eckert number.
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1. Introduction

The problem of radiative-convection flows has been studied for its important in many areas of technology and applied physics

including oxide melt materials processing, astrophysical fluid dynamics, plasma flows switch performance, MHD energy

pumps operating at very high temperatures and hypersonic aerodynamics. Bestman and Adjepong [1] studied unsteady

hydro-magnetic free-convection flow with radiative heat transfer in a rotating fluid. The radiation effects on transient free

convection heat transfer flow past a hot vertical surface in porous media by Laplace transform technique was reported by

Ghosh and Beg [2]. Thermal radiation effects on unsteady MHD free convection flow past a vertical plate with temperature

dependent viscosity was presented by Mohamoud [3]. Chandrakala and Raj [4] have studied the magneto-hydrodynamic flow

past an impulsively started infinite isothermal vertical plate in the presence of radiation by Laplace technique. Shanker [6]

have investigated the radiation and mass transfer effects on unsteady MHD free convective fluid flow embedded in a porous

medium with heat generation/absorption by finite element method. Finite element analysis of heat and mass transfer of

an unsteady MHD natural convection flow of a rotating fluid past a vertical porous plate in the presence of radiative heat

transfer was presented by Rao and Reddy [7]. MHD natural convection flow with radiative heat transfer past an impulsively
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moving plate with ramped wall temperature was studied by Seth [8]. Ghara [9] have presented the effects of radiation on

MHD free convection flow past an impulsively moving vertical plate with ramped wall temperature. The effects of radiation

on MHD flow thorough porous media past an impulsively started vertical plate with variable heat and mass transfer was

presented by Rajput and Kumar [10].

The viscous dissipation effect is expected to be relevant for fluids with high values of dynamic viscosity as for high velocity

flows. The viscous dissipation heat is important in the natural convective flows, when the field is of extreme size or at

extremely low temperature or in high gravitational field. Gebhart [11] has shown the importance of viscous dissipative

heat in free convection flow in the case of isothermal vertical plate with constant heat flux. Gebhart and Mollendorf [12]

considered the effects of viscous dissipation for external natural convection flow over a surface. The viscous dissipation heat

on the two-dimensional unsteady free convective flow past an infinite vertical porous plate when the temperature oscillates

in time and there is constant suction at the plate was reported by Soundalgekar [13]. The computational analysis of coupled

radiation-convection dissipation non-gray gas flow in a non-Darcy porous medium with the Keller-Box implicit difference

scheme was presented by Takhar [14]. Zueco [15] has investigated radiation and viscous dissipation effects on MHD unsteady

free convection over vertical porous plate by Network simulation method. Recently, Reddy [? ] presented mass transfer

effects on an unsteady MHD free convective flow of an incompressible viscous dissipative fluid past an infinite vertical porous

plate by finite element method.

The object of the present paper is to study unsteady MHD flow past an impulsively started infinite isothermal vertical

plate in the presence of radiation taking into account viscous dissipation effect. The problem is governed by the system of

non-linear partial differential equations, whose exact solutions are difficult to obtain, if possible. So that, the Ritz finite

element method has been adopted for its solution, which is more economical from a computational point of view. The

influence of the material parameter on the velocity field, temperature distribution, skin-friction and rate of heat transfer

have been presented and then discussed.

2. Mathematical Model

We consider unsteady magneto-hydrodynamic (MHD) flow of a viscous incompressible gray, absorbing-emitting fluid past

an impulsively started infinite isothermal vertical plate taking viscous dissipation into account. The coordinate system is

selected such that the x′−axis along the plate in the upward direction and the y′−axis is normal to the plate. The radiation

heat flux in the x′−direction is considered negligible as compared to that in the y′−direction. A transverse magnetic field

of uniform strength B0 is applied normal to the plate. The induced magnetic field is neglected in comparison to the applied

magnetic field. All the fluid properties are considered constant except the influence of density variation in the body force

term. Under the Boussinesq’s approximation, the unsteady boundary layer equations for momentum and energy (heat)

conservation under these approximations in non-dimensional form are:

∂u′

∂t′
= v

∂2u′

∂y′2
+ gβ

(
T ′ − T

′
∞

)
− σB2

0

ρ
u′ (1)

ρCp
∂T ′

∂t′
= k

∂2T ′

∂y′2
− ∂qr
∂y′

+ µ

(
∂u′

∂y′

)2

(2)

The appropriate boundary conditions at the wall and in the free stream are:

t′ ≤ 0; u′ = 0, T ′ = T
′
∞ for all y′ ≥ 0,

t′ > 0; u′ = u0, T ′ = T
′
w at y′ = 0,

u′ = 0, T ′ → T
′
∞ for y′ →∞

(3)
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where u′ is the velocity component along the plate, g is the acceleration due to gravity, ν is the kinematic coefficient of

viscosity, T ′ is the temperature of the fluid, T
′
∞ is the temperature of the fluid far away from the plate, ρ is the density, Cp

is the specific heat at constant pressure, k is the thermal conductivity, β is the volumetric coefficient of thermal expansion,

t′is the dimensional time, qr is the radiative heat flux, T
′
w is the temperature at the plate and u0is the velocity of the moving

plate. The radiation flux on the basis of Rossel and approximation can be expressed as:

qr = −4σ∗

3k∗
∂T ′4

∂y′
(4)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the spectral mean absorption coefficient of the medium. It is assumed

that the temperature differences within the flow are sufficient small such that T ′4can be expressed as the linear function of

temperatureT ′. It can be established by expanding T ′4 in a Taylor series about a free stream temperatureT
′
∞and neglecting

higher-order terms, we obtain T ′4 as

T ′4 ∼= 4T ′3∞T
′ − 3T ′4∞ (5)

By using equations (4) and (5), equation (2) reduces to

ρCp
∂T ′

∂t′
= k

∂2T ′

∂y′2
+

16σ∗T
′3
∞

3k∗
∂2T ′

∂y′2
+ µ

(
∂u′

∂y′

)2

(6)

Let us introduce the non-dimensional parameters:

u = u′

u0
, y = u0y

′

ν
, t =

u2
0t
′

ν
, θ =

T ′−T
′
∞

T
′
w−T

′
∞
, Pr =

µCp

k
, M =

σB2
0ν

u2
0
, Ec =

u2
0

Cp(T
′
w−T

′
∞)
, Gr =

gβν(T
′
w−T

′
∞)

u3
0

, N = k•k
4σT ′3∞

(7)

The governing system of equations (1) and (6) with the use of (7) is reduced to the following non-dimensional form:

∂u

∂t
= Grθ +

∂2u

∂y2
−Mu (8)

∂θ

∂t
=

1

Pr

(
1 +

4

3N

)
∂2θ

∂y2
+ Ec

(
∂u

∂y

)2

(9)

where u is the dimensionless velocity, t is the dimensionless time, y is the dimensionless distance, Gr is the Grashof number,

M is the magnetic parameter, θ is the dimensionless temperature, Pr is the Prandtl number, N is the radiation parameter

and Ec is the Eckert number. The corresponding boundary conditions in non-dimensional form are:

t ≤ 0; u = 0, θ = 0 for all y ≥ 0,

t > 0; u = 1, θ = 1 at y = 0,

u = 0, θ → 0 as y →∞

(10)

3. Solution of the Problem

By applying the Ritz finite element method to equation (8) over the element (e), (yj ≤ y ≤ yk), we have

J(e)(u) =
1

2

∫ yk

yj

{(
∂u(e)

∂y

)2

+Mu(e)2 + 2u(e) ∂u
(e)

∂t
− 2u(e)Grθ

}
dy = minimum (11)

Let

u(e) = ψj(y)uj(t) + ψk(y)uk(t) = ψjuj + ψkuk (12)
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be the linear piecewise approximation solution over the element, (e), (yj ≤ y ≤ yk), where uj , uk are the values of u at the

ends of the element (e) and ψj , ψk are the basis functions defined as:

ψj =
yk − y
yk − yj

, ψk =
y − yj
yk − yj

.

For the minimum, ∂J(e)

∂u(e) = 0. Using equation (12) in (11), we obtain the element equation

∫ yk

yj

 ψ
′
jψ
′
j ψ

′
jψ
′
k

ψ
′
kψ
′
j ψ

′
kψ
′
k


 uj

uk

 dy +M

∫ yk

yj

 ψjψj ψjψk

ψkψj ψkψk


 uj

uk

 dy
+

∫ yk

yj

 ψjψj ψjψk

ψkψj ψkψk


 u•j
u•k

 dy −Grθ ∫ yk

yj

 ψj

ψk

 dy = 0

(13)

where the prime and the dot denotes the differentiation with respect to y and t, respectively. Simplification of Equation

(13) yields

1

l(e)

 1 −1

−1 1


 uj

uk

+
Ml(e)

6

 2 1

1 2


 uj

uk

+
l(e)

6

 2 1

1 2


 u•j
u•k

−Grθ l(e)
2

 1

1

 = 0 (14)

In order to get the difference equation at the node i, we write the element equations for two consecutive elements yi−1 ≤ y ≤ yi

and yi ≤ y ≤ yi+1 and assembling the resulting element equations, we get

1

l(e)


1 −1 0

−1 2 −1

0 −1 1



ui−1

ui

ui+1

+
Ml(e)

6


2 1 0

1 4 1

0 1 2



ui−1

ui

ui+1

+
l(e)

6


2 1 0

1 4 1

0 1 2



u•i−1

u•i

u•i+1

 = Grθ
l(e)

2


1

2

1

 (15)

Put row corresponding to the node i to zero in equation (15), we obtain the following difference schemes with l(e) = yk−yj =

h,

(u•i−1 + 4u•i + u•i+1) =
1

h2
(6−Mh2)(ui−1 + ui+1) +

1

h2
(12 + 4Mh2)ui + 6Grθ (16)

Applying the trapezoidal rule to equation (16), the following system of equations in the Crank-Nicholson method are

obtained:

(1− 3r +
1

2
rMh2)uj+1

i−1 + (4 + 6r + 2rMh2)uj+1
i + (1− 3r +

1

2
rMh2)uj+1

i+1 = Ωj1i (17)

Similarly applying the same procedure to equation (9), we obtain

(P1 − 3r)θj+1
i−1 + (4P1 + 6r)θj+1

i + (P1 − 3r)θj+1
i+1 = Ωj2i (18)

where

Ωj1i = (1 + 3r − 1

2
rMh2)uji−1 + (4− 6r − 2rMh2)uji + (1 + 3r − 1

2
rMh2)uji+1 + 6kGrθ

j
i

Ωj2i = (P1 − 3r)θji−1 + (4P1 + 6r)θji + (P1 − 3r)θJi+1 + 6rEcPr(u
j+1
i − uji )

2 and P1 =
3NPr

3N + 4
.

Here, r = k
h2

and h, k are mesh sizes along y−direction and time t−direction, respectively. Index i refers to the space and

j refers to the time. In the equations (17) and (18), taking i = 1(1)n and using boundary conditions (10), the following

tri-diagonal systems of equations are obtained:

Au = A′

Bθ = B′
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where Aand Bare tridiagonal matrices of order - n and whose elements are given by

ai,i = 4 + 6r + 2rMh2; bi,i = 4P1 + 6r; i = 1(1)n

ai−1,j = ai,j−1 = 1− 3r +
1

2
rMh2; bi−1,j = bi.j−1 = P1 − 3r; i = 2(1)n

Here u, θ and A′, B′ are the column matrices having n-components uj+1
i , θj+1

i and uji , θ
j
i respectively. The above tri-diagonal

system equations are solved by using Thomas algorithm. The boundary condition y → ∞ is approximated by ymax = 10,

which is sufficiently large for the velocity to approach convergence criterion. The numerical computations have been carried

out for the velocity and temperature fields by using C−program. To judge the convergence and stability of the Ritz finite

element method, the same program was run with slightly changed values of h and k, no significant change was observed

in the values of velocity u and temperature θ. Hence, we conclude that the Ritz finite element method is convergent and

stable.

The skin-friction at the plate in the direction of the flow is given by τ =
(
du
dy

)
y=0

.

The rate of heat transfer in terms of Nusselt number is given by Nu = −
(
dθ
dy

)
y=0

.

4. Results and Discussion

To achieve a perspective of the physics of the fluid flow, we have computed numerical values for velocity profiles (u),

temperature distribution (θ), skin-friction (τ) and Nusselt number (Nu) for variations in the material parameters encountered

in the problem. The computed numerical results are presented through the graphs and tables. These results show the effect

of the material parameters on the quantities mentioned.

Temperature distribution: In Fig.1 we have plotted the temperature distribution for Pr = 0.71, as corresponds to

air and Pr = 7.00, as corresponds to water at room temperature and one atmosphere pressure, highlighting the effect of

radiation at timet = 1.0. It is observed that a decrease in the temperature and the temperature boundary layer as the

radiation parameter N is increased and also as the Prandtl number Pr increases. The temperature is observed to decrease

steeply and exponentially away from the plate. Fig.2 displays the effects of Eckert number (Ec) and time parameter (t)

on the temperature profiles. It is seen that there is a rise in the temperature with increase in the Eckert number and the

time parameter. Also, we notice that the temperature increased markedly as the time parameter increased. This trend is

maintained at all locations in the flow regime.

Velocity Profiles: The effects of radiation parameter N on the velocity field u are presented in Figure 3 at time t = 1.0.

As radiation parameter N increases from 3.0 to 5.0 and then 10.0, we observe that the velocity u decreases. Deceleration of

the flow is therefore sustained at considerable distance from the plate towards the free stream as the radiation parameter

is increased. The profiles decay monotonically for all values of N from the maximum at the plate to its minimum in the

free stream. Figure 4 depicts the effects of Eckert number Ec on the velocity field u at time t = 1.0. It can be seen that

the velocity of the fluid increases with increasing value of the Eckert number. We have plotted the velocity u in Figure 5

for variations in the magnetic parameter M at time t = 1.0. It is observed that the fluid velocity decreases as the magnetic

parameter increases. Physically, this is due to the magnetic field exerts a retarding force on the free convective flow. In

Figure 6 we have studied the effect of buoyancy via Grashof number (Gr) on the velocity field u at a time t = 1.0. The

fluid velocity increases consistently, as the Grashof number Gr increased from 2.0 to 3.0 and then 4.0. The fluid flow is

accelerated due to the enhancement in buoyancy forces corresponding to an increase in Grashof number i.e., free convection

effects. Here, the positive values of Gr corresponds to cooling of the plate by natural convection. For large value of Gr

(i.e. 4) there is an over-shoot near the moving plate (at∼ 0.8) after which the velocity descends smoothly to its minimum,
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in the free stream. Fig.7 shows the effects of the time parameter (t) on the velocity profiles. It is clear that there is a

reasonable increase in the velocity field with increasing time parameter. With time the fluid flow is therefore accelerated

in the upward direction. Also, we observe that beyond about t = 8.0, the flow attains steady state condition with the flow

velocity increasing with increase in the time parameter up to this point.

Skin-friction: The numerical values of the skin-friction (τ) for variations in the material parameters are presented in table

1 and 2. From table 1, it is seen that the skin-friction increases with increasing radiation parameter and decreases with an

increase in the Grashof number and time parameter. From table 2, we observe that an increase in the magnetic parameter

increases the skin-friction and with increasing Eckert number and time parameter decreases the skin-friction.

Nusselt number: The numerical values of the heat transfer coefficient in terms of Nusselt number (Nu) are presented in

table 3. It is observed that an increase in the Prandtl number and radiation parameter increases in the Nusselt number

whereas an increase in the Eckert number and time parameter decreases the Nusselt number. Also, we notice that the rate

of heat transfer is more for water than air.

Figure 1. Effects of Pr and N on temperature profiles at t = 1.0

Figure 2. Effects of Ec and time t on temperature profiles.
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Figure 3. Effect of radiation parameter (N) on the velocity profiles at t = 1.0.

Figure 4. Effect of Eckert number (Ec) on the velocity profiles at t = 1.0.

Figure 5. Effect of magnetic parameter (M) on the velocity profiles at t = 1.0.
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Figure 6. Effect of Grashof number (Gr) on the velocity profiles at t = 1.0.

Figure 7. Effect of time parameter (t) on the velocity profiles.

N Gr = 2.0; t = 1.0 Gr = 2.0; t = 2.0 Gr = 3.0; t = 1.0 Gr = 3.0; t = 2.0

3 0.346598 0.233168 0.003580 - 2.166262

5 0.364358 0.247446 0.030202 - 0.144824

10 0.379888 0.260090 0.053488 - 0.125856

Table 1. Effects of N,Grand time ton the skin-friction (τ).

Ec M = 2.0; t = 1.0 M = 2.0; t = 2.0 M = 3.0; t = 1.0 M = 3.0; t = 2.0

0.1 0.346598 0.233168 0.617520 0.547204

0.3 0.338216 0.224644 0.611620 0.541586

0.5 0.329906 0.216302 0.605760 0.536054

Table 2. Effects of Ec,M and time t on the skin-friction (τ).
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Pr Ec N = 3.0; t = 1.0 N = 3.0; t = 2.0 N = 5.0; t = 1.0 N = 5.0; t = 2.0

0.71

0.1 0.303560 0.218088 0.324314 0.232970

0.3 0.289048 0.206608 0.309312 0.220928

0.5 0.274866 0.195594 0.294622 0.209346

7.00
0.1 0.867646 0.609552 0.925982 0.655286

0.3 0.737026 0.457394 0.802946 0.505218

0.5 0.604458 0.313998 0.677604 0.361288

Table 3. Effects of Pr, Ec, N and time t on the Nusselt number (Nu).

5. Conclusions

The boundary layer equations of the flow have been examined for the effects of viscous dissipation on MHD flow past an

impulsively started infinite isothermal vertical plate in the presence of radiation. We conclude that

(1). The velocity of a fluid flow increases with increase in the Eckert number, Grashof number and time parameter and

decreases with increase in the magnetic parameter and radiation parameter.

(2). The flow attains steady state condition with the flow velocity increasing with increase in the time parameter (Figure

7).

(3). There is fall in the temperature due to the increase in the Prandtl number and the radiation parameter.

(4). There is a rise in the temperature as the Eckert number and time parameter increases.

(5). The skin-friction decreases with increasing Grashof number, Eckert number and time parameter and increases with

increase in the magnetic parameter and radiation parameter.

(6). The Nusselt number increases with increase in the Prandtl number and radiation parameter and decreases with Eckert

number and time parameter.
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