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Abstract: In this paper, we discussed a Non-Markovian batch arrival general bulk service single server queueing system with server’s
breakdown and second optional repair, stand-by server, balking, variant arrival rate and multiple vacation. The main

server’s service time, vacation time, stand-by server’s service time are all follows general distributions and breakdown and

two types of repair time for main server follows exponential distributions. There is a stand-by server which is employed
during the period for which the regular server remains under repair. The probability generating function of queue size
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1. Introduction

The concept of bulk arrivals and bulk services has picked up a huge importance in present situations. Bulk queueing systems

have been studied by several authors including Neuts (1967) and Chaudhry and Templeton (1983). Recently, Sasikala and

Indhira (2016) provided a survey of the bulk service queueing models. The general bulk service rule states that the server

will start to provide services only when at least ′a′ units are present in the queue, and maximum service capacity is ′b′. When

the server could not be repaired or reestablished by the principal basic repair, the next repairs are expected to reestablish

the server. Ayyappan and shyamala (2013) investigated batch arrival queue with second optional repair. Balamani (2014)

has discussed a two stage batch arrival queue with compulsory server vacation and second optional repair.

For balancing the real time system’s efficiency and availability, the queueing models with stand-by’s support have become

worth mentioning as far as the analysis of queueing modelling study is concerned. The provision of stand-by’s and repairmen

support to the queueing system maintains smooth functioning of the system. In the field of computer and communication

systems, distribution and service systems, production/manufacturing systems etc., the applications of queueing models with

standby’s support is essential. Mok et al. (1987) has studied a transient queueing model for business office with standby

servers. Khalaf et al (2012), Preeti et al (2014), Kamlesh Kumar et al (2013) have discussed a standby server queueing

models with a combination of vacation. In this work, we studied a batch arrival general bulk service queuing system with
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active breakdown and second optional repair, balking, variant arrival rate, multiple vacation with an additional significant

assumption that the system employs a standby server during the repair period of the main server.

This paper is organised as follows. In section 2 the queuing problem is defined. The system equations have been developed in

sections 3. The probability generating function (PGF) of the queue length distribution in steady state is obtained in section

4. Various performance measures of the queuing system are derived in section 5. A computational study is illustrated in

section 6. Conclusions are given in section 7.

2. Model description

This paper deals with a queueing model whose arrival follows a compound Poisson process with intensity rate λ1, λ2, λ3

during main server in the system, stand-by in the system, main server is in vacation respectively. The main server’s service

time, vacation time, stand-by server’s service time are all follows general distributions, breakdown and two repair times of

main server follows exponential distributions with rate α, η1, and η2 respectively. Customers balking during main server

and stand-by server’s busy period with probability ω, no balking with probability (1−ω). The main server may breakdown

at any time during service with exponential rate α and in such a case the main server immediately goes for a repair which

follows an exponential distribution with rate η1 after the first repair completion the main server go to second repair which

is optional with probability ε and the repair rate η2. The interrupted batch service is exchanged to the stand-by server who

starts service to that batch afresh. The stand-by server remain in the system until the main server’s repair’s completion.

At the instant of repair completion, if the stand-by server is busy then the service to that batch of customers is interrupted

and that batch of customers is transferred to the main server who starts service to that batch of customers afresh. At the

instant of the completion of a service (served by main server) or the main server’s repair completion, number of customers

in the queue is less than a the server will avail a vacation of a random length. The server takes a sequence of vacation until

the queue size reaches at least a.

2.1. Notations

Let X be the group size random variable of arrival, gk be the probability of ‘k’ customers arrive in a batch and X(z) be its

PGF. Sb(.), Ss(.) and V (.) represent the Cumulative Distribution Functions (CDF) of service time of main server, service

time of stand-by server and vacation time of main server with corresponding probability density functions are sb(x), ss(x)

and v(x) respectively. S0
b (t), S0

s (t) and V (0)(t) represent the remaining service time of service given by main server, service

given by stand-by server and remaining vacation time of main server at time ‘t’ respectively. S̃b(θ), S̃s(θ) and Ṽ (θ) represent

the Laplace Stieltjes transform (LST) of Sb, Ss, and V respectively. For the further development of the queueing system,

let us define the following.

ε(t) = 1, 2, 3, and 4 at time t the main server is in service, vacation and the stand-by server is in service, idle respectively.

Z(t) = j, if the server is on the jth vacation.

Ns(t)=Number of customers in service station at time t.

Nq(t)=Number of customers in the queue at time t.

Define the probabilities

Tn(t)∆t = Pr{Nq(t) = n, ε(t) = 4}, 0 ≤ n ≤ a− 1,

Pm,n(x, t)∆t = Pr{Ns(t) = m, Nq(t) = n, x ≤ S0
b (t) ≤ x+ ∆t, ε(t) = 1}, a ≤ m ≤ b, n ≥ 0,

Bm,n(x, t)∆t = Pr{Ns(t) = m, Nq(t) = n, x ≤ S0
s (t) ≤ x+ ∆t, ε(t) = 3}, a ≤ m ≤ b, n ≥ 0,
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Ql,j(x, t)∆t = Pr{Z(t) = l, Nq(t) = j, x ≤ V 0(t) ≤ x+ ∆t, ε(t) = 2}, l ≥ 1, j ≥ 0.

3. Queue Size Distribution

From the above-defined probabilities we can easily construct the following steady state equations

(λ2 + η1 + η2)T0 =

b∑
m=a

Bm,0(0) + εη1T0, (1)

(λ2 + η1 + η2)Tn =

b∑
m=a

Bm,n(0) + εη1T0 +

n∑
k=1

Tn−kλgk, 1 ≤ n ≤ a− 1, (2)

−P
′
i,0(x) = −(λ1 + α)Pi,0(x) +

b∑
m=a

Pm,i(0)sb(x) + η2

∫ ∞
0

Bi,0(y) dysb(x)

+ η1(1− ε)
∫ ∞
0

Bi,0(y) dysb(x) +

∞∑
l=1

Ql,i(0)sb(x) + ωλ1Pi,0(x), a ≤ i ≤ b, (3)

−P
′
i,j(x) = −(λ1 + α)Pi,j(x) + ωλ1Pi,j(x) + η1(1− ε)

∫ ∞
0

Bi,j(y) dysb(x)

+ η2

∫ ∞
0

Bi,j(y) dysb(x) + (1− ω)

j∑
k=1

Pi,j−k(x)λ1gk, j ≥ 1, a ≤ i ≤ b− 1, (4)

−P
′
b,j(x) = −(λ1 + α)Pb,j(x) +

b∑
m=a

Pm,b+j(0)sb(x) + ωλ1Pb,j(x)

+ η1(1− ε)
∫ ∞
0

Bb,j(y) dysb(x) + η2

∫ ∞
0

Bb,j(y) dysb(x)

+

∞∑
l=1

Ql,b+j(0)sb(x) + (1− ω)

j∑
k=1

Pb,j−k(x)λ1gk, j ≥ 1, (5)

−B
′
i,0(x) = −(λ2 + η1 + η2)Bi,0(x) +

b∑
m=a

Bm,i(0)ss(x) + εη1Bi,0(x)

+ α

∫ ∞
0

Pi,0(y) dyss(x) +

a−1∑
k=0

Tkλ2gi−kss(x) + ωλ2Bi,0(x), a ≤ i ≤ b, (6)

−B
′
i,j(x) = −(λ2 + η1 + η2)Bi,j(x) + α

∫ ∞
0

Pi,j(y) dyss(x) + εη1Bi,j(x)

+ (1− ω)

j∑
k=1

Bi,j−k(x)λ2gk + ωλ2Bi,j(x), j ≥ 1, a ≤ i ≤ b− 1, (7)

−B
′
b,j(x) = −(λ2 + η1 + η2)Bb,j(x) +

b∑
m=a

Bm,b+j(0)ss(x) + ωλ2Bb,j(x)

+ (1− ω)

j∑
k=1

Bb,j−k(x)λ2gk + α

∫ ∞
0

Pb,j(y) dy ss(x) + εη1Bb,j(x)

+

a−1∑
k=0

Tkλ2gb+j−kss(x), j ≥ 1, (8)

−Q
′
1,0(x) = −λ3Q1,0(x) +

b∑
m=a

Pm,0(0)v(x) + η2T0v(x) + (1− ε)η1T0v(x), (9)

−Q
′
1,n(x) = −λ3Q1,n(x) +

b∑
m=a

Pm,n(0)v(x) + η2Tnv(x) + (1− ε)η1Tnv(x)

+

n∑
k=1

Q1,n−k(x)λ3gk, 1 ≤ n ≤ a− 1, (10)

,−Q
′
1,n(x) = −λ3Q1,n(x) +

n∑
k=1

Q1,n−k(x)λ3gk, n ≥ a, (11)

−Q
′
j,0(x) = −λ3Qj,0(x) +Qj−1,0(0)v(x), j ≥ 2, (12)
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−Q
′
j,n(x) = −λ3Qj,n(x) +Qj−1,n(0)v(x) +

n∑
k=1

Qj,n−k(x)λ3gk, j ≥ 2, 1 ≤ n ≤ a− 1, (13)

−Q
′
j,n(x) = −λ3Qj,n(x) +

n∑
k=1

Qj,n−k(x)λ3gk, j ≥ 2, n ≥ a. (14)

Taking LST on both sides of equations (3) to (14), we get,

θP̃i,0(θ)− Pi,0(0) = (λ1 + α)P̃i,0(θ)−
b∑

m=a

Pm,i(0)S̃b(θ)− ωλ1P̃i,0(θ)−
∞∑
l=1

Ql,i(0)S̃b(θ)

− η1(1− ε)
∫ ∞
0

Bi,0(y) dyS̃b(θ)− η2
∫ ∞
0

Bi,0(y) dyS̃b(θ), a ≤ i ≤ b, (15)

θP̃i,j(θ)− Pi,j(0) = (λ1 + α)P̃i,j(θ)− ωλ1P̃i,j(θ)− η2
∫ ∞
0

Bi,j(y) dyS̃b(θ)− η1(1− ε)
∫ ∞
0

Bi,j(y) dyS̃b(θ)

− (1− ω)

j∑
k=1

P̃i,j−k(θ)λ1gk, j ≥ 1, a ≤ i ≤ b− 1, (16)

θP̃b,j(θ)− Pb,j(0) = −(λ1 + α)P̃b,j(θ)−
b∑

m=a

Pm,b+j(0)S̃b(θ)− ωλ1P̃b,j(θ)− η1(1− ε)
∫ ∞
0

Bb,j(y) dyS̃b(θ)

− η2
∫ ∞
0

Bb,j(y) dyS̃b(θ)−
∞∑
l=1

Ql,b+j(0)S̃b(θ)− (1− ω)

j∑
k=1

P̃b,j−k(θ)λ1gk, j ≥ 1, (17)

θB̃i,0(θ)−Bi,0(0) = (λ2 + η1 + η2)B̃i,0(θ)−
b∑

m=a

Bm,i(0)S̃s(θ)− εη1B̃i,0(θ)− α
∫ ∞
0

Pi,0(y) dyS̃s(θ)

−
a−1∑
k=0

Tkλ2gi−kS̃s(θ)− ωλ2B̃i,0(θ), a ≤ i ≤ b, (18)

θB̃i,j(θ)−Bi,j(0) = (λ2 + η1 + η2)B̃i,j(θ)− α
∫ ∞
0

Pi,j(y) dy S̃s(θ)− εη1B̃i,j(θ)− (1− ω)

j∑
k=1

B̃i,j−k(θ)λ2gk

− ωλ2B̃i,j(θ), j ≥ 1, a ≤ i ≤ b− 1, (19)

θB̃b,j(θ)−Bb,j(0) = (λ2 + η1 + η2)B̃b,j(θ)−
b∑

m=a

Bm,b+j(0)S̃s(θ)− ωλ2B̃b,j(θ)− (1− ω)

j∑
k=1

B̃b,j−k(θ)λ2gk

− α
∫ ∞
0

Pb,j(y) dy S̃s(θ)− εη1B̃b,j(θ)−
a−1∑
k=0

Tkλ2gb+j−kS̃s(θ), j ≥ 1, (20)

θQ̃1,0(θ)−Q1,0(0) = λ3Q̃1,0(θ)−
b∑

m=a

Pm,0(0)Ṽ (θ)− (1− ε)η1T0Ṽ (θ − η2T0Ṽ (θ), (21)

θQ̃1,n(θ)−Q1,n(0) = λ3Q̃1,n(θ)−
b∑

m=a

Pm,n(0)Ṽ (θ)− (1− ε)η1TnṼ (θ)− η2TnṼ (θ)

−
n∑

k=1

Q̃1,n−k(θ)λ3gk, 1 ≤ n ≤ a− 1, (22)

θQ̃1,n(θ)−Q1,n(0) = λ3Q̃1,n(θ)−
n∑

k=1

Q̃1,n−k(θ)λ3gk, n ≥ a, (23)

θQ̃j,0(θ)−Qj,0(0) = λ3Q̃j,0(θ)−Qj−1,0(0)Ṽ (θ), j ≥ 2, (24)

θQ̃j,n(θ)−Qj,n(0) = −λ3Q̃j,n(θ)−Qj−1,n(0)Ṽ (θ)−
n∑

k=1

Q̃j,n−k(θ)λ3gk, j ≥ 2, 1 ≤ n ≤ a− 1, (25)

θQ̃j,n(θ)−Qj,n(0) = λ3Q̃j,n(θ)−
n∑

k=1

Q̃j,n−k(θ)λ3gk, j ≥ 2, n ≥ a. (26)
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4. System Size Distribution

To find the Probability Generating Function (PGF) for queue size, we define the following PGF’s

P̃i(z, θ) =

∞∑
j=0

P̃i,j(θ)z
j , Pi(z, 0) =

∞∑
j=0

Pi,j(0)zj , a ≤ i ≤ b,

B̃i(z, θ) =

∞∑
j=0

B̃i,j(θ)z
j , Bi(z, 0) =

∞∑
j=0

Bi,j(0)zj , a ≤ i ≤ b, (27)

Q̃l(z, θ) =

∞∑
j=0

Q̃l,j(θ)z
j Ql(z, 0) =

∞∑
j=0

Ql,j(0)zj , l ≥ 1.

By multiplying Equations (15) to (26) with suitable power of zj and summing over j (j = 0 to∞), and using Equation (27),

we get,

(θ − u(z))P̃i(z, θ) = Pi(z, 0)− S̃b(θ)
[ b∑
m=a

Pm,i(0) +

∞∑
j=0

Ql,i(0) + ηB̃i(z, 0)
]
, a ≤ i ≤ b− 1, (28)

zb(θ − u(z))P̃b(z, θ) = (zb − S̃b(θ))Pb(z, 0)− S̃b(θ)
[ b−1∑
m=a

Pm(z, 0) +

∞∑
l=1

Ql(z, 0) + zbηB̃b(z, 0)

−
b−1∑
j=0

( b∑
m=a

Pm,j(0)zj +

∞∑
l=1

Ql,j(0)zj
)]
, (29)

(θ − v(z))B̃i(z, θ) = Bi(z, 0)− S̃s(θ)
[
αP̃i(z, 0) +

b∑
m=a

Bm,i(0) +

a−1∑
k=0

Tkλ2gi−k

]
, a ≤ i ≤ b− 1, (30)

zb(θ − v(z))B̃b(z, θ) = (zb − S̃s(θ))Bb(z, 0)− S̃s(θ)
[ b−1∑
m=a

Bm(z, 0) + zbαP̃b(z, 0)−
b−1∑
j=0

b∑
m=a

Bm,j(0)zj

+ λ2

a−1∑
k=0

∞∑
j=b

Tkz
kgj−kz

j−k
]
, (31)

(θ − w(z))Q̃1(z, θ) = Q1(z, 0)− Ṽ (θ)

a−1∑
n=0

[ b∑
m=a

Pm,n(0)zn + ηTnz
n
]
, (32)

(θ − w(z))Q̃j(z, θ) = Qj(z, 0)− Ṽ (θ)

a−1∑
n=0

Qj−1,n(0)zn, j ≥ 2, (33)

where u(z) = α+λ1(1−ω)(1−X(z)), v(z) = η+λ2(1−ω)(1−X(z)), w(z) = λ3−λ3X(z), η = ((1− ε)η1 + η2). Substitute

θ = u(z) in (28) and (29), we get,

Pi(z, 0) = S̃b(u(z))
[ b∑
m=a

Pm,i(0) +

∞∑
l=1

Ql,i(0) + ηB̃i(z, 0)
]
, a ≤ i ≤ b− 1, (34)

Pb(z, 0) =
S̃b(u(z))

(zb − S̃b(u(z)))

[ b−1∑
m=a

Pm(z, 0) +
∞∑
l=1

Ql(z, 0) + zbηB̃b(z, 0)−
b−1∑
j=0

( b∑
m=a

Pm,j(0)zj +

∞∑
j=0

Ql,j(0)zj
)]
, (35)

Substitute θ = v(z) in (30) and (31), we get,

Bi(z, 0) = S̃s(v(z))
[
αP̃i(z, 0) +

b∑
m=a

Bm,i(0) +

a−1∑
k=0

Tkλ2gi−k

]
, a ≤ i ≤ b− 1, (36)

Bb(z, 0) =
S̃s(v(z))

(zb − S̃s(v(z)))

[ b−1∑
m=a

Bm(z, 0) + zbαP̃b(z, 0) + λ2

a−1∑
k=0

∞∑
j=b

Tkz
kgj−kz

j−k −
b−1∑
j=0

b∑
m=a

Bm,j(0)zj
]
, (37)

Substitute θ = w(z) in (32) and (33), we get,

Q1(z, 0) = Ṽ (w(z))

a−1∑
n=0

[ b∑
m=a

Pm,n(0)zn + ηTnz
n
]
, (38)

149



An M [X]/G(a, b)/1 Queueing System with Breakdown and Second Optional Repair, Stand-by Server, Balking, Variant Arrival Rate and
Multiple Vacation

Qj(z, 0) = Ṽ (w(z))

a−1∑
n=0

Qj−1,n(0)zn, j ≥ 2. (39)

Substitute the equations (34) to (39) in equations (28) to (33) after simplification, we get,

(θ − u(z))P̃i(z, θ) = (S̃b(u(z))− S̃b(θ))
[ b∑
m=a

Pm,i(0) +

∞∑
j=0

Ql,i(0) + ηB̃i(z, 0)
]
, a ≤ i ≤ b− 1, (40)

(θ − u(z))P̃b(z, θ) =
(S̃b(u(z))− S̃b(θ))

(zb − S̃b(u(z)))

[ b−1∑
m=a

Pm(z, 0) +

∞∑
l=1

Ql(z, 0) + zbηB̃b(z, 0)

−
b−1∑
j=0

( b∑
m=a

Pm,j(0)zj +

∞∑
j=0

Ql,j(0)zj
)]
, (41)

(θ − v(z))B̃i(z, θ) = (S̃s(v(z))− S̃s(θ))
[
αP̃i(z, 0) +

b∑
m=a

Bm,i(0) +

a−1∑
k=0

Tkλ2gi−k

]
, a ≤ i ≤ b− 1, (42)

(θ − v(z))B̃b(z, θ) =
(S̃s(v(z))− S̃s(θ))

(zb − S̃s(v(z)))

[ b−1∑
m=a

Bm(z, 0) + zbαP̃b(z, 0) + λ2

a−1∑
k=0

∞∑
j=b

Tkz
kgj−kz

j−k

−
b−1∑
j=0

b∑
m=a

Bm,j(0)zj
]
, (43)

(θ − w(z))Q̃1(z, θ) = (Ṽ (w(z))− Ṽ (θ))

a−1∑
n=0

[ b∑
m=a

Pm,n(0)zn + ηTnz
n
]
, (44)

(θ − w(z))Q̃j(z, θ) = (Ṽ (w(z))− Ṽ (θ))

a−1∑
n=0

Qj−1,n(0)zn, j ≥ 2. (45)

5. Probability Generating Function of Queue Size

5.1. The PGF of the queue size at an arbitrary time epoch

Let P (z) be the PGF of the queue size at an arbitrary time epoch. Then,

P (z) =
b∑

i=a

P̃i(z, 0) +
b∑

i=a

B̃i(z, 0) +
∞∑
l=1

Q̃l(z, 0) + T (z). (46)

By substituting θ = 0 in equations (40) to (45) then equation (46) becomes

P (z) =

K1(z)

b−1∑
i=a

(zb − zi)ci +K2(z)

b−1∑
i=a

(zb − zi)di + (1− Ṽ (w(z)))K3(z)

a−1∑
n=0

cnz
n

+
[
η[Y1(z)− Ṽ (w(z))K3(z)]− v1(z)K2(z) + w(z)Y1(z)

] a−1∑
k=0

Tkz
k

w(z)Y1(z)

(47)

where

pi =

b∑
m=a

Pm,i(0), vi =

∞∑
l=1

Ql,i(0), qi =

b∑
m=a

Bm,i(0), ci = pi + vi, and di = qi +

a−1∑
k=0

Tkλ2gi−k

and the expressions for K1(z), K2(z), K3(z), v1(z) and Y1(z) are defined in Appendix-I.

5.2. Steady state condition

The probability generating function has to satisfy P (1) = 1. In order to satisfy this condition applying L’ Hopital’s rule

and evaluating lim
z→1

P (z), then equating the expression to 1, we have, H = (−λ3X1)E1, where the expressions H and E1 are
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defined in Appendix-II. Since ci, di and Ti are probabilities of ′i′ customers being in the queue, it follows that H must be

positive. Thus P (1) = 1 is satisfied iff (−λ3X1)E1 > 0. If

ρ =
(1− ω)X1(αλ2 + ηλ1)(1− S̃b(α))(1− S̃s(η))

bαη[S̃b(α)(1− S̃s(η)) + S̃s(η)(1− S̃b(α))]

then ρ < 1 is the condition for the existence of steady state for the model under consideration.

5.3. Computational aspects

Equation (47) has 2b unknowns c0, c1, ..., cb−1, da, ..., db−1, and T0, T1, ..., Ta−1. Now equation (47) gives the PGF of the

number of customers involving only 2b unknowns. By Rouche’s theorem, it can be proved that Y1(z) has 2b− 1 zeros inside

and one on the unit circle |z| = 1. Since P (z) is analytic within and on the unit circle, the numerator must vanish at these

points, which gives 2b equations in 2b unknowns. We can solve these equations by any suitable numerical technique.

5.4. Particular case

When there is no breakdown, no balking and λ1 = λ2 = λ3 = λ then equation (47) reduces to

P (z) =

(S̃b(w(z))− 1)
b−1∑
i=a

(zb − zi)ci + (zb − 1)(Ṽ (w(z))− 1)
a−1∑
n=0

cnz
n

(−w(z))(zb − S̃b(w(z)))

(48)

which coincides with the PGF of Senthilnathan et al. (2012) without closedown.

PGF of queue size at main server’s service completion epoch: The probability generating function of main server’s

service completion epoch M(z) is obtained from the equations (40) and (41)

M(z) =

(1− S̃b(u(z)))
[
zbv(z)(zb − S̃s(v(z)))

b−1∑
i=a

ci + z2bη(1− S̃s(v(z)))

b−1∑
i=a

di

+ v(z)(zb − S̃s(v(z)))
(
Ṽ (w(z))

a−1∑
n=0

(pn + ηTn + vn)zn −
b−1∑
i=0

cjz
j
)

+ zbη(1− S̃s(v(z)))
( ∞∑

j=b

a−1∑
k=0

Tkz
kλ2gj−kz

j−k −
b−1∑
j=0

qjz
j
)]

Y1(z)

(49)

PGF of queue size at vacation completion epoch: The PGF of main server’s vacation completion epoch V (z) is

obtained from the equations (44) and (45) we get,

V (z) =
(1− Ṽ (w(z)))

∑a−1
n=0(pn + ηTn + vn)zn

w(z)
(50)

PGF of queue size at stand-by server’s service completion epoch: The probability generating function of stand-by

server’s service completion epoch N(z) is derived from the equations (42) and (43), we get,

N(z) =

(1− S̃s(v(z)))
[
zbu(z)(zb − S̃b(u(z)))

b−1∑
i=a

di + z2bα(1− S̃b(u(z)))

b−1∑
i=a

ci

+ zbα(1− S̃b(u(z)))
(
Ṽ (w(z))

a−1∑
n=0

(pn + ηTn + vn)zn −
b−1∑
i=0

cjz
j
)

+ u(z)(zb − S̃b(u(z)))
( ∞∑

j=b

a−1∑
k=0

Tkz
kλ2gj−kz

j−k −
b−1∑
j=0

qjz
j
)]

Y1(z)

(51)
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6. Some Performance Measures

6.1. Main server’s expected length of idle period

Let K is the random variable denoting the ‘Idle period due to multiple vacation process’. Let Y be the random variable

defined by

Y =


0 if the server finds atleast ‘a’ customers after the first vacation

1 if the server finds less than ‘a’ customers after the first vacation

Now

E(K) = E(K/Y = 0)P (Y = 0) + E(K/Y = 1)P (Y = 1)

= E(V )P (Y = 0) + (E(V ) + E(K))P (Y = 1),

solving for E(K), we get

E(K) =
E(V )

(1− P (Y = 1))
=

E(V )(
1−

∑a−1
n=0

∑n
i=0

[
γi[pn−i + ηTn−i]

])
where γi are the probabilities of i customers arrive during main server’s vacation time.

6.2. Expected queue length

The mean number of customers waiting in the queue E(Q) at an arbitrary time epoch, is obtained by differentiating P (z)

at z = 1 and is given by

E(Q) =

f1(X,Sb, Ss)
[ b−1∑

i=a

[b(b− 1)− i(i− 1)]ci
]

+ f1(X,Sb, Ss)
[ b−1∑

i=a

(b(b− 1)− i(i− 1))di
]

+ f2(X,Sb, Ss)
[ b−1∑

i=a

(b− i)ci
]

+ f3(X,Sb, Ss)

b−1∑
i=a

(b− i)di + f4(X,Sb, Ss, V )

a−1∑
n=0

cn

+ f5(X,Sb, Ss, V )

a−1∑
n=0

ncn + f6(X,Sb, Ss, V )

a−1∑
n=0

Tn + f7(X,Sb, Ss, V )

a−1∑
n=0

nTn

3(E19)2
, (52)

the expressions for fi(i = 1, 2, ..., 7) are defined in Appendix-II.

6.3. Expected Waiting time

The expected waiting time is obtained using the Little’s formula as

E(W ) =
E(Q)

λE(X)
(53)

where E(Q) is given in equation (52).

7. Numerical Example

A numerical example of our model is analysed for a particular case with the following assumptions:

(1). Batch size distribution of the arrival process is geometric distribution with mean 2.

152



G. Ayyappan and S. Karpagam

(2). Take a=5, b=8 and service time distribution is Erlang-2 (both servers).

(3). Vacation time of main server follows exponential distribution with parameter ξ = 5.

(4). Let m1 be the service rate for the main server.

(5). Let m2 be the service rate for the stand-by server.

The unknown probabilities of the queue size distribution are computed using numerical techniques. The zeros of the function

Y1(z) are obtained and simultaneous equations are solved by using MATLAB. The expected queue length E(Q) and the

expected waiting time E(W ) are calculated for various arrival rate and service rate and the results are tabulated. From

Tables 1 and 2 the following observations can be made.

(1). As arrival rate λ increases, the expected queue size and expected waiting time are also increasing.

(2). When the main server’s service rate increases, the expected queue size and expected waiting time are decreasing.

λ1 ρ E(Q) E(W )

8.00 0.237171 22.411092 0.659150

8.25 0.243581 26.612317 0.771372

8.50 0.249991 31.347449 0.895641

8.75 0.256401 36.664048 1.032790

9.00 0.262811 42.613069 1.183696

9.25 0.269221 49.248890 1.349285

9.50 0.275631 56.629509 1.530527

9.75 0.282041 64.816643 1.728444

10.00 0.288451 73.876750 1.944125

10.25 0.294861 83.880140 2.178705

10.50 0.301271 94.901974 2.433384

10.75 0.307681 107.022511 2.709431

11.00 0.314091 120.327418 3.008185

Table 1. Arrival rate vs expected queue length and expected waiting time for the values λ2 = 5, λ3 = 4, m1 = 7, m2 = 5, α = 1, η1 =
2, η2 = 3 ω = 0.2, and ε = 0.5

m1 ρ E(Q) E(W )

5.00 0.431507 254.868361 5.540617

5.25 0.412984 210.408446 4.574097

5.50 0.395983 174.830196 3.800656

5.75 0.380324 146.017683 3.174297

6.00 0.365854 122.435815 2.661648

6.25 0.352443 102.954901 2.238150

6.50 0.339979 86.727275 1.885376

6.75 0.328366 73.107729 1.589298

7.00 0.317518 61.600645 1.339144

7.25 0.307364 51.819086 1.126502

7.50 0.297838 43.458621 0.944753

7.75 0.288885 36.276967 0.788630

8.00 0.280453 30.079824 0.653909

Table 2. Main server’s service rate vs expected queue length and expected waiting time for the values λ1 = 10, λ2 = 8, λ3 = 5, m2 =
4, α = 1, η1 = 2, η2 = 3 ω = 0.2, and ε = 0.5
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8. Conclusion

In this paper, a batch arrival general bulk service single server queueing system with server’s breakdown and second optional

repair, stand-by server, balking, variant arrival rate and multiple vacation is analysed. Probability generating function of

queue size distribution at an arbitrary time is obtained. Some performance measures are calculated. Particular cases of the

model are also deduced. From the numerical results, it is observed that when the arrival rate increases the expected queue

length and waiting time of the customers are also increasing. It is also observed that if the main sever’s service rate are

increase, then the expected queue length and expected waiting time are decreased.
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Appendix I

The expressions used in equation (47) are defined as follows:

K1(z) = w(z)(1− S̃b(u(z)))A1(z),

K2(z) = w(z)(1− S̃s(v(z)))A2(z),

K3(z) = Y1(z)−K1(z),

where

A1(z) = v(z)(zb − S̃s(v(z))) + zbα(1− S̃s(v(z))),

154



G. Ayyappan and S. Karpagam

A2(z) = u(z)(zb − S̃b(u(z))) + zbη(1− S̃b(u(z))), v1(z) = η − λ2(X − 1),

Y1(z) = u(z)v(z)(zb − S̃b(u(z)))(zb − S̃s(v(z)))− z2bαη(1− S̃b(u(z)))(1− S̃s(v(z))).

Appendix II

The expressions for fi (i=1,2,...,7) in (52) are defined as follows:

f1(X,Sb, Ss) = 3E9E19,

f2(X,Sb, Ss) = 3E10E19 − 2E9E20,

f3(X,Sb, Ss) = 3E12E19 − 2E9E20,

f4(X,Sb, Ss, V ) = 2V1E14E20 − 3[V2E14 + V1E15]E19,

f5(X,Sb, Ss, V ) = −6V1E14E19,

f6(X,Sb, Ss, V ) = E18E19 − E17E20,

f7(X,Sb, Ss, V ) = 3E17E19,

where

E1 = −(1− ω)X1(λ2α+ λ1η)(1− S̃b(α))(1− S̃s(η))− bαη[S̃b(α)(S̃s(η)− 1) + S̃s(η)(S̃b(α)− 1)],

E2 = [2λ1λ2(1− ω)2X1
2 − (1− ω)X2(λ2α+ λ1η)](1− S̃b(α))(1− S̃s(η))

− 2(1− ω)X1(λ2α+ λ1η)[(b− Sb1)(1− S̃s(η)) + (b− Ss1)(1− S̃b(α))]

+ αη[b(b− 1)− Sb2)(1− S̃s(η)) + 2(b− Sb1)(b− Ss1) + (b(b− 1)− Ss2)(1− S̃b(α))],

E3 = [bα− (1− ω)λ2X1](1− S̃s(η))− (α+ η)Ss1 + bη,

E4 = [αb(b− 1)− (1− ω)λ2X2](1− S̃s(η))− 2Ss1(bα− (1− ω)λ2X1)− (α+ η)Ss2

+ ηb(b− 1)− 2b(1− ω)λ1X1,

E5 = [αb(b− 1)(b− 2)− (1− ω)λ2X3](1− S̃s(η))− 3Ss1(b(b− 1)α− (1− ω)λ2X2)

− 3Ss2(bα− (1− ω)λ2X1)− (α+ η)Ss3 − 3b(1− ω)λ2X2

− 3b(b− 1)(1− ω)λ2X1 + ηb(b− 1)(b− 2),

E6 = [bη − (1− ω)λ1X1](1− S̃b(α))− (α+ η)Sb1 + bα,

E7 = [ηb(b− 1)− (1− ω)λ1X2](1− S̃b(α))− 2Sb1(bη − (1− ω)λ1X1)− (α+ η)Sb2

+ αb(b− 1)− 2b(1− ω)λ1X1,

E8 = [ηb(b− 1)(b− 2)− (1− ω)λ1X3](1− S̃b(α))− 3Sb1(b(b− 1)η − (1− ω)λ1X2)

− 3Sb2(bη − (1− ω)λ1X1)− (α+ η)Sb3 − 3b(1− ω)λ1X2

− 3b(b− 1)(1− ω)λ1X1 + αb(b− 1)(b− 2),

E9 = −X1λ3(α+ η)(1− S̃b(α))(1− S̃s(η)),

E10 = (S̃b(α)− 1)[λ3X2(α+ η)(1− S̃s(η)) + 2X1λ3E3] + 2X1λ3(α+ η)Sb1(1− S̃s(η)),

E11 = (S̃b(α)− 1)[λ3X3(α+ η)(1− S̃s(η)) + 3X2λ3E3 + 3X1λ3E4]

+ 3Sb1[X2λ3(α+ η)(1− S̃s(η)) + 2X1λ3E3] + 3Sb2X1λ3(α+ η)(1− S̃s(η)),
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E12 = (S̃s(η)− 1)[λ3X2(α+ η)(1− S̃b(α)) + 2X1λ3E6] + 2X1λ3(α+ η)Ss1(1− S̃b(α)),

E13 = (S̃s(η)− 1)[λ3X3(α+ η)(1− S̃b(α)) + 3X2λ3E6 + 3X1λ3E7]

+ 3Ss1[X2λ3(α+ η)(1− S̃b(α)) + 2X1λ3E6] + 3Ss2X1λ3(α+ η)(1− S̃b(α)),

E14 = E1 − E9, E15 = E2 − E10,

E17 = η[E2 − E15 − 2E14V1] + 2E9λ2X1 − ηE12 − 2λ3X1E1,

E18 = η[E11 − 3E15V1 − 3E14V2] + λ2[X2E9 +X1E12]− ηE13 − 3λ3[X2E1 +X1E2],

E19 = −2X1λ3E1, E20 = −3λ3[X2E1 +X1E2], λ = λ1 + λ2 + λ3.

H =


E9

b−1∑
i=a

(b− i)ci + E9

b−1∑
i=a

(b− i)di − E14V1

a−1∑
n=0

cn

+(E17/2)
a−1∑
n=0

Tn,

where

Sb1 = −λ1X1S
′
b(α), Sb2 = (−λ1X1)2S

′′
b(α)− λ1X2S

′
b(α),

Ss1 = −λ2X1S
′
s(η), Ss2 = (−λ2X1)2S

′′
s(η)− λ2X2S

′
s(η),

V1 = −λ3X1E(V ), V2 = (λ3X1)2E(V 2) + λ3X2E(V ).
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