Int. J. Math. And Appl., 6(2-A)(2018), 157-162
ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Wathematics ud cts #pplications

qg-Steffensen’s Inequality for Convex Functions

Mohammed Muniru Iddrisu®:*

1 Department of Mathematics, University for Development Studies, P. O. Box 24, Navrongo Campus, Navrongo, Ghana.
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1. Introduction

The Steffensen’s inequality (1) was discovered in [16]

/ " ga)dr < / " () () < / " g, 0

-

where \ = f: f(z)dz, f and g are integrable functions defined on (a,b), g is decreasing and 0 < f(z) < 1 for each z € (a,b).
This inequality was initially not popular in the research environment until its appearance again in [15]. Many research
papers have been written on the inequality providing refinements, generalisations and numerous applications (see [8-11] and
the references cited therein). The first generalisation of this inequality appeared in [1] and the result was later detected to

be incorrect in [3]. About two decades later, Pecari¢ presented a corrected version of Bellman in [10] as

f@e@yz) < [ glayde @)
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where A = (fol f(ac)dm)p, g : [0,1] — R is a non-negative and non-increasing function and f : [0,1] — R is an integrable

function such that 0 < f(z) <1 (Vz € [0,1]) for p > 1. Moreover, an analogous inequality to (2) was further given as

1
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Using the substitution f(z) = fﬁi&’ a further inequality was established in [11] as

Y fab F(z)de ~— A

> =

b b o(x 2)dx a+X
/ g(z)dz < M < l/ i g(z)dx (4)
b a
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where f(z) and g(z)are assumed to be integrable functions defined on [a, ] and that g(x) never increases and
b
0 < A\F(z) < / F(z)dz, (Vz € [a,0]),

where ) is a positive number. Further generalisation of (1) appeared in [6], but this result was detected to be incorrect in

[17] (see also [5] and [12]) and modified as

where ) is given by

/aa+/\ h(z)dz = /ab f(x)dx,

with f, g and h being integrable functions on (a,b), g decreasing and 0 < f < h. The second inequality of (1) was also

modified as

b b
/ g(@)h(z)de < / o(2) f(2)dz, (6)
b a

-

/b:\ h(z)dx = /abf(:c)dx,

with f, g and h being integrable functions on (a,b), g decreasing and 0 < f < h. The double inequality of (1) was thus

where ) is given by

re-established as

—A

b b a+A
/b 9(2)h(z)dz < / o(x) f(z)dz < / 9(2)h(z)dz, )

provided that there exists A € [0,b — a] such that

/b:\ h(z)dx = /abf(m)dx = /E(H-A h(z)dz,

with f, g and h being integrable functions on (a,b), g decreasing and 0 < f < h. The study of g-analysis attracted the
attention of many researchers as well as those working on Steffensen’s inequality and this led to further re-establishment
of (1) via g-calculus (See for example [4]).

This paper aims at presenting another generalisation of the Steffensen’s inequality with the involvement of convex functions

and g-calculus.

2. Preliminaries on g-calculus

The notion of g-calculus (an analogue of the usual calculus) is presented in this section. This g-analysis was earlier discovered
in the eighteenth century by Euler, but the notion of the definite integral was introduced by Jackson in 1910 (see [4] and
the references cited therein). Some definitions and facts on g-calculus for the understanding of this paper is discussed here.

Throughout this paper, the real number ¢ satisfies 0 < ¢ < 1.

Definition 2.1. Let f(z) be any arbitrary function. The g-differential is defined as

(def) (@) = flgz) — f(2).

In particular,
dgx = (¢ — 1)=.
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Definition 2.2. Let f(z) be any arbitrary function. The g-derivative is defined as

dgx (¢g— D=z

It follows that (Dgf)(x) — % as ¢ — 1.

Remark 2.3. The g-analogue of the Leibniz rule is given as (See [4, 14] and the references cited therein).
(Dqfg)(x) = g(x) Dy f(z) + f(qr)Deg(x)

Example 2.4. Let f(z) = 2 where o € C. Then

[e3 (e}

_:ra_q -1 a—1

27 = [a]gz* !

o _ (g7)
P =T T g1

where [a]q is the g-analogue of a given by

q¢“ -1
qg—1

=¢" '+ +g+1.

Definition 2.5. Let 0 < a < b. The definite g-integral also known as the g-Jackson integral is defined as (see [2, 4, 14])

/O F@)dy(@) = (1 - b3 & FlaD) (8)
j=0
provided the series converges.
Note that
b b a
[ @ = [ @ - [ @, (©)

The values of such defined g-integrals of the polynomials form have very similar form to those in the standard integral

calculus. For example [7].

b n+1 n+1
b —a
t"dyt = ——. 10
/a SRR (10

Remark 2.6 ([4]). If f(z) > 0, it is not necessarily true that fabf(:c)dq(m) > 0.

Definition 2.7. The g-integration by parts for suitable functions f and g is given as ([2, 4]).

b
/ F(@)(Deg) (@) () = F(B)g(b) — F(a)gla) — / 9(q2)(Dy f) (2)dg (). (11)

a

Theorem 2.8 ([13]). Let f(x) be a continuous functions on a segment [a,b]. Then there exists ¢ € (a,b) such that

/ F&)dgt = F(CO)(b— a) (12)

for every g € (0,1).

Theorem 2.9 ([13]). Let f(x) and g(z) be some continuous functions on a segment [a,b]. Then there exists ¢ € (a,b) such

ha
that . .
/ F(Dg(t)dgt = £(C) / o(t)d,t (13)

for every g € (0,1).
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3. Results and Discussions

This section now presents the g-Steffensen’s inequality for convex functions.

Lemma 3.1. Let f, g be two g-integrable functions such that g is positive and g-decreasing defined on [0,1] and 0 < f(t) <1

for every t € [0,1], then

([ rsoae) < [ otera
where X = (fol f(t)dqt)p forp>1.

Proof. Want to prove that

/0A g(t)Pdyt — (/01 f(t)g(t)dqt>p > 0,

(14)

(15)

Since g is q-decreasing which implies g(qt) > g(t) for every ¢ € [0,1]. Then using equations (8) and (13) and for each

¢ € (0,1) we have

A 1 P oo ] ) (%)
/0 g(t)pdqt—( / f(t)g(t)dqt> —(1—q>AZh<AqJ)qJ—(f<<>(1—q>§j

>0

where (g(8))” = h(t) and A = (1= @) 3% (@)’ ) for p > 1.

J

0

g(qj)q’)

O

Remark 3.2. A particular case of p =1 reduces inequality (14) to the right side of the Steffensen Inequality (1) for a =0

and b=1.

Theorem 3.3. Let f : [0,1] — R be a continuous function with 0 < f(t) <1 for each t € [0,1]. If : [0,1] — R is a convez

and g-differentiable function with ®(0) = 0, then

o[ 1 i) < [ (D@ (1t

for every t € [0, 1].

Proof. Following Remark 3.2 we have
1 A
| rsta < [ gt
0 0

Since ® is convex and —(Dy®)(t) is q-decreasing for all ¢, replacing ¢ in (17) yields

/ (Du®)(O)dat < / L H)(Dy®) (1)t
0 0

This gives
B(A) — B (0) < / FE)(Dy®)(t)dyt

Since A = fol f(t)dqt and ©(0) = 0, thus

o (/01 f(t)dqt) < /01 F(@&)(Dg®)(t)dgt.
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Remark 3.4. A special case of ®(t) = t* for k > 1 using (16) yields

(Avmwf<m47mﬁwﬁ

where (Dy®)(t) = (Kot~ and [k], = L5,

q—1

Example 3.5. Letn > 1 and
t" for 0<t<1
ft) =

0 elsewhere .

(; o)

1 k],
Tt 1o)F = itk

Then
k

1
< [k}q/ t" Rt
0

Applying (10) yields

Lemma 3.6. Let f,g and h be g-integrable functions on [0, 1] with g decreasing and let 0 < f(t) < h(t), t € [0,1]. Then

1 A
[ rgta< [ gonde (20)
0 0
where A is given by
A 1
/ h(t)dq st = / Ft)dgt (21)
0 0
Proof.  Following exactly the proof in [5] leads to the result in terms of g-calculus. O

Theorem 3.7. Let f and h be g-integrable functions on [0,1] with 0 < f(¢t) < h(t), t € [0,1]. If ® is convex, then
A 1
/ (Dg®@)(D)h(t)dgt < / (Dg®) () f(t)dqt (22)
0 0
Proof. Replace g(t) with —(D,®)(¢) in (20) and the result follows immediately after simplification. O

4. Conclusion

A review of the well-known Steffensen’s Inequality and g-calculus was presented together with some extensions and gener-
alisations. Using g-calculus, new results were established for the Steffensen’s Inequality for convex functions. Moreover, the

results were supported with remarks and illustrative examples.
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