International Journal of Mathematics And its Applications

q-Steffensen's Inequality for Convex Functions

Mohammed Muniru Iddrisu ${ }^{1, *}$
1 Department of Mathematics, University for Development Studies, P. O. Box 24, Navrongo Campus, Navrongo, Ghana.

Abstract

In this paper, q- Steffensen's Inequality for convex functions is presented with illustrative examples. Review of research works on Steffensen's Inequality and q-calculus is extensively carried out. Methods of q- differentiability and monotonicity of functions are employed to establish the results.

MSC: 26D15.

Keywords: Steffensen's Inequality, Convex functions, q-calculus.
(C) JS Publication.

Accepted on: 27.04.2018

1. Introduction

The Steffensen's inequality (1) was discovered in [16]

$$
\begin{equation*}
\int_{b-\lambda}^{b} g(x) d x \leq \int_{a}^{b} g(x) f(x) d x \leq \int_{a}^{a+\lambda} g(x) d x \tag{1}
\end{equation*}
$$

where $\lambda=\int_{a}^{b} f(x) d x, f$ and g are integrable functions defined on $(a, b), g$ is decreasing and $0 \leq f(x) \leq 1$ for each $x \in(a, b)$. This inequality was initially not popular in the research environment until its appearance again in [15]. Many research papers have been written on the inequality providing refinements, generalisations and numerous applications (see [8-11] and the references cited therein). The first generalisation of this inequality appeared in [1] and the result was later detected to be incorrect in [3]. About two decades later, Pečarić presented a corrected version of Bellman in [10] as

$$
\begin{equation*}
\left(\int_{0}^{1} f(x) g(x) d x\right)^{p} \leq \int_{0}^{\lambda} g(x)^{p} d x \tag{2}
\end{equation*}
$$

where $\lambda=\left(\int_{0}^{1} f(x) d x\right)^{p}, g:[0,1] \longrightarrow \Re$ is a non-negative and non-increasing function and $f:[0,1] \longrightarrow \mathbb{R}$ is an integrable function such that $0 \leq f(x) \leq 1(\forall x \in[0,1])$ for $p \geq 1$. Moreover, an analogous inequality to (2) was further given as

$$
\begin{equation*}
\frac{\int_{0}^{1} f(x) g(x) d x}{\int_{0}^{1} f(x) d x} \leq \frac{1}{\lambda} \int_{0}^{\lambda} g(x) d x \tag{3}
\end{equation*}
$$

Using the substitution $f(x)=\frac{\lambda F(x)}{\int_{a}^{b} F(x) d x}$, a further inequality was established in [11] as

$$
\begin{equation*}
\frac{1}{\lambda} \int_{b-\lambda}^{b} g(x) d x \leq \frac{\int_{a}^{b} g(x) F(x) d x}{\int_{a}^{b} F(x) d x} \leq \frac{1}{\lambda} \int_{a}^{a+\lambda} g(x) d x \tag{4}
\end{equation*}
$$

[^0]where $f(x)$ and $g(x)$ are assumed to be integrable functions defined on $[a, b]$ and that $g(x)$ never increases and
$$
0 \leq \lambda F(x) \leq \int_{a}^{b} F(x) d x, \quad(\forall x \in[a, b])
$$
where λ is a positive number. Further generalisation of (1) appeared in [6], but this result was detected to be incorrect in [17] (see also [5] and [12]) and modified as
\[

$$
\begin{equation*}
\int_{a}^{b} g(x) f(x) d x \leq \int_{a}^{a+\lambda} g(x) h(x) d x \tag{5}
\end{equation*}
$$

\]

where λ is given by

$$
\int_{a}^{a+\lambda} h(x) d x=\int_{a}^{b} f(x) d x
$$

with f, g and h being integrable functions on $(a, b), g$ decreasing and $0 \leq f \leq h$. The second inequality of (1) was also modified as

$$
\begin{equation*}
\int_{b-\lambda}^{b} g(x) h(x) d x \leq \int_{a}^{b} g(x) f(x) d x \tag{6}
\end{equation*}
$$

where λ is given by

$$
\int_{b-\lambda}^{b} h(x) d x=\int_{a}^{b} f(x) d x
$$

with f, g and h being integrable functions on $(a, b), g$ decreasing and $0 \leq f \leq h$. The double inequality of (1) was thus re-established as

$$
\begin{equation*}
\int_{b-\lambda}^{b} g(x) h(x) d x \leq \int_{a}^{b} g(x) f(x) d x \leq \int_{a}^{a+\lambda} g(x) h(x) d x \tag{7}
\end{equation*}
$$

provided that there exists $\lambda \in[0, b-a]$ such that

$$
\int_{b-\lambda}^{b} h(x) d x=\int_{a}^{b} f(x) d x=\int_{a}^{a+\lambda} h(x) d x,
$$

with f, g and h being integrable functions on $(a, b), g$ decreasing and $0 \leq f \leq h$. The study of q-analysis attracted the attention of many researchers as well as those working on Steffensen's inequality and this led to further re-establishment of (1) via q-calculus (See for example [4]).

This paper aims at presenting another generalisation of the Steffensen's inequality with the involvement of convex functions and q-calculus.

2. Preliminaries on q-calculus

The notion of q-calculus (an analogue of the usual calculus) is presented in this section. This q -analysis was earlier discovered in the eighteenth century by Euler, but the notion of the definite integral was introduced by Jackson in 1910 (see [4] and the references cited therein). Some definitions and facts on q-calculus for the understanding of this paper is discussed here. Throughout this paper, the real number q satisfies $0<q<1$.

Definition 2.1. Let $f(x)$ be any arbitrary function. The q-differential is defined as

$$
\left(d_{q} f\right)(x)=f(q x)-f(x) .
$$

In particular,

$$
d_{q} x=(q-1) x .
$$

Definition 2.2. Let $f(x)$ be any arbitrary function. The q-derivative is defined as

$$
\left(D_{q} f\right)(x)=\frac{\left(d_{q} f\right)(x)}{d_{q} x}=\frac{f(q x)-f(x)}{(q-1) x}
$$

It follows that $\left(D_{q} f\right)(x) \rightarrow \frac{(d f)(x)}{d x}$ as $q \rightarrow 1$.

Remark 2.3. The q-analogue of the Leibniz rule is given as (See [4, 14] and the references cited therein).

$$
\left(D_{q} f g\right)(x)=g(x) D_{q} f(x)+f(q x) D_{q} g(x)
$$

Example 2.4. Let $f(x)=x^{\alpha}$ where $\alpha \in \mathbb{C}$. Then

$$
D_{q} x^{\alpha}=\frac{(q x)^{\alpha}-x^{\alpha}}{(q-1) x}=\frac{q^{\alpha}-1}{q-1} x^{\alpha-1}=[\alpha]_{q} x^{\alpha-1}
$$

where $[\alpha]_{q}$ is the q-analogue of α given by

$$
\begin{aligned}
{[\alpha]_{q} } & =\frac{q^{\alpha}-1}{q-1} \\
& =q^{\alpha-1}+\cdots+q+1
\end{aligned}
$$

Definition 2.5. Let $0<a<b$. The definite q-integral also known as the q-Jackson integral is defined as (see [2, 4, 14])

$$
\begin{equation*}
\int_{0}^{b} f(x) d_{q}(x)=(1-q) b \sum_{j=0}^{\infty} q^{j} f\left(q^{j} b\right) \tag{8}
\end{equation*}
$$

provided the series converges.

Note that

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{q}(x)=\int_{0}^{b} f(x) d_{q}(x)-\int_{0}^{a} f(x) d_{q}(x) \tag{9}
\end{equation*}
$$

The values of such defined q-integrals of the polynomials form have very similar form to those in the standard integral calculus. For example [7].

$$
\begin{equation*}
\int_{a}^{b} t^{n} d_{q} t=\frac{b^{n+1}-a^{n+1}}{[n+1]_{q}} \tag{10}
\end{equation*}
$$

Remark $2.6([4])$. If $f(x) \geq 0$, it is not necessarily true that $\int_{a}^{b} f(x) d_{q}(x) \geq 0$.
Definition 2.7. The q-integration by parts for suitable functions f and g is given as ([2, 4]).

$$
\begin{equation*}
\int_{a}^{b} f(x)\left(D_{q} g\right)(x) d_{q}(x)=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g(q x)\left(D_{q} f\right)(x) d_{q}(x) \tag{11}
\end{equation*}
$$

Theorem $2.8([13])$. Let $f(x)$ be a continuous functions on a segment $[a, b]$. Then there exists $\zeta \in(a, b)$ such that

$$
\begin{equation*}
\int_{a}^{b} f(t) d_{q} t=f(\zeta)(b-a) \tag{12}
\end{equation*}
$$

for every $q \in(0,1)$.

Theorem $2.9([13])$. Let $f(x)$ and $g(x)$ be some continuous functions on a segment $[a, b]$. Then there exists $\zeta \in(a, b)$ such that

$$
\begin{equation*}
\int_{a}^{b} f(t) g(t) d_{q} t=f(\zeta) \int_{a}^{b} g(t) d_{q} t \tag{13}
\end{equation*}
$$

for every $q \in(0,1)$.

3. Results and Discussions

This section now presents the q-Steffensen's inequality for convex functions.

Lemma 3.1. Let f, g be two q-integrable functions such that g is positive and q-decreasing defined on $[0,1]$ and $0 \leq f(t) \leq 1$ for every $t \in[0,1]$, then

$$
\begin{equation*}
\left(\int_{0}^{1} f(t) g(t) d_{q} t\right)^{p} \leq \int_{0}^{\lambda} g(t)^{p} d_{q} t \tag{14}
\end{equation*}
$$

where $\lambda=\left(\int_{0}^{1} f(t) d_{q} t\right)^{p}$ for $p \geq 1$.
Proof. Want to prove that

$$
\begin{equation*}
\int_{0}^{\lambda} g(t)^{p} d_{q} t-\left(\int_{0}^{1} f(t) g(t) d_{q} t\right)^{p} \geq 0 . \tag{15}
\end{equation*}
$$

Since g is q -decreasing which implies $g(q t) \geq g(t)$ for every $t \in[0,1]$. Then using equations (8) and (13) and for each $\zeta \in(0,1)$ we have

$$
\begin{aligned}
\int_{0}^{\lambda} g(t)^{p} d_{q} t-\left(\int_{0}^{1} f(t) g(t) d_{q} t\right)^{p} & =(1-q) \lambda \sum_{j=0}^{\infty} h\left(\lambda q^{j}\right) q^{j}-\left(f(\zeta)(1-q) \sum_{j=0}^{\infty} g\left(q^{j}\right) q^{j}\right)^{p} \\
& \geq 0
\end{aligned}
$$

where $(g(t))^{p}=h(t)$ and $\lambda=\left((1-q) \sum_{j=0}^{\infty} f\left(q^{j}\right) q^{j}\right)^{p}$ for $p \geq 1$.
Remark 3.2. A particular case of $p=1$ reduces inequality (14) to the right side of the Steffensen Inequality (1) for $a=0$ and $b=1$.

Theorem 3.3. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function with $0 \leq f(t) \leq 1$ for each $t \in[0,1]$. If $\Phi:[0,1] \rightarrow \mathbb{R}$ is a convex and q-differentiable function with $\Phi(0)=0$, then

$$
\begin{equation*}
\Phi\left(\int_{0}^{1} f(t) d_{q} t\right) \leq \int_{0}^{1} f(t)\left(D_{q} \Phi\right)(t) d_{q} t \tag{16}
\end{equation*}
$$

for every $t \in[0,1]$.

Proof. Following Remark 3.2 we have

$$
\begin{equation*}
\int_{0}^{1} f(t) g(t) d_{q} t \leq \int_{0}^{\lambda} g(t) d_{q} t \tag{17}
\end{equation*}
$$

Since Φ is convex and $-\left(D_{q} \Phi\right)(t)$ is q-decreasing for all t, replacing g in (17) yields

$$
\begin{equation*}
\int_{0}^{\lambda}\left(D_{q} \Phi\right)(t) d_{q} t \leq \int_{0}^{1} f(t)\left(D_{q} \Phi\right)(t) d_{q} t \tag{18}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\Phi(\lambda)-\Phi(0) \leq \int_{0}^{1} f(t)\left(D_{q} \Phi\right)(t) d_{q} t \tag{19}
\end{equation*}
$$

Since $\lambda=\int_{0}^{1} f(t) d_{q} t$ and $\Phi(0)=0$, thus

$$
\Phi\left(\int_{0}^{1} f(t) d_{q} t\right) \leq \int_{0}^{1} f(t)\left(D_{q} \Phi\right)(t) d_{q} t .
$$

Remark 3.4. A special case of $\Phi(t)=t^{k}$ for $k \geq 1$ using (16) yields

$$
\left(\int_{0}^{1} f(t) d_{q} t\right)^{k} \leq[k] \int_{0}^{1} f(t) t^{k-1} d_{q} t
$$

where $\left(D_{q} \Phi\right)(t)=[k]_{q} t^{k-1}$ and $[k]_{q}=\frac{q^{k}-1}{q-1}$.
Example 3.5. Let $n>1$ and

$$
f(t)=\left\{\begin{array}{l}
t^{n} \quad \text { for } \quad 0<t \leq 1 \\
0 \\
\text { elsewhere }
\end{array}\right.
$$

Then

$$
\left(\int_{0}^{1} t^{n} d_{q} t\right)^{k} \leq[k]_{q} \int_{0}^{1} t^{n+k-1} d_{q} t .
$$

Applying (10) yields

$$
\frac{1}{\left([n+1]_{q}\right)^{k}} \leq \frac{[k]_{q}}{[n+k]_{q}}
$$

Lemma 3.6. Let f, g and h be q-integrable functions on $[0,1]$ with g decreasing and let $0 \leq f(t) \leq h(t), t \in[0,1]$. Then

$$
\begin{equation*}
\int_{0}^{1} f(t) g(t) d_{q} t \leq \int_{0}^{\lambda} g(t) h(t) d_{q} t \tag{20}
\end{equation*}
$$

where λ is given by

$$
\begin{equation*}
\int_{0}^{\lambda} h(t) d_{q} t=\int_{0}^{1} f(t) d_{q} t \tag{21}
\end{equation*}
$$

Proof. Following exactly the proof in [5] leads to the result in terms of q-calculus.
Theorem 3.7. Let f and h be q-integrable functions on $[0,1]$ with $0 \leq f(t) \leq h(t), t \in[0,1]$. If Φ is convex, then

$$
\begin{equation*}
\int_{0}^{\lambda}\left(D_{q} \Phi\right)(t) h(t) d_{q} t \leq \int_{0}^{1}\left(D_{q} \Phi\right)(t) f(t) d_{q} t \tag{22}
\end{equation*}
$$

Proof. Replace $g(t)$ with $-\left(D_{q} \Phi\right)(t)$ in (20) and the result follows immediately after simplification.

4. Conclusion

A review of the well-known Steffensen's Inequality and q-calculus was presented together with some extensions and generalisations. Using q-calculus, new results were established for the Steffensen's Inequality for convex functions. Moreover, the results were supported with remarks and illustrative examples.

References

[1] R. Bellman, On inequalities with alternating signs., proc. Amer. Math. Soc., 10(1959), 807-809.
[2] A. Fitouhi, K. Brahim and N. Bettaibi, Asymptotic Approximations in Quantum Calculus, Journal of Nonlinear Mathemataical Physics 12(4)(2005), 586-606
[3] E.K. Godunova and V.I. Levin, A general class of inequalities containing Steffensens inequality, Mat. Zametki, 3(1968), 339-344
[4] H. Gauchman, Integral Inequalities in q-Calculus, Computers and Mathematics with Applications, 47(2004), 281-300.
[5] Z. Liu, On Extensions of Steffensens Inequality, J. Math. Anal. and Approx. Theory, 2(2)(2007), 132-139.
[6] P.R. Mercer, Extensions of Steffensens Inequality, J. Math. Anal. Appl., 246(2000), 325-329.
[7] S. Marinkovic, P. Rajkovic and M. Stankovic, The inequalities for some types of q-integrals, Computers and Mathematics with Applications, 56(2008), 2490-2498.
[8] D.S. Mitrinovic, J.E. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, (1993).
[9] D.S. Mitrinovic and J.E. Pečarić, On the Bellman Generalization of Steffensen's Inequality III, J. Math. Anal. and Appl., 135(1988), 342-345.
[10] J.E. Pečarić, On the Bellman Generalization of Steffensen's Inequality, J. Math. Anal. and Appl., 88(1982), 505-507.
[11] J.E. Pečarić, On the Bellman Generalization of Steffensen's Inequality II, J. Math. Anal. and Appl., 104(1984), 432-434.
[12] J.E. Pečarić, A. Perusic and K. Smoljak, Mercer and Wu-Srivastava generalisations of Steffensens inequality, Appl. Math. Comput., 219(2013), 10548-10558.
[13] P.M. Rajković, M.S. Stanković and S.D. Marinković, Mean Value Theorems in q-Calculus, Matematnykn Bechnk, 54(2002), 171-178.
[14] A.D. Sole and V.G. Kac, On integral representations of q-gamma and q-beta functions, Rend. Mat. Acc. Lincei, 16(1)(2005), 11-29.
[15] J. Steffensen, Bounds of certain trigonometric integrals, Tenth Scan-dinavian Mathematical congress, Copenhagan, Hellerup, 1946(1947), 181-186.
[16] J. Steffensen, On certain inequalities between mean values and their application to actuarial problems, Skandinavisk Aktuarietidskrift, (1918), 82-97.
[17] S.H. Wu and H.M. Srivastava, Some improvements and generalizations of Steffensen's Integral Inequality, Appl. Math. Comput., 192(2007), 422-428.

[^0]: * E-mail: mmuniru@uds.edu.gh

