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1. Introduction

The Nielsen’s S-function, which first appeared in [15] is defined as

1 z+1 T
_1 _o(® 1
s =3 {0 (550) -0 (5)} a>o 1)
=> gg ) , x>0, (2)
P
where ¥(z) = - InT(z) is the digamma or psi function and I'(z) is the Euler’s Gamma function. It has the integral
representations
1 tz—l
= —dt 0 3
s = [ e >0 3)
[e5S] efzt
= —dt 4
/0 Tret x>0, (4)
and satisfies the functional equation
1
B(w—&-l)z;—ﬁ(x}, x> 0. (5)
Its derivatives are given as [11]
1 z+1 z
(m) _ (m) _apm) (T
5 (m)—wl{w < : ) ¥ (2)} >0, (6)
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where m € No and 89 (z) = (z). For further information about this special function, one could refer to [1, 2, 4, 9, 11-13]
and the recent paper [14], where a p-generalization of the function was given. As shown in [1] and [4], the Nielsen’s S-function
is very useful in evaluating and estimating certain integrals and mathematical constants. Motivated by Jackson’s g-integral
and the g-digamma function, our objective in this paper is to introduce a g-analogue of the Nielsen’s S-function and further

study some of its properties. We begin with the following auxiliary definitions.

2. Preliminary Definitions

The g-derivative of a function f(z) is defined as [7]

_daf@) @) @) g e (0,1),

If f'(0) exist, then Dy f(0) = f/(0). Also, Dqf(z) — f'(z) as ¢ — 1. The g-derivative satisfies the algebraic properties

Dy (af(z) +bg(x)) = aDqf(x) + bDgg(x),

Dy (f(z)g(x)) = g(x) Dy f(x) + f(qz)Deg(x) = f(x)Deg(x) + 9(q2) Do f (z),

J(@)\ _ g(@)Def(x) — f(x)Dgg(x)
Da (g(w)> - 9(z)g(qz)

The Jackson’s g-integral from 0 to a, 0 to co and a to oo are respectively defined as [7]
[ rdit= 1=y flad )" )
0 k=0

oo

f@)dgt=(L—q) > fd")d", (10)

0

and

fW)dgt =(1-0q) > flg g ", (11)

a k=1

provided that the sums in (9), (10) and (11) converge absolutely. In a generic interval [a, b], the g-integral takes the form

/abf(t)dqt:/Obf(t)dqt—/oaf(t)dqt'

A function F(t) is called a g-antiderivative of f(t) if DgF(t) = f(t). That is, if

F(t) = / () dyt + C,

where C' is a constant of integration. The g-analogue of the Gamma function is defined as [6, 7]

11—z ) 1- qn+1
Ly(z) =(1-4q) Hl_inﬂw
n=0 q
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where ¢ € (0,1) and = > 0. Based on this, the g-analogue of the beta function is given by (see also [3])

By(z,y) = Lo()la(y) z,y > 0.

Lo(z+y)’

The g-digamma function, ¥4(x) and the g-polygamma functions, w§m>(m) are defined as [5, 16]

d Ing [9¢1
vyla) = oInly(e) = ~ln(i =)+ 2L [ (12)

e qn+x
=—In(1-gq) +1nqzm
n=0

:—ln(lfq)leanlq_qn, (13)
n=1
m dm m & nmg"*
@) = otale) = g™ ST me N (14)
n=1

Definition 2.1. A function f: I — R is said to be convex if

fOz+ (1 =Ny) <Af(@)+ (1 =N f(y),
holds for all x,y € I and X € [0,1]. If f is twice differentiable, then it is said to be convez if and only if f”'(x) > 0 for every
zel.

Definition 2.2. A function f : I — R is said to be logarithmically convex or in short log-convez if In f is convex on I.

That is if

I f(z + (1— A)y) < Aln f(z) + (1 — A)In ()
or equivalently
FOz+ (1= Ny) < (f@) fy)'

for each x,y € I and X € [0,1].

Definition 2.3. A function f: I — R is said to be completely monotonic on I if f has derivatives of all order on I and
(~D* P (@) =0

forx el and k € N [17].

3. Main Results

In this section, we introduce a g-analogue of the Nielsen’s S-function and further study some properties and inequalities

involving the new function.

Proposition 3.1. The g-analogue of the Nielsen’s B-function is given by the following equivalent definitions.

ula) = - {0 (555) = e (5) ] (15)

1 Va pxr—1

=— nq/ Y agt, (16)
1-q/, 1+t
1 0o —at t—qt_l

- nq/ A (e >dqt, (17)
=g/ nyglte? t—qt

where z > 0, ¢ € (0,1) and [z]q = 111‘7:. It follows that, Bq(x) — B(z) as ¢ — 1.
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Proof. By using relation (12), we obtain

r+1 T Ing 7453 7451
- 2) = dyt — | ———dgt
¢q< 2 ) wq(z) 1—¢q /0 1—t /0 11—t °
Ing [9 t2 1 1
= — — 2 ) dyt
1—q/, 17t<\/i t) B

Ing [9¢371
- 1 Vi) dyt
L [0,

q 45-1
71nq/ t2 dyt
1-q/o 1+t

1 Va3 ,z—1
=—[2],—1 / Y du
1-q /)y 1+4u

Hence (15) implies (16). In this proof, we made the substitution ¢t = u? which implies that, d,t = (1 + q)udsu = [2],udqu.

Similarly, by replacing ¢t by e~ in (16), we obtain (17). O

Proposition 3.2. The function Bq(x) satisfies the following series representations.

Ing <= ¢%
Bq(z) = — s 18
@ =g, T "
X gkt
q 2
= —lnqz (19)
im0 1tttz
Proof. By using (15) with (13), we obtain
1 x—l—l) (x)} Ing — |:q%+% q% :|
x) = = — ) - )= —
Pa(=) = g, {w( 2 ) Q) T e, e T
_Ing i a7 (aF 1)
2] oyt 1—gqr
_ _Ing i ¢ (1 - ‘ﬁ)
2]q oyt 1—gqm
_ _Ing i ¢ (1 _‘ﬁ)
2]q el (1- q%)(l + q%)
_ Ing g
[2]q 1;_1 1+q2’
which gives (18). Also, by using (16) with (9), we obtain
lng [V9t=?
Bq(x)*_l_q/o 1+tdqt
kil z—1
Ing S (q 2) k
=- (1-4q)g? q
1-— q kZ:O 1+ qk+7
s (k+35)zx
q 2
= —Ing
;) L+qt
which gives (19). O
Proposition 3.3. The function B4(x) is connected to the g-beta function, Bq(xz,y) by the identity
2 d z 1
ule) =~ 4 A2 (5.3) }- (20)
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Proof. We have

which gives the desired result.

Proposition 3.4. The function Bq(x) satisfies the functional equation

Bule+ 1) = - FOL 5, (0)

Proof. By (16) and (9), we obtain

\/Etz+tz71
1+1¢

1 Va
— _ nq / tzfldqt
1—q /o

=- 1ln_qq {(1 —q)q® Zq”}

n=0

Inq

ule + 1)+ Aulo) = 2L |

dgt

(Ing)q?
1—¢q* °

(o=}
Notice that, since ¢ € (0, 1), then ¢ < 1 for > 0. Hence > ¢"* = 1}qz .
n=0

Remark 3.5. By repeated applications of (21), we obtain the generalized form

(-1 g
1—-g¢

Balz+n) = (o) SN C T iy,

1
k=0
where n € N.

Also, by repeated differentiations of (15), (16) and (17), we obtain respectively

o =g {47 (57) -4 G))

_ Ing /\/E (Int)™¢t*~!
1-qJo 1+t

B (_1)m+l lnq e8] t'mefa:t etfqt —1 it
N l—q ) nygltet t—qt w
(0)

where m € N, 85 ' (z) = B4(z) and B (z) — B™ (x) as ¢ — 1. Tt can easily be deduced from above that:

dqt7

(a). Bq(x) is positive and decreasing,
(b). B™ (z) is positive and decreasing if m € Ny is even,

(c). B{™ (z) is negative and increasing if m € Ny is odd.
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Remark 3.6. Furthermore, differentiating m-times of (21) implies

™ d™ [ (Ing)q> m
1) = - { RO g @), me N

and in particular,

(Ing)*q> *y_ 8 (x
00 (04 7) = Bl

As an immediate consequence of (21) and (27), we obtain the bounds

Bo(z+1) = —

_(Ing)q®
1—q*’

Theorem 3.7. The function Bq(x) is logarithmically convez on (0, 00).

Proof. Let z,y € (0,00), a>1and £ + 1 = 1. Then by (16) and the g-Hélder’s inequality (see [8], [10]), we obtain

x y
T Yy __lnq V@ paty—l
5"( * )_ 1—q/ 1+t dal

Ing /\/6 tmi1 t
1-gq (1+t)% 1+1t)%
1 1
| f w—1 a f y—1 5
< Ing t dyt t dyt
1—gq 0 1+1¢ 0 1+1¢
_ lnq t‘” ! Ing fty_l
= 1—q

l—q 1+t
= [By(a)] Wy)]% :

dgt

which completes the proof.
Remark 3.8. Log-convezity of Bq(x) implies that:
(0)- Ba(@)By (%) = (B3())" 2 0, for w € (0,00),
. By(z) . . .
(b). the function Bl 18 increasing on (0, 00).

Theorem 3.9. For x,y € (0,00), the function Bq(x) satisfies the inequality

Ba(z +1)Be(y +1) < My - By(x +y + 1),

o0
2
where M, = —124 S~ 4

Proof. Let f be defined for z,y € (0,0) by

By(z +1)B4(y + 1)
Bolw+y+1)

flz,y) =

and

1
b
dqt)

9(33711) = hlf(%?l) = lnﬂq(:c +1) + lnﬁq(y +1) —InBg(z +y + 1)-

Then for a fixed y, we obtain

By(xz+1)

ary) = By ty+1)
IV = 5.@r1) B,

(z+y+1)

<0,
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since ZZS; is increasing. Thus, g(z,y) as well as f(z,y) are decreasing. Then for z > 0, we obtain f(z,y) < f(0,y) yielding
Bq(x +1)Bq(y +1) Ing o q%
<B(1) = -7 = =M
ety rn <P g, gy~ M
which completes the proof. O
Theorem 3.10. The inequality
Bq(2)Bq(x +y + 2) — Ba(z + y)Be(x + 2) >0, (31)

holds for x,y, z € (0,00).
Proof. Let z,y,z € (0,00). Then it is enough to show that the function

fz) = Ba(z + 2)

is increasing on (0, 00). Let u(z) = In f(z). Then

Thus, f(x) is increasing. Hence f(z + y) > f(x) which gives the result (31). O

Theorem 3.11. The function Bq(x) is completely monotonic on (0, c0).

Proof. Tt is easily deduced from (14) that, wém)(m) is increasing if m is even and decreasing if m is odd. Then it follows

1o = o (5 ) - o (5) 2o

for all m € N. This completes the proof. O

from (23) that

Theorem 3.12. The function ,Bém) (z) is subadditive on (0,00) if m is even, and superadditive on (0,00) if m is odd. That
Z‘S7 fOT a:’ y e (07 w)?

B (@ +y) < B () + 5™ (v), if m s even, (32)
and

(24 y) > B (@) + B (), if mois odd. (33)

Proof. Suppose that m is even and let G,(z,y) = ™ (3 + y) — B(m) ) — B(m) y) for x,y € (0,00). Without any loss of
q q q q

generality, let y be fixed. Then,

Gyla,y) = B (@ +y) = B ()

>0

bl

since Bé")(m) is increasing for odd n. Hence, G4(z,y) is increasing. Furthermore,

lim Gy(o,y) = lim {80 (2 +y) - B (2) - B () }

T—r00

= -8 (y)

<0.

Therefore, Gq(z,y) < limz—oo Gq(x,y) < 0 which gives the result (32). Likewise, if m is odd, we obtain G(z,y) < 0 and

Gq(z,y) > limg_00 G¢(x,y) > 0 which gives the result (33). O
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Theorem 3.13. For x € (0,00) and odd m, the function ﬁém)(x) satisfies the following inequalities.
(M (z) <ABM (), i 0<A<T, (34)
and
T O) = A8 (@), i Az L (35)
Proof. Let Ay(z) = B{"™ (Ax) — AB{™ (z) for odd m, x € (0,00) and 0 < A < 1. Then,

() = M {80 Ow) = 5V @)}

>0

ji )

since Bé )(m) is decreasing for even n. Thus, Aq(x) is increasing. Moreover,

lim Ag(2) = lim [55"™ (o) = A85™ ()]

T—r00 T —r00

=0.

Therefore, Aq(z) < limz— oo Aq(z) = 0 which gives the result (34). Similarly, if A > 1, we obtain Aj(z) < 0 and Ag(z) >

limg 00 Ag(z) = 0 yielding the result (35). O

Remark 3.14. Inequality (34) is another way of saying that the function ﬂém(az) is star-shaped if m is odd. Moreover, if

m is even, then the inequalities (34) and (35) are reversed.

Theorem 3.15. Let m,k € Ng such that m and k are even and m > k. Then the Turan-type inequality

e {70 @) )0 {3 @) 2 [ {307 @) )

holds for z € (0,00).

Proof. By applying (24), we obtain

ém_k)(ir) N ﬂém+k)('r) (m)( Yo _ Ing /\/6 l(lnt)m—lctx—l N l(lnt)m-&-ktac—l B (lnt)mtx—l i
2 2 a 1—q/, |2 1+t 2 1+t 1+t K
1 VA (Ing)m—Fkge-t
= _2(1“_‘1q)/ (In )1+t [1+(lnt)2k —2(1nt)’“] dyt
0
_ Ing VA (Int)™ Rt %12
*_2(1—q)/0 T+1¢ [1_(1”) ] dot
> 0.
Thus,
(m—k) (m—+k)
x x m
q2()+q2()2ﬁé)(m)’
and by taking exponents, we obtain the inequality (36). O

4. Concluding Remarks

We have introduced a g-analogue of the classical Nielsen’s -function and further studied some identities, monotonicity and
convexity properties, and some inequalities involving the new function. By letting ¢ — 1 in the present results, we obtain

the corresponding results for the Nielsen’s S-function.
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