International Journal of Marhensatics And its Applications

On a q-analogue of the Nielsen's β-Function

K. Nantomah ${ }^{1, *}$, M. M. Iddrisu ${ }^{1}$ and C. A. Okpoti ${ }^{2}$
1 Department of Mathematics, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana.
2 Department of Mathematics, University of Education, Winneba, Ghana.

Abstract

Motivated by the Jackson's q-integral and the q-digamma function, we introduce a q-analogue of the Nielsen's β-function. We further study some identities, monotonicity and convexity properties, and some inequalities involving the new function.

MSC: $\quad 33 \mathrm{Bxx}, 33 \mathrm{~B} 99,26 \mathrm{~A} 48$.

Keywords: Nielsen's β-function, Jackson's q-integral, q-digamma function, q-analogue, inequality.

1. Introduction

The Nielsen's β-function, which first appeared in [15] is defined as

$$
\begin{align*}
\beta(x) & =\frac{1}{2}\left\{\psi\left(\frac{x+1}{2}\right)-\psi\left(\frac{x}{2}\right)\right\}, \quad x>0 \tag{1}\\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+x}, \quad x>0 \tag{2}
\end{align*}
$$

where $\psi(x)=\frac{d}{d x} \ln \Gamma(x)$ is the digamma or psi function and $\Gamma(x)$ is the Euler's Gamma function. It has the integral representations

$$
\begin{align*}
\beta(x) & =\int_{0}^{1} \frac{t^{x-1}}{1+t} d t, \quad x>0 \tag{3}\\
& =\int_{0}^{\infty} \frac{e^{-x t}}{1+e^{-t}} d t, \quad x>0 \tag{4}
\end{align*}
$$

and satisfies the functional equation

$$
\begin{equation*}
\beta(x+1)=\frac{1}{x}-\beta(x), \quad x>0 \tag{5}
\end{equation*}
$$

Its derivatives are given as [11]

$$
\begin{equation*}
\beta^{(m)}(x)=\frac{1}{2^{m+1}}\left\{\psi^{(m)}\left(\frac{x+1}{2}\right)-\psi^{(m)}\left(\frac{x}{2}\right)\right\}, \quad x>0 \tag{6}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
& =\int_{0}^{1} \frac{(\ln t)^{m} t^{x-1}}{1+t} d t, \quad x>0 \tag{7}\\
& =(-1)^{m} \int_{0}^{\infty} \frac{t^{m} e^{-x t}}{1+e^{-t}} d t, \quad x>0 \tag{8}
\end{align*}
$$
\]

where $m \in \mathbb{N}_{0}$ and $\beta^{(0)}(x)=\beta(x)$. For further information about this special function, one could refer to $[1,2,4,9,11-13]$ and the recent paper [14], where a p-generalization of the function was given. As shown in [1] and [4], the Nielsen's β-function is very useful in evaluating and estimating certain integrals and mathematical constants. Motivated by Jackson's q-integral and the q-digamma function, our objective in this paper is to introduce a q-analogue of the Nielsen's β-function and further study some of its properties. We begin with the following auxiliary definitions.

2. Preliminary Definitions

The q-derivative of a function $f(x)$ is defined as [7]

$$
D_{q} f(x)=\frac{d_{q} f(x)}{d_{q} x}=\frac{f(x)-f(q x)}{(1-q) x}, \quad x \neq 0, q \in(0,1) .
$$

If $f^{\prime}(0)$ exist, then $D_{q} f(0)=f^{\prime}(0)$. Also, $D_{q} f(x) \rightarrow f^{\prime}(x)$ as $q \rightarrow 1^{-}$. The q-derivative satisfies the algebraic properties

$$
\begin{aligned}
D_{q}(a f(x)+b g(x)) & =a D_{q} f(x)+b D_{q} g(x), \\
D_{q}(f(x) g(x)) & =g(x) D_{q} f(x)+f(q x) D_{q} g(x)=f(x) D_{q} g(x)+g(q x) D_{q} f(x), \\
D_{q}\left(\frac{f(x)}{g(x)}\right) & =\frac{g(x) D_{q} f(x)-f(x) D_{q} g(x)}{g(x) g(q x)} .
\end{aligned}
$$

The Jackson's q-integral from 0 to $a, 0$ to ∞ and a to ∞ are respectively defined as [7]

$$
\begin{align*}
& \int_{0}^{a} f(t) d_{q} t=(1-q) a \sum_{k=0}^{\infty} f\left(a q^{k}\right) q^{k}, \tag{9}\\
& \int_{0}^{\infty} f(t) d_{q} t=(1-q) \sum_{k=-\infty}^{\infty} f\left(q^{k}\right) q^{k}, \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{a}^{\infty} f(t) d_{q} t=(1-q) \sum_{k=1}^{\infty} f\left(q^{-k}\right) q^{-k} \tag{11}
\end{equation*}
$$

provided that the sums in (9), (10) and (11) converge absolutely. In a generic interval $[a, b]$, the q-integral takes the form

$$
\int_{a}^{b} f(t) d_{q} t=\int_{0}^{b} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t .
$$

A function $F(t)$ is called a q-antiderivative of $f(t)$ if $D_{q} F(t)=f(t)$. That is, if

$$
F(t)=\int f(t) d_{q} t+C
$$

where C is a constant of integration. The q-analogue of the Gamma function is defined as $[6,7]$

$$
\Gamma_{q}(x)=(1-q)^{1-x} \prod_{n=0}^{\infty} \frac{1-q^{n+1}}{1-q^{n+x}}
$$

where $q \in(0,1)$ and $x>0$. Based on this, the q-analogue of the beta function is given by (see also [3])

$$
B_{q}(x, y)=\frac{\Gamma_{q}(x) \Gamma_{q}(y)}{\Gamma_{q}(x+y)}, \quad x, y>0 .
$$

The q-digamma function, $\psi_{q}(x)$ and the q-polygamma functions, $\psi_{q}^{(m)}(x)$ are defined as [5, 16]

$$
\begin{align*}
\psi_{q}(x)=\frac{d}{d x} \ln \Gamma_{q}(x) & =-\ln (1-q)+\frac{\ln q}{1-q} \int_{0}^{q} \frac{t^{x-1}}{1-t} d_{q} t \tag{12}\\
& =-\ln (1-q)+\ln q \sum_{n=0}^{\infty} \frac{q^{n+x}}{1-q^{n+x}} \\
& =-\ln (1-q)+\ln q \sum_{n=1}^{\infty} \frac{q^{n x}}{1-q^{n}}, \tag{13}\\
\psi_{q}^{(m)}(x)=\frac{d^{m}}{d x^{m}} \psi_{q}(x) & =(\ln q)^{m+1} \sum_{n=1}^{\infty} \frac{n^{m} q^{n x}}{1-q^{n}}, \quad m \in \mathbb{N}_{0} . \tag{14}
\end{align*}
$$

Definition 2.1. A function $f: I \rightarrow \mathbb{R}$ is said to be convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

holds for all $x, y \in I$ and $\lambda \in[0,1]$. If f is twice differentiable, then it is said to be convex if and only if $f^{\prime \prime}(x) \geq 0$ for every $x \in I$.

Definition 2.2. A function $f: I \rightarrow \mathbb{R}^{+}$is said to be logarithmically convex or in short log-convex if $\ln f$ is convex on I. That is if

$$
\ln f(\lambda x+(1-\lambda) y) \leq \lambda \ln f(x)+(1-\lambda) \ln f(y)
$$

or equivalently

$$
f(\lambda x+(1-\lambda) y) \leq(f(x))^{\lambda}(f(y))^{1-\lambda}
$$

for each $x, y \in I$ and $\lambda \in[0,1]$.
Definition 2.3. A function $f: I \rightarrow \mathbb{R}$ is said to be completely monotonic on I if f has derivatives of all order on I and

$$
(-1)^{k} f^{(k)}(x) \geq 0
$$

for $x \in I$ and $k \in \mathbb{N}[17]$.

3. Main Results

In this section, we introduce a q-analogue of the Nielsen's β-function and further study some properties and inequalities involving the new function.

Proposition 3.1. The q-analogue of the Nielsen's β-function is given by the following equivalent definitions.

$$
\begin{align*}
\beta_{q}(x) & =\frac{1}{[2]_{q}}\left\{\psi_{q}\left(\frac{x+1}{2}\right)-\psi_{q}\left(\frac{x}{2}\right)\right\}, \tag{15}\\
& =-\frac{\ln q}{1-q} \int_{0}^{\sqrt{q}} \frac{t^{x-1}}{1+t} d_{q} t, \tag{16}\\
& =-\frac{\ln q}{1-q} \int_{-\ln \sqrt{q}}^{\infty} \frac{e^{-x t}}{1+e^{-t}}\left(\frac{e^{t-q t}-1}{t-q t}\right) d_{q} t, \tag{17}
\end{align*}
$$

where $x>0, q \in(0,1)$ and $[x]_{q}=\frac{1-q^{x}}{1-q}$. It follows that, $\beta_{q}(x) \rightarrow \beta(x)$ as $q \rightarrow 1$.

Proof. By using relation (12), we obtain

$$
\begin{aligned}
\psi_{q}\left(\frac{x+1}{2}\right)-\psi_{q}\left(\frac{x}{2}\right) & =\frac{\ln q}{1-q}\left\{\int_{0}^{q} \frac{t^{\frac{x}{2}-\frac{1}{2}}}{1-t} d_{q} t-\int_{0}^{q} \frac{t^{\frac{x}{2}-1}}{1-t} d_{q} t\right\} \\
& =\frac{\ln q}{1-q} \int_{0}^{q} \frac{t^{\frac{x}{2}}}{1-t}\left(\frac{1}{\sqrt{t}}-\frac{1}{t}\right) d_{q} t \\
& =-\frac{\ln q}{1-q} \int_{0}^{q} \frac{t^{\frac{x}{2}-1}}{1-t}(1-\sqrt{t}) d_{q} t \\
& =-\frac{\ln q}{1-q} \int_{0}^{q} \frac{t^{\frac{x}{2}-1}}{1+\sqrt{t}} d_{q} t \\
& =-[2]_{q} \frac{\ln q}{1-q} \int_{0}^{\sqrt{q}} \frac{u^{x-1}}{1+u} d_{q} u
\end{aligned}
$$

Hence (15) implies (16). In this proof, we made the substitution $t=u^{2}$ which implies that, $d_{q} t=(1+q) u d_{q} u=[2]_{q} u d_{q} u$. Similarly, by replacing t by e^{-t} in (16), we obtain (17).

Proposition 3.2. The function $\beta_{q}(x)$ satisfies the following series representations.

$$
\begin{align*}
\beta_{q}(x) & =-\frac{\ln q}{[2]_{q}} \sum_{n=1}^{\infty} \frac{q^{\frac{n x}{2}}}{1+q^{\frac{n}{2}}}, \tag{18}\\
& =-\ln q \sum_{k=0}^{\infty} \frac{q^{\left(k+\frac{1}{2}\right) x}}{1+q^{k+\frac{1}{2}}} . \tag{19}
\end{align*}
$$

Proof. By using (15) with (13), we obtain

$$
\begin{aligned}
\beta_{q}(x)=\frac{1}{[2]_{q}}\left\{\psi_{q}\left(\frac{x+1}{2}\right)-\psi_{q}\left(\frac{x}{2}\right)\right\} & =\frac{\ln q}{[2]_{q}} \sum_{n=1}^{\infty}\left[\frac{q^{\frac{n x}{2}}+\frac{n}{2}}{1-q^{n}}-\frac{q^{\frac{n x}{2}}}{1-q^{n}}\right] \\
& =\frac{\ln q}{[2]_{q}} \sum_{n=1}^{\infty} \frac{q^{\frac{n x}{2}}\left(q^{\frac{n}{2}}-1\right)}{1-q^{n}} \\
& =-\frac{\ln q}{[2]_{q}} \sum_{n=1}^{\infty} \frac{q^{\frac{n x}{2}}\left(1-q^{\frac{n}{2}}\right)}{1-q^{n}} \\
& =-\frac{\ln q}{[2]_{q}} \sum_{n=1}^{\infty} \frac{q^{\frac{n x}{2}}\left(1-q^{\frac{n}{2}}\right)}{\left(1-q^{\frac{n}{2}}\right)\left(1+q^{\frac{n}{2}}\right)} \\
& =-\frac{\ln q}{[2]_{q}} \sum_{n=1}^{\infty} \frac{q^{\frac{n x}{2}}}{1+q^{\frac{n}{2}}},
\end{aligned}
$$

which gives (18). Also, by using (16) with (9), we obtain

$$
\begin{aligned}
\beta_{q}(x) & =-\frac{\ln q}{1-q} \int_{0}^{\sqrt{q}} \frac{t^{x-1}}{1+t} d_{q} t \\
& =-\frac{\ln q}{1-q}(1-q) q^{\frac{1}{2}} \sum_{k=0}^{\infty} \frac{\left(q^{k+\frac{1}{2}}\right)^{x-1}}{1+q^{k+\frac{1}{2}}} q^{k} \\
& =-\ln q \sum_{k=0}^{\infty} \frac{q^{\left(k+\frac{1}{2}\right) x}}{1+q^{k+\frac{1}{2}}},
\end{aligned}
$$

which gives (19).
Proposition 3.3. The function $\beta_{q}(x)$ is connected to the q-beta function, $B_{q}(x, y)$ by the identity

$$
\begin{equation*}
\beta_{q}(x)=-\frac{2}{[2]_{q}} \frac{d}{d x}\left\{\ln B_{q}\left(\frac{x}{2}, \frac{1}{2}\right)\right\} . \tag{20}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
-\frac{2}{[2]_{q}} \frac{d}{d x}\left\{\ln B_{q}\left(\frac{x}{2}, \frac{1}{2}\right)\right\} & =-\frac{2}{[2]_{q}}\left\{\frac{1}{2} \frac{\Gamma_{q}^{\prime}\left(\frac{x}{2}\right)}{\Gamma_{q}\left(\frac{x}{2}\right)}-\frac{1}{2} \frac{\Gamma_{q}^{\prime}\left(\frac{x+1}{2}\right)}{\Gamma_{q}\left(\frac{x+1}{2}\right)}\right\} \\
& =\frac{1}{[2]_{q}}\left\{\psi_{q}\left(\frac{x+1}{2}\right)-\psi_{q}\left(\frac{x}{2}\right)\right\} \\
& =\beta_{q}(x)
\end{aligned}
$$

which gives the desired result.

Proposition 3.4. The function $\beta_{q}(x)$ satisfies the functional equation

$$
\begin{equation*}
\beta_{q}(x+1)=-\frac{(\ln q) q^{\frac{x}{2}}}{1-q^{x}}-\beta_{q}(x) . \tag{21}
\end{equation*}
$$

Proof. By (16) and (9), we obtain

$$
\begin{aligned}
\beta_{q}(x+1)+\beta_{q}(x) & =-\frac{\ln q}{1-q} \int_{0}^{\sqrt{q}} \frac{t^{x}+t^{x-1}}{1+t} d_{q} t \\
& =-\frac{\ln q}{1-q} \int_{0}^{\sqrt{q}} t^{x-1} d_{q} t \\
& =-\frac{\ln q}{1-q}\left\{(1-q) q^{\frac{x}{2}} \sum_{n=0}^{\infty} q^{n x}\right\} \\
& =-\frac{(\ln q) q^{\frac{x}{2}}}{1-q^{x}}
\end{aligned}
$$

Notice that, since $q \in(0,1)$, then $q^{x}<1$ for $x>0$. Hence $\sum_{n=0}^{\infty} q^{n x}=\frac{1}{1-q^{x}}$.
Remark 3.5. By repeated applications of (21), we obtain the generalized form

$$
\begin{equation*}
\beta_{q}(x+n)=(\ln q) \sum_{k=0}^{n-1} \frac{(-1)^{n+k} q^{\frac{x+k}{2}}}{1-q^{x+k}}+(-1)^{n} \beta_{q}(x), \tag{22}
\end{equation*}
$$

where $n \in \mathbb{N}$.

Also, by repeated differentiations of (15), (16) and (17), we obtain respectively

$$
\begin{align*}
\beta_{q}^{(m)}(x) & =\frac{1}{[2]_{q^{m}}}\left\{\psi_{q}^{(m)}\left(\frac{x+1}{2}\right)-\psi_{q}^{(m)}\left(\frac{x}{2}\right)\right\}, \tag{23}\\
& =-\frac{\ln q}{1-q} \int_{0}^{\sqrt{q}} \frac{(\ln t)^{m} t^{x-1}}{1+t} d_{q} t, \tag{24}\\
& =(-1)^{m+1} \frac{\ln q}{1-q} \int_{-\ln \sqrt{q}}^{\infty} \frac{t^{m} e^{-x t}}{1+e^{-t}}\left(\frac{e^{t-q t}-1}{t-q t}\right) d_{q} t, \tag{25}
\end{align*}
$$

where $m \in \mathbb{N}_{0}, \beta_{q}^{(0)}(x)=\beta_{q}(x)$ and $\beta_{q}^{(m)}(x) \rightarrow \beta^{(m)}(x)$ as $q \rightarrow 1$. It can easily be deduced from above that:
(a). $\beta_{q}(x)$ is positive and decreasing,
(b). $\beta_{q}^{(m)}(x)$ is positive and decreasing if $m \in \mathbb{N}_{\mathrm{O}}$ is even,
(c). $\beta_{q}^{(m)}(x)$ is negative and increasing if $m \in \mathbb{N}_{0}$ is odd.

Remark 3.6. Furthermore, differentiating m-times of (21) implies

$$
\begin{equation*}
\beta_{q}^{(m)}(x+1)=-\frac{d^{m}}{d x^{m}}\left\{\frac{(\ln q) q^{\frac{x}{2}}}{1-q^{x}}\right\}-\beta_{q}^{(m)}(x), \quad m \in \mathbb{N}_{0} \tag{26}
\end{equation*}
$$

and in particular,

$$
\begin{equation*}
\beta_{q}^{\prime}(x+1)=-\frac{(\ln q)^{2} q^{\frac{x}{2}}}{\left(1-q^{x}\right)^{2}}\left(1+q^{x}\right)-\beta_{q}^{\prime}(x) \tag{27}
\end{equation*}
$$

As an immediate consequence of (21) and (27), we obtain the bounds

$$
\begin{align*}
\beta_{q}(x) & <-\frac{(\ln q) q^{\frac{x}{2}}}{1-q^{x}}, \tag{28}\\
-\frac{(\ln q)^{2} q^{\frac{x}{2}}}{2\left(1-q^{x}\right)^{2}}\left(1+q^{x}\right) & <\beta_{q}^{\prime}(x) . \tag{29}
\end{align*}
$$

Theorem 3.7. The function $\beta_{q}(x)$ is logarithmically convex on $(0, \infty)$.
Proof. Let $x, y \in(0, \infty), a>1$ and $\frac{1}{a}+\frac{1}{b}=1$. Then by (16) and the q-Hölder's inequality (see [8], [10]), we obtain

$$
\begin{aligned}
\beta_{q}\left(\frac{x}{a}+\frac{y}{b}\right) & =-\frac{\ln q}{1-q} \int_{0}^{\sqrt{q}} \frac{t^{\frac{x}{a}+\frac{y}{b}-1}}{1+t} d_{q} t \\
& =-\frac{\ln q}{1-q} \int_{0}^{\sqrt{q}} \frac{t^{\frac{x-1}{a}}}{(1+t)^{\frac{1}{a}}} \frac{t^{\frac{y-1}{b}}}{(1+t)^{\frac{1}{b}}} d_{q} t \\
& \leq-\frac{\ln q}{1-q}\left(\int_{0}^{\sqrt{q}} \frac{t^{x-1}}{1+t} d_{q} t\right)^{\frac{1}{a}}\left(\int_{0}^{\sqrt{q}} \frac{t^{y-1}}{1+t} d_{q} t\right)^{\frac{1}{b}} \\
& =\left(-\frac{\ln q}{1-q} \int_{0}^{\sqrt{q}} \frac{t^{x-1}}{1+t} d_{q} t\right)^{\frac{1}{a}}\left(-\frac{\ln q}{1-q} \int_{0}^{\sqrt{q}} \frac{t^{y-1}}{1+t} d_{q} t\right)^{\frac{1}{b}} \\
& =\left[\beta_{q}(x)\right]^{\frac{1}{a}}\left[\beta_{q}(y)\right]^{\frac{1}{b}},
\end{aligned}
$$

which completes the proof.
Remark 3.8. Log-convexity of $\beta_{q}(x)$ implies that:
(a). $\beta_{q}(x) \beta_{q}^{\prime \prime}(x)-\left(\beta_{q}^{\prime}(x)\right)^{2} \geq 0$, for $x \in(0, \infty)$,
(b). the function $\frac{\beta_{q}^{\prime}(x)}{\beta_{q}(x)}$ is increasing on $(0, \infty)$.

Theorem 3.9. For $x, y \in(0, \infty)$, the function $\beta_{q}(x)$ satisfies the inequality

$$
\begin{equation*}
\beta_{q}(x+1) \beta_{q}(y+1) \leq M_{q} \cdot \beta_{q}(x+y+1), \tag{30}
\end{equation*}
$$

where $M_{q}=-\frac{\ln q}{[2] q} \sum_{n=1}^{\infty} \frac{q^{\frac{n}{2}}}{1+q^{\frac{n}{2}}}$.
Proof. Let f be defined for $x, y \in(0, \infty)$ by

$$
f(x, y)=\frac{\beta_{q}(x+1) \beta_{q}(y+1)}{\beta_{q}(x+y+1)}
$$

and

$$
g(x, y)=\ln f(x, y)=\ln \beta_{q}(x+1)+\ln \beta_{q}(y+1)-\ln \beta_{q}(x+y+1) .
$$

Then for a fixed y, we obtain

$$
g^{\prime}(x, y)=\frac{\beta_{q}^{\prime}(x+1)}{\beta_{q}(x+1)}-\frac{\beta_{q}^{\prime}(x+y+1)}{\beta_{q}(x+y+1)} \leq 0,
$$

since $\frac{\beta_{q}^{\prime}(x)}{\beta_{q}(x)}$ is increasing. Thus, $g(x, y)$ as well as $f(x, y)$ are decreasing. Then for $x>0$, we obtain $f(x, y) \leq f(0, y)$ yielding

$$
\frac{\beta_{q}(x+1) \beta_{q}(y+1)}{\beta_{q}(x+y+1)} \leq \beta_{q}(1)=-\frac{\ln q}{[2]_{q}} \sum_{n=1}^{\infty} \frac{q^{\frac{n}{2}}}{1+q^{\frac{n}{2}}}=M_{q}
$$

which completes the proof.

Theorem 3.10. The inequality

$$
\begin{equation*}
\beta_{q}(x) \beta_{q}(x+y+z)-\beta_{q}(x+y) \beta_{q}(x+z) \geq 0 \tag{31}
\end{equation*}
$$

holds for $x, y, z \in(0, \infty)$.
Proof. Let $x, y, z \in(0, \infty)$. Then it is enough to show that the function

$$
f(x)=\frac{\beta_{q}(x+z)}{\beta_{q}(x)},
$$

is increasing on $(0, \infty)$. Let $u(x)=\ln f(x)$. Then

$$
u^{\prime}(x)=\frac{\beta_{q}^{\prime}(x+z)}{\beta_{q}(x+z)}-\frac{\beta_{q}^{\prime}(x)}{\beta_{q}(x)} \geq 0 .
$$

Thus, $f(x)$ is increasing. Hence $f(x+y) \geq f(x)$ which gives the result (31).

Theorem 3.11. The function $\beta_{q}(x)$ is completely monotonic on $(0, \infty)$.
Proof. It is easily deduced from (14) that, $\psi_{q}^{(m)}(x)$ is increasing if m is even and decreasing if m is odd. Then it follows from (23) that

$$
(-1)^{m} \beta_{q}^{(m)}(x)=\frac{(-1)^{m}}{[2]_{q} 2^{m}}\left\{\psi_{q}^{(m)}\left(\frac{x+1}{2}\right)-\psi_{q}^{(m)}\left(\frac{x}{2}\right)\right\} \geq 0
$$

for all $m \in \mathbb{N}$. This completes the proof.

Theorem 3.12. The function $\beta_{q}^{(m)}(x)$ is subadditive on $(0, \infty)$ if m is even, and superadditive on $(0, \infty)$ if m is odd. That $i s$, for $x, y \in(0, \infty)$,

$$
\begin{equation*}
\beta_{q}^{(m)}(x+y) \leq \beta_{q}^{(m)}(x)+\beta_{q}^{(m)}(y), \quad \text { if } m \text { is even, } \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{q}^{(m)}(x+y) \geq \beta_{q}^{(m)}(x)+\beta_{q}^{(m)}(y), \quad \text { if } m \text { is odd. } \tag{33}
\end{equation*}
$$

Proof. Suppose that m is even and let $G_{q}(x, y)=\beta_{q}^{(m)}(x+y)-\beta_{q}^{(m)}(x)-\beta_{q}^{(m)}(y)$ for $x, y \in(0, \infty)$. Without any loss of generality, let y be fixed. Then,

$$
\begin{aligned}
G_{q}^{\prime}(x, y) & =\beta_{q}^{(m+1)}(x+y)-\beta_{q}^{(m+1)}(x) \\
& \geq 0,
\end{aligned}
$$

since $\beta_{q}^{(n)}(x)$ is increasing for odd n. Hence, $G_{q}(x, y)$ is increasing. Furthermore,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} G_{q}(x, y) & =\lim _{x \rightarrow \infty}\left\{\beta_{q}^{(m)}(x+y)-\beta_{q}^{(m)}(x)-\beta_{q}^{(m)}(y)\right\} \\
& =-\beta_{q}^{(m)}(y) \\
& \leq 0
\end{aligned}
$$

Therefore, $G_{q}(x, y) \leq \lim _{x \rightarrow \infty} G_{q}(x, y) \leq 0$ which gives the result (32). Likewise, if m is odd, we obtain $G_{q}^{\prime}(x, y) \leq 0$ and $G_{q}(x, y) \geq \lim _{x \rightarrow \infty} G_{q}(x, y) \geq 0$ which gives the result (33).

Theorem 3.13. For $x \in(0, \infty)$ and odd m, the function $\beta_{q}^{(m)}(x)$ satisfies the following inequalities.

$$
\begin{equation*}
\beta_{q}^{(m)}(\lambda x) \leq \lambda \beta_{q}^{(m)}(x), \quad \text { if } \quad 0<\lambda \leq 1, \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{q}^{(m)}(\lambda x) \geq \lambda \beta_{q}^{(m)}(x), \quad \text { if } \quad \lambda \geq 1 . \tag{35}
\end{equation*}
$$

Proof. Let $A_{q}(x)=\beta_{q}^{(m)}(\lambda x)-\lambda \beta_{q}^{(m)}(x)$ for odd $m, x \in(0, \infty)$ and $0<\lambda \leq 1$. Then,

$$
\begin{aligned}
A_{q}^{\prime}(x) & =\lambda\left\{\beta_{q}^{(m+1)}(\lambda x)-\beta_{q}^{(m+1)}(x)\right\} \\
& \geq 0,
\end{aligned}
$$

since $\beta_{q}^{(n)}(x)$ is decreasing for even n. Thus, $A_{q}(x)$ is increasing. Moreover,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} A_{q}(x) & =\lim _{x \rightarrow \infty}\left[\beta_{q}^{(m)}(\lambda x)-\lambda \beta_{q}^{(m)}(x)\right] \\
& =0
\end{aligned}
$$

Therefore, $A_{q}(x) \leq \lim _{x \rightarrow \infty} A_{q}(x)=0$ which gives the result (34). Similarly, if $\lambda \geq 1$, we obtain $A_{q}^{\prime}(x) \leq 0$ and $A_{q}(x) \geq$ $\lim _{x \rightarrow \infty} A_{q}(x)=0$ yielding the result (35).

Remark 3.14. Inequality (34) is another way of saying that the function $\beta_{q}^{(m)}(x)$ is star-shaped if m is odd. Moreover, if m is even, then the inequalities (34) and (35) are reversed.

Theorem 3.15. Let $m, k \in \mathbb{N}_{0}$ such that m and k are even and $m \geq k$. Then the Turan-type inequality

$$
\begin{equation*}
\exp \left\{\beta_{q}^{(m-k)}(x)\right\} \cdot \exp \left\{\beta_{q}^{(m+k)}(x)\right\} \geq\left[\exp \left\{\beta_{q}^{(m)}(x)\right\}\right]^{2} \tag{36}
\end{equation*}
$$

holds for $x \in(0, \infty)$.
Proof. By applying (24), we obtain

$$
\begin{aligned}
\frac{\beta_{q}^{(m-k)}(x)}{2}+\frac{\beta_{q}^{(m+k)}(x)}{2}-\beta_{q}^{(m)}(x) & =-\frac{\ln q}{1-q} \int_{0}^{\sqrt{q}}\left[\frac{1}{2} \frac{(\ln t)^{m-k} t^{x-1}}{1+t}+\frac{1}{2} \frac{(\ln t)^{m+k} t^{x-1}}{1+t}-\frac{(\ln t)^{m} t^{x-1}}{1+t}\right] d_{q} t \\
& =-\frac{\ln q}{2(1-q)} \int_{0}^{\sqrt{q}} \frac{(\ln t)^{m-k} t^{x-1}}{1+t}\left[1+(\ln t)^{2 k}-2(\ln t)^{k}\right] d_{q} t \\
& =-\frac{\ln q}{2(1-q)} \int_{0}^{\sqrt{q}} \frac{(\ln t)^{m-k} t^{x-1}}{1+t}\left[1-(\ln t)^{k}\right]^{2} d_{q} t \\
& \geq 0 .
\end{aligned}
$$

Thus,

$$
\frac{\beta_{q}^{(m-k)}(x)}{2}+\frac{\beta_{q}^{(m+k)}(x)}{2} \geq \beta_{q}^{(m)}(x),
$$

and by taking exponents, we obtain the inequality (36).

4. Concluding Remarks

We have introduced a q-analogue of the classical Nielsen's β-function and further studied some identities, monotonicity and convexity properties, and some inequalities involving the new function. By letting $q \rightarrow 1$ in the present results, we obtain the corresponding results for the Nielsen's β-function.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] K. N. Boyadzhiev, L. A. Medina, and V. H. Moll, The integrals in Gradshteyn and Ryzhik. Part 11: The incomplete beta function, Scientia, Ser. A, Math. Sci., 18(2009), 61-75.
[2] D. F. Connon, On an integral involving the digamma function, arXiv:1212.1432 [math.GM].
[3] G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, (1990).
[4] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Edited by D. Zwillinger and V. Moll. Academic Press, New York, 8th Edition, (2014).
[5] M. E. H. Ismail and M. E. Muldoon, Inequalities and monotonicity properties for gamma and q-gamma functions, arXiv:1301.1749v1 [math.CA].
[6] F. H. Jackson, A generalization of the functions $\Gamma(n)$ and x^{n}, Proc. Roy. Soc. London., 74 (1904), 64-72.
[7] F. H. Jackson, On a q-definite integrals, Quart. J. Pure and Applied Math., (41)(1910), 193-203.
[8] V. Krasniqi, T. Mansour and A. Sh. Shabani, Some inequalities for q-polygamma function and ζ_{q}-Riemann zeta functions, Ann. Math. Inform., 37(2010), 95-100.
[9] L. Medina and V. Moll, The integrals in Gradshteyn and Ryzhik. Part 10: The digamma function, Scientia, Ser. A, Math. Sci., 17(2009), 45-66.
[10] K. Nantomah, Generalized Hölders and Minkowskis Inequalities for Jacksons q-Integral and Some Applications to the Incomplete q-Gamma Function, Abstr. Appl. Anal., 2017(2017), Art ID: 9796873.
[11] K. Nantomah, On Some Properties and Inequalities for the Nielsen's β-Function, arXiv:1708.06604v1 [math.CA], 12 pages.
[12] K. Nantomah, Monotonicity and Convexity Properties of the Nielsen's β-Function, Probl. Anal. Issues Anal., 6(24)(2)(2017), 81-93.
[13] K. Nantomah, Monotonicity and convexity properties and some inequalities involving a generalized form of the Wallis, cosine formula, Asian Research Journal of Mathematics, 6(3)(2017), 1-10.
[14] K. Nantomah, A generalization of the Nielsen's β-function, Int. J. Open Problems Compt. Math., 11(2)(2018), 16-26.
[15] N. Nielsen, Handbuch der Theorie der Gammafunktion, First Edition, Leipzig : B. G. Teubner, (1906).
[16] F. Qi, A completely monotonic function related to the q-trigamma function, U.P.B. Sci. Bull., Series A, 76(1)(2014), 107-114.
[17] D. V. Widder, The Laplace Transform, Princeton Mathematical Series 6, Princeton University Press, (1946).

[^0]: * E-mail: knantomah@uds.edu.gh

