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1. Introduction

The Nielsen’s β-function, which first appeared in [15] is defined as

β(x) =
1

2

{
ψ

(
x+ 1

2

)
− ψ

(x
2

)}
, x > 0, (1)

=

∞∑
k=0

(−1)k

k + x
, x > 0, (2)

where ψ(x) = d
dx

ln Γ(x) is the digamma or psi function and Γ(x) is the Euler’s Gamma function. It has the integral

representations

β(x) =

∫ 1

0

tx−1

1 + t
dt, x > 0, (3)

=

∫ ∞
0

e−xt

1 + e−t
dt, x > 0, (4)

and satisfies the functional equation

β(x+ 1) =
1

x
− β(x), x > 0. (5)

Its derivatives are given as [11]

β(m)(x) =
1

2m+1

{
ψ(m)

(
x+ 1

2

)
− ψ(m)

(x
2

)}
, x > 0, (6)

∗ E-mail: knantomah@uds.edu.gh

163

http://ijmaa.in/


On a q-analogue of the Nielsen’s β-Function

=

∫ 1

0

(ln t)mtx−1

1 + t
dt, x > 0, (7)

= (−1)m
∫ ∞
0

tme−xt

1 + e−t
dt, x > 0, (8)

where m ∈ N0 and β(0)(x) = β(x). For further information about this special function, one could refer to [1, 2, 4, 9, 11–13]

and the recent paper [14], where a p-generalization of the function was given. As shown in [1] and [4], the Nielsen’s β-function

is very useful in evaluating and estimating certain integrals and mathematical constants. Motivated by Jackson’s q-integral

and the q-digamma function, our objective in this paper is to introduce a q-analogue of the Nielsen’s β-function and further

study some of its properties. We begin with the following auxiliary definitions.

2. Preliminary Definitions

The q-derivative of a function f(x) is defined as [7]

Dqf(x) =
dqf(x)

dqx
=
f(x)− f(qx)

(1− q)x , x 6= 0, q ∈ (0, 1).

If f ′(0) exist, then Dqf(0) = f ′(0). Also, Dqf(x)→ f ′(x) as q → 1−. The q-derivative satisfies the algebraic properties

Dq (af(x) + bg(x)) = aDqf(x) + bDqg(x),

Dq (f(x)g(x)) = g(x)Dqf(x) + f(qx)Dqg(x) = f(x)Dqg(x) + g(qx)Dqf(x),

Dq

(
f(x)

g(x)

)
=
g(x)Dqf(x)− f(x)Dqg(x)

g(x)g(qx)
.

The Jackson’s q-integral from 0 to a, 0 to ∞ and a to ∞ are respectively defined as [7]

∫ a

0

f(t) dqt = (1− q)a
∞∑
k=0

f(aqk)qk, (9)

∫ ∞
0

f(t) dqt = (1− q)
∞∑

k=−∞

f(qk)qk, (10)

and ∫ ∞
a

f(t) dqt = (1− q)
∞∑
k=1

f(q−k)q−k, (11)

provided that the sums in (9), (10) and (11) converge absolutely. In a generic interval [a, b], the q-integral takes the form

∫ b

a

f(t) dqt =

∫ b

0

f(t) dqt−
∫ a

0

f(t) dqt.

A function F (t) is called a q-antiderivative of f(t) if DqF (t) = f(t). That is, if

F (t) =

∫
f(t) dqt+ C,

where C is a constant of integration. The q-analogue of the Gamma function is defined as [6, 7]

Γq(x) = (1− q)1−x
∞∏
n=0

1− qn+1

1− qn+x ,
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where q ∈ (0, 1) and x > 0. Based on this, the q-analogue of the beta function is given by (see also [3])

Bq(x, y) =
Γq(x)Γq(y)

Γq(x+ y)
, x, y > 0.

The q-digamma function, ψq(x) and the q-polygamma functions, ψ
(m)
q (x) are defined as [5, 16]

ψq(x) =
d

dx
ln Γq(x) = − ln(1− q) +

ln q

1− q

∫ q

0

tx−1

1− t dqt (12)

= − ln(1− q) + ln q

∞∑
n=0

qn+x

1− qn+x

= − ln(1− q) + ln q

∞∑
n=1

qnx

1− qn , (13)

ψ(m)
q (x) =

dm

dxm
ψq(x) = (ln q)m+1

∞∑
n=1

nmqnx

1− qn , m ∈ N0. (14)

Definition 2.1. A function f : I → R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

holds for all x, y ∈ I and λ ∈ [0, 1]. If f is twice differentiable, then it is said to be convex if and only if f ′′(x) ≥ 0 for every

x ∈ I.

Definition 2.2. A function f : I → R+ is said to be logarithmically convex or in short log-convex if ln f is convex on I.

That is if

ln f(λx+ (1− λ)y) ≤ λ ln f(x) + (1− λ) ln f(y)

or equivalently

f(λx+ (1− λ)y) ≤ (f(x))λ(f(y))1−λ

for each x, y ∈ I and λ ∈ [0, 1].

Definition 2.3. A function f : I → R is said to be completely monotonic on I if f has derivatives of all order on I and

(−1)kf (k)(x) ≥ 0

for x ∈ I and k ∈ N [17].

3. Main Results

In this section, we introduce a q-analogue of the Nielsen’s β-function and further study some properties and inequalities

involving the new function.

Proposition 3.1. The q-analogue of the Nielsen’s β-function is given by the following equivalent definitions.

βq(x) =
1

[2]q

{
ψq

(
x+ 1

2

)
− ψq

(x
2

)}
, (15)

= − ln q

1− q

∫ √q
0

tx−1

1 + t
dqt, (16)

= − ln q

1− q

∫ ∞
− ln
√
q

e−xt

1 + e−t

(
et−qt − 1

t− qt

)
dqt, (17)

where x > 0, q ∈ (0, 1) and [x]q = 1−qx
1−q . It follows that, βq(x)→ β(x) as q → 1.
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Proof. By using relation (12), we obtain

ψq

(
x+ 1

2

)
− ψq

(x
2

)
=

ln q

1− q

{∫ q

0

t
x
2
− 1

2

1− t dqt−
∫ q

0

t
x
2
−1

1− t dqt

}

=
ln q

1− q

∫ q

0

t
x
2

1− t

(
1√
t
− 1

t

)
dqt

= − ln q

1− q

∫ q

0

t
x
2
−1

1− t (1−
√
t) dqt

= − ln q

1− q

∫ q

0

t
x
2
−1

1 +
√
t
dqt

= −[2]q
ln q

1− q

∫ √q
0

ux−1

1 + u
dqu.

Hence (15) implies (16). In this proof, we made the substitution t = u2 which implies that, dqt = (1 + q)udqu = [2]qudqu.

Similarly, by replacing t by e−t in (16), we obtain (17).

Proposition 3.2. The function βq(x) satisfies the following series representations.

βq(x) = − ln q

[2]q

∞∑
n=1

q
nx
2

1 + q
n
2
, (18)

= − ln q

∞∑
k=0

q(k+
1
2
)x

1 + qk+
1
2

. (19)

Proof. By using (15) with (13), we obtain

βq(x) =
1

[2]q

{
ψq

(
x+ 1

2

)
− ψq

(x
2

)}
=

ln q

[2]q

∞∑
n=1

[
q

nx
2

+n
2

1− qn −
q

nx
2

1− qn

]

=
ln q

[2]q

∞∑
n=1

q
nx
2

(
q

n
2 − 1

)
1− qn

= − ln q

[2]q

∞∑
n=1

q
nx
2

(
1− q

n
2

)
1− qn

= − ln q

[2]q

∞∑
n=1

q
nx
2

(
1− q

n
2

)
(1− q n

2 )(1 + q
n
2 )

= − ln q

[2]q

∞∑
n=1

q
nx
2

1 + q
n
2
,

which gives (18). Also, by using (16) with (9), we obtain

βq(x) = − ln q

1− q

∫ √q
0

tx−1

1 + t
dqt

= − ln q

1− q (1− q)q
1
2

∞∑
k=0

(
qk+

1
2

)x−1

1 + qk+
1
2

qk

= − ln q

∞∑
k=0

q(k+
1
2
)x

1 + qk+
1
2

,

which gives (19).

Proposition 3.3. The function βq(x) is connected to the q-beta function, Bq(x, y) by the identity

βq(x) = − 2

[2]q

d

dx

{
lnBq

(
x

2
,

1

2

)}
. (20)
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Proof. We have

− 2

[2]q

d

dx

{
lnBq

(
x

2
,

1

2

)}
= − 2

[2]q

{
1

2

Γ′q
(
x
2

)
Γq
(
x
2

) − 1

2

Γ′q
(
x+1
2

)
Γq
(
x+1
2

)}

=
1

[2]q

{
ψq

(
x+ 1

2

)
− ψq

(x
2

)}
= βq(x)

which gives the desired result.

Proposition 3.4. The function βq(x) satisfies the functional equation

βq(x+ 1) = − (ln q)q
x
2

1− qx − βq(x). (21)

Proof. By (16) and (9), we obtain

βq(x+ 1) + βq(x) = − ln q

1− q

∫ √q
0

tx + tx−1

1 + t
dqt

= − ln q

1− q

∫ √q
0

tx−1 dqt

= − ln q

1− q

{
(1− q)q

x
2

∞∑
n=0

qnx
}

= − (ln q)q
x
2

1− qx .

Notice that, since q ∈ (0, 1), then qx < 1 for x > 0. Hence
∞∑
n=0

qnx = 1
1−qx .

Remark 3.5. By repeated applications of (21), we obtain the generalized form

βq(x+ n) = (ln q)

n−1∑
k=0

(−1)n+kq
x+k
2

1− qx+k + (−1)nβq(x), (22)

where n ∈ N.

Also, by repeated differentiations of (15), (16) and (17), we obtain respectively

β(m)
q (x) =

1

[2]q2m

{
ψ(m)
q

(
x+ 1

2

)
− ψ(m)

q

(x
2

)}
, (23)

= − ln q

1− q

∫ √q
0

(ln t)mtx−1

1 + t
dqt, (24)

= (−1)m+1 ln q

1− q

∫ ∞
− ln
√
q

tme−xt

1 + e−t

(
et−qt − 1

t− qt

)
dqt, (25)

where m ∈ N0, β
(0)
q (x) = βq(x) and β

(m)
q (x)→ β(m)(x) as q → 1. It can easily be deduced from above that:

(a). βq(x) is positive and decreasing,

(b). β
(m)
q (x) is positive and decreasing if m ∈ N0 is even,

(c). β
(m)
q (x) is negative and increasing if m ∈ N0 is odd.
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Remark 3.6. Furthermore, differentiating m-times of (21) implies

β(m)
q (x+ 1) = − dm

dxm

{
(ln q)q

x
2

1− qx

}
− β(m)

q (x), m ∈ N0, (26)

and in particular,

β′q(x+ 1) = − (ln q)2q
x
2

(1− qx)2
(1 + qx)− β′q(x). (27)

As an immediate consequence of (21) and (27), we obtain the bounds

βq(x) < − (ln q)q
x
2

1− qx , (28)

− (ln q)2q
x
2

2(1− qx)2
(1 + qx) < β′q(x). (29)

Theorem 3.7. The function βq(x) is logarithmically convex on (0,∞).

Proof. Let x, y ∈ (0,∞), a > 1 and 1
a

+ 1
b

= 1. Then by (16) and the q-Hölder’s inequality (see [8], [10]), we obtain

βq
(x
a

+
y

b

)
= − ln q

1− q

∫ √q
0

t
x
a
+ y

b
−1

1 + t
dqt

= − ln q

1− q

∫ √q
0

t
x−1
a

(1 + t)
1
a

t
y−1
b

(1 + t)
1
b

dqt

≤ − ln q

1− q

(∫ √q
0

tx−1

1 + t
dqt

) 1
a
(∫ √q

0

ty−1

1 + t
dqt

) 1
b

=

(
− ln q

1− q

∫ √q
0

tx−1

1 + t
dqt

) 1
a
(
− ln q

1− q

∫ √q
0

ty−1

1 + t
dqt

) 1
b

= [βq(x)]
1
a [βq(y)]

1
b ,

which completes the proof.

Remark 3.8. Log-convexity of βq(x) implies that:

(a). βq(x)β′′q (x)−
(
β′q(x)

)2 ≥ 0, for x ∈ (0,∞),

(b). the function
β′q(x)

βq(x)
is increasing on (0,∞).

Theorem 3.9. For x, y ∈ (0,∞), the function βq(x) satisfies the inequality

βq(x+ 1)βq(y + 1) ≤Mq · βq(x+ y + 1), (30)

where Mq = − ln q
[2]q

∞∑
n=1

q
n
2

1+q
n
2

.

Proof. Let f be defined for x, y ∈ (0,∞) by

f(x, y) =
βq(x+ 1)βq(y + 1)

βq(x+ y + 1)
,

and

g(x, y) = ln f(x, y) = lnβq(x+ 1) + lnβq(y + 1)− lnβq(x+ y + 1).

Then for a fixed y, we obtain

g′(x, y) =
β′q(x+ 1)

βq(x+ 1)
−
β′q(x+ y + 1)

βq(x+ y + 1)
≤ 0,
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since
β′q(x)

βq(x)
is increasing. Thus, g(x, y) as well as f(x, y) are decreasing. Then for x > 0, we obtain f(x, y) ≤ f(0, y) yielding

βq(x+ 1)βq(y + 1)

βq(x+ y + 1)
≤ βq(1) = − ln q

[2]q

∞∑
n=1

q
n
2

1 + q
n
2

= Mq

which completes the proof.

Theorem 3.10. The inequality

βq(x)βq(x+ y + z)− βq(x+ y)βq(x+ z) ≥ 0, (31)

holds for x, y, z ∈ (0,∞).

Proof. Let x, y, z ∈ (0,∞). Then it is enough to show that the function

f(x) =
βq(x+ z)

βq(x)
,

is increasing on (0,∞). Let u(x) = ln f(x). Then

u′(x) =
β′q(x+ z)

βq(x+ z)
−
β′q(x)

βq(x)
≥ 0.

Thus, f(x) is increasing. Hence f(x+ y) ≥ f(x) which gives the result (31).

Theorem 3.11. The function βq(x) is completely monotonic on (0,∞).

Proof. It is easily deduced from (14) that, ψ
(m)
q (x) is increasing if m is even and decreasing if m is odd. Then it follows

from (23) that

(−1)mβ(m)
q (x) =

(−1)m

[2]q2m

{
ψ(m)
q

(
x+ 1

2

)
− ψ(m)

q

(x
2

)}
≥ 0,

for all m ∈ N. This completes the proof.

Theorem 3.12. The function β
(m)
q (x) is subadditive on (0,∞) if m is even, and superadditive on (0,∞) if m is odd. That

is, for x, y ∈ (0,∞),

β(m)
q (x+ y) ≤ β(m)

q (x) + β(m)
q (y), if m is even, (32)

and

β(m)
q (x+ y) ≥ β(m)

q (x) + β(m)
q (y), if m is odd. (33)

Proof. Suppose that m is even and let Gq(x, y) = β
(m)
q (x+ y)− β(m)

q (x)− β(m)
q (y) for x, y ∈ (0,∞). Without any loss of

generality, let y be fixed. Then,

G′q(x, y) = β(m+1)
q (x+ y)− β(m+1)

q (x)

≥ 0,

since β
(n)
q (x) is increasing for odd n. Hence, Gq(x, y) is increasing. Furthermore,

lim
x→∞

Gq(x, y) = lim
x→∞

{
β(m)
q (x+ y)− β(m)

q (x)− β(m)
q (y)

}
= −β(m)

q (y)

≤ 0.

Therefore, Gq(x, y) ≤ limx→∞Gq(x, y) ≤ 0 which gives the result (32). Likewise, if m is odd, we obtain G′q(x, y) ≤ 0 and

Gq(x, y) ≥ limx→∞Gq(x, y) ≥ 0 which gives the result (33).
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Theorem 3.13. For x ∈ (0,∞) and odd m, the function β
(m)
q (x) satisfies the following inequalities.

β(m)
q (λx) ≤ λβ(m)

q (x), if 0 < λ ≤ 1, (34)

and

β(m)
q (λx) ≥ λβ(m)

q (x), if λ ≥ 1. (35)

Proof. Let Aq(x) = β
(m)
q (λx)− λβ(m)

q (x) for odd m, x ∈ (0,∞) and 0 < λ ≤ 1. Then,

A′q(x) = λ
{
β(m+1)
q (λx)− β(m+1)

q (x)
}

≥ 0,

since β
(n)
q (x) is decreasing for even n. Thus, Aq(x) is increasing. Moreover,

lim
x→∞

Aq(x) = lim
x→∞

[
β(m)
q (λx)− λβ(m)

q (x)
]

= 0.

Therefore, Aq(x) ≤ limx→∞Aq(x) = 0 which gives the result (34). Similarly, if λ ≥ 1, we obtain A′q(x) ≤ 0 and Aq(x) ≥

limx→∞Aq(x) = 0 yielding the result (35).

Remark 3.14. Inequality (34) is another way of saying that the function β
(m)
q (x) is star-shaped if m is odd. Moreover, if

m is even, then the inequalities (34) and (35) are reversed.

Theorem 3.15. Let m, k ∈ N0 such that m and k are even and m ≥ k. Then the Turan-type inequality

exp
{
β(m−k)
q (x)

}
· exp

{
β(m+k)
q (x)

}
≥
[
exp

{
β(m)
q (x)

}]2
(36)

holds for x ∈ (0,∞).

Proof. By applying (24), we obtain

β
(m−k)
q (x)

2
+
β
(m+k)
q (x)

2
− β(m)

q (x) = − ln q

1− q

∫ √q
0

[
1

2

(ln t)m−ktx−1

1 + t
+

1

2

(ln t)m+ktx−1

1 + t
− (ln t)mtx−1

1 + t

]
dqt

= − ln q

2(1− q)

∫ √q
0

(ln t)m−ktx−1

1 + t

[
1 + (ln t)2k − 2(ln t)k

]
dqt

= − ln q

2(1− q)

∫ √q
0

(ln t)m−ktx−1

1 + t

[
1− (ln t)k

]2
dqt

≥ 0.

Thus,

β
(m−k)
q (x)

2
+
β
(m+k)
q (x)

2
≥ β(m)

q (x),

and by taking exponents, we obtain the inequality (36).

4. Concluding Remarks

We have introduced a q-analogue of the classical Nielsen’s β-function and further studied some identities, monotonicity and

convexity properties, and some inequalities involving the new function. By letting q → 1 in the present results, we obtain

the corresponding results for the Nielsen’s β-function.
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