International Journal of Mathematics And its Applications

Binary Linear Topological Spaces

Tresa Mary Chacko ${ }^{1, *}$ and D. Susha ${ }^{2}$
1 Department of Mathematics, Christian College, Chengannur, Kerala, India.
2 Department of Mathematics, Catholicate College, Pathanamthitta, Kerala, India.

Abstract

In this paper we define and study the concept of binary linear topological spaces (BLTS) and their properties. Here we prove that the binary product of two linear topological spaces is a BLTS. Also we have the main result that the binary product preserve metrizability and normability. Finally we construct a BLTS from a family of binary seminorms on a pair of vector spaces.

MSC: $\quad 54 \mathrm{~A} 05,54 \mathrm{~A} 99$.

Keywords: Linear Topological Spaces, Binary topology, locally convex, metrizable.

1. Introduction

P. Thangavelu and Nithanantha Jothi introduced the concept of binary topology in [4]. It is a single topological structure that carries the subsets of a set X as well as the subsets of another set Y for studying the information about the ordered pair (A, B) of subsets of X and Y. A linear topological space is a linear space endowed with a topology such that the vector addition and scalar multiplication are both continuous. The theory of linear topological spaces provide a remarkable economy in discussion of many classical mathematical problems. We introduce the concept of binary topology to linear topological spaces and form the theory of binary linear topology. Section 2 contains the prerequisites for the paper. In section 3 we define the concept of binary linear topological spaces (BLTS). We prove that the binary product of two linear topological spaces is a BLTS. Also we discuss the concept of locally convex BLTS and locally bounded BLTS and prove some of their properties. In section 4 we define binary metric and binary norm. The main result of this section is that the binary product preserve metrizability and normability. Section 5 deals with the construction of a BLTS using a family of binary seminorms.

2. Preliminaries

Definition 2.1 ([4]). Let X and Y be any two non-empty sets and $\wp(X)$ and $\wp(Y)$ be their power sets respectively. A binary topology from X to Y is a binary structure $M \subseteq \wp(X) \times \wp(Y)$ that satisfies the following axioms.

$$
(1) \cdot(\phi, \phi) \text { and }(X, Y) \in M
$$

[^0](2). If $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right) \in M$, then $\left(A_{1} \cap A_{2}, B_{1} \cap B_{2}\right) \in M$.
(3). If $\left\{\left(A_{\alpha}, B_{\alpha}\right): \alpha \in \Delta\right\}$ is a family of members of M, then $\left(\cup_{\alpha \in \Delta} A_{\alpha}, \cup_{\alpha \in \Delta} B_{\alpha}\right) \in M$.

If M is a binary topology from X to Y then the triplet (X, Y, M) is called a binary topological space and the members of M are called binary open sets. (C, D) is called binary closed if $(X \backslash C, Y \backslash D)$ is binary open. The elements of $X \times Y$ are called the binary points of the binary topological space (X, Y, M). Let (X, Y, M) be a binary topological space and let $(x, y) \in X \times Y$. The binary open set (A, B) is called a binary neighbourhood of (x, y) if $x \in A$ and $y \in B$. If $X=Y$ then M is called a binary topology on X and we write (X, M) as a binary space.

Proposition 2.2 ([4]). Let (X, Y, M) be a binary topological space. Then
(1). $\tau(M)=\{A \subseteq X:(A, B) \in M$ for some $B \subseteq Y\}$ is a topology on X.
(2). $\tau^{\prime}(M)=\{B \subseteq Y:(A, B) \in M$ for some $A \subseteq X\}$ is a topology on Y.

Proposition 2.3 ([4]). Suppose (X, ρ) and (Y, σ) are two topological spaces. Then $\rho \times \sigma$ is a binary topology from X to Y such that $\tau(\rho \times \sigma)=\rho$ and $\tau^{\prime}(\rho \times \sigma)=\sigma$.

Definition 2.4 ([5]). A linear topological space is a linear space E with a topology such that addition and scalar multiplication are both continuous. That is for every elements $x, y \in E$ and for every neighbourhood V of $x+y$ there exists neighbourhoods V_{1} of x and V_{2} of y such that $V_{1}+V_{2} \subseteq V$ and also for every neighbourhood W of λx there exists neighbourhoods K of λ and U of x such that $K U \subseteq W$. A base for the neighbourhood system of 0 in E is called a local base.

Throughout this paper we consider vector spaces over the same field K.

Definition $2.5([1])$. Let $\left\{\rho_{\alpha}\right\}_{\alpha \in J}$ be a family of seminorms on a vector space X. Then the α th open strip of radius r centered at $x \in X$ is $B_{r}^{\alpha}(x)=\left\{y \in X: \rho_{\alpha}(x-y)<r\right\}$. Let ε be the collection of all open strips in $X: \varepsilon=\left\{B_{r}^{\alpha}(x): \alpha \in\right.$ $J, r>0, x \in X\}$. The topology $\tau(\varepsilon)$ generated by ε is called the topology induced by $\left\{\rho_{\alpha}\right\}_{\alpha \in J}$.

Proposition 2.6 ([1]). Let $\left\{\rho_{\alpha}\right\}_{\alpha \in J}$ be a family of seminorms on a vector space X. Then $\mathcal{B}=\left\{\cap_{j=1}^{n} B_{r}^{\alpha_{j}}(x): n \in \mathbb{N}, \alpha_{j} \in\right.$ $J, r>0, x \in X\}$ forms a base for the topology induced from these seminorms. In fact if U is open and $x \in U$, then there exists an $r>0$ and $\alpha_{1}, \ldots, \alpha_{n} \in J$ such that $\cap_{j=1}^{n} B_{r}^{\alpha_{j}}(x) \subseteq U$. Further every element of \mathcal{B} is convex.

Theorem 2.7 ([1]). If X is a vector space whose topology is induced from a family of seminorms $\left\{\rho_{\alpha}\right\}_{\alpha \in J, ~ t h e n ~} X$ is a locally convex topological vector space.

3. Binary Linear Topology

Definition 3.1. A binary topology between two vector spaces is said to be binary linear if the two operations are continuous i.e. if V_{1} and V_{2} are two vector spaces over the same field K and for every neighbourhoods U of $\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \in V_{1} \times V_{2}, \exists$ two neighbourhoods U_{1} and U_{2} of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively such that $U_{1}+U_{2} \subseteq U$. Similarly for every neighbourhood W of $(\lambda x, \lambda y) \in V_{1} \times V_{2}$ there exists a neighbourhood W^{\prime} of (x, y) such that $\lambda W^{\prime} \subseteq W$. If M is a binary linear topology between two vector spaces V_{1} and V_{2}, then the triplet $\left(V_{1}, V_{2}, M\right)$ is called a binary linear topological space (BLTS).

Definition 3.2. Suppose $\left(X_{1}, \tau_{1}\right)$ and $\left(X_{2}, \tau_{2}\right)$ are two linear topological spaces. Then $\left(X_{1}, X_{2}, \tau_{1} \times \tau_{2}\right)$ is called the binary product of the given spaces.

Proposition 3.3. If $\left(V_{1}, \tau_{1}\right)$ and $\left(V_{2}, \tau_{2}\right)$ are two linear topological spaces, then $\left(V_{1}, V_{2}, \tau_{1} \times \tau_{2}\right)$ is a binary linear topological space.

Proof. By proposition 2.3, $\left(V_{1}, V_{2}, \tau_{1} \times \tau_{2}\right)$ is a binary topological space. It remains to show that $\tau_{1} \times \tau_{2}$ is a binary linear topology. Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in V_{1} \times V_{2}$ and $\left(A_{1}, A_{2}\right)$ be a neighbourhood of $\left[\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right]$. Then $x_{1}+y_{1} \in A_{1}$ and $x_{2}+y_{2} \in A_{2}$. Since $A_{1} \in \tau_{1}$ and $A_{2} \in \tau_{2}$, and τ_{1} and τ_{2} are linear topologies, there exist neighbourhoods B_{1} and C_{1} of x_{1} and y_{1} respectively in τ_{1} such that $B_{1}+C_{1} \subseteq A_{1}$ and neighbourhoods B_{2} and C_{2} of x_{2} and y_{2} respectively in τ_{2} such that $B_{2}+C_{2} \subseteq A_{2}$. Then in $\tau_{1} \times \tau_{2},\left(B_{1}, B_{2}\right)$ is a neighbourhood of (x_{1}, x_{2}) and (C_{1}, C_{2}) is a neighbourhood of $\left(y_{1}, y_{2}\right)$ such that $\left(B_{1}, B_{2}\right)+\left(C_{1}, C_{2}\right)=\left(B_{1}+C_{1}, B_{2}+C_{2}\right) \subseteq\left(A_{1}, A_{2}\right)$. Now let $\left(A_{1}, A_{2}\right)$ be a neighbourhood of $\lambda\left(x_{1}, x_{2}\right)$ in $\tau_{1} \times \tau_{2}$. Then A_{1} is a neighbourhood of λx_{1} in τ_{1} and A_{2} is a neighbourhood of λx_{2} in τ_{2}. So there exists two neighbourhoods B_{1} and B_{2} of x_{1} and x_{2} respectively such that $\lambda B_{1} \subseteq A_{1}$ and $\lambda B_{2} \subseteq A_{2}$. This implies that (B_{1}, B_{2}) is a neighbourhood of (x_{1}, x_{2}) such that $\lambda\left(B_{1}, B_{2}\right) \subseteq\left(A_{1}, A_{2}\right)$. Thus $\tau_{1} \times \tau_{2}$ is a binary linear topology.

Proposition 3.4. If $\left(V_{1}, V_{2}, M\right)$ is a BLTS, then $\tau(M)=\left\{A \subseteq V_{1}:(A, B) \in M\right.$ for some $\left.B \subseteq V_{2}\right\}$ is a linear topology on V_{1} and $\tau^{\prime}(M)=\left\{B \subseteq V_{2}:(A, B) \in M\right.$ for some $\left.A \subseteq V_{1}\right\}$ is a linear topology on V_{2}.

Proof. By Proposition $2.2 \tau(M)$ and $\tau^{\prime}(M)$ are both topologies in V_{1} and V_{2} respectively. Let $x_{1}, y_{1} \in V_{1}$ and $A \in \tau(M)$ contains $x_{1}+y_{1}$. Then for some $x_{2}, y_{2} \in V_{2}$ there exists $B \subseteq V_{2}$ such that $\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in(A, B)$ where $(A, B) \in M$. Since M is a binary linear topology, there exists $\left(E_{1}, E_{2}\right)$ and $\left(F_{1}, F_{2}\right)$ in M such that $\left(x_{1}, x_{2}\right) \in\left(E_{1}, E_{2}\right),\left(y_{1}, y_{2}\right) \in\left(F_{1}, F_{2}\right)$ and $\left(E_{1}, E_{2}\right)+\left(F_{1}, F_{2}\right) \subseteq(A, B)$. Then $x_{1} \in E_{1}, y_{1} \in F_{1}$, and $E_{1}+F_{1} \subseteq A$ by the definition of binary sets. Also E_{1} and $F_{1} \in \tau(M)$ by the construction of $\tau(M)$. Similarly for $\lambda x \in A$, where $A \in \tau(M)$ we can find a neighbourhood of x say U such that $\lambda U \subseteq A$. Thus $\tau(M)$ is a linear topology. In the same way we can prove that $\tau^{\prime}(M)$ is also a linear topology.

Definition 3.5. A local base of a binary linear topology $\left(V_{1}, V_{2}, M\right)$ is the base consisting of the neighbourhood of a binary point (x, y).

Definition 3.6. A set $(A, B) \in \wp\left(V_{1}\right) \times \wp\left(V_{2}\right)$ is convex if for all pairs $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in(A, B), \lambda\left(x_{1}, x_{2}\right)+(1-\lambda)\left(y_{1}, y_{2}\right) \in$ $(A, B), \forall \lambda \in[0,1]$.

Definition 3.7. A binary linear topology is called locally convex if there exists a local base at $(0,0)$ whose members are convex.

Definition 3.8. A BLTS is locally bounded if $(0,0)$ has a bounded neighbourhood, i.e. a neighbourhood (E, F) such that $\forall(N, M) \in \mathcal{N}_{0}$, the set of neighbourhoods of $(0,0)$, there exists $s \in \mathbb{R}$ such that $\forall t>s,(E, F) \subseteq t(N, M)$.

Proposition 3.9. Let $\left(V_{1}, V_{2}, M\right)$ be a BLTS. Then for every $\left(W_{1}, W_{2}\right) \in \mathcal{N}_{0}, \exists$ balanced and symmetric sets $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right) \in \mathcal{N}_{0}$ such that $\left(X_{1}, Y_{1}\right)+\left(X_{2}, Y_{2}\right) \subset\left(W_{1}, W_{2}\right)$.

Proof. If $\left(W_{1}, W_{2}\right) \in \mathcal{N}_{0}$, then W_{1} and W_{2} are neighbourhoods of 0 in $\left(V_{1}, \tau(M)\right)$ and $\left(V_{2}, \tau^{\prime}(M)\right)$ respectively. By the property of linear topologies there exists symmetric balanced neighbourhoods of $0, X_{1}, X_{2} \in \tau(M)$ and $Y_{1}, Y_{2} \in \tau^{\prime}(M)$ such that $X_{1}+X_{2} \subset W_{1}$ and $Y_{1}+Y_{2} \subset W_{2}$. Now X_{1}, Y_{1} are balanced $\Rightarrow \forall \alpha \in \mathbb{R}$ with $|\alpha| \leq 1, \alpha X_{1} \subset X_{1}$ and $\alpha Y_{1} \subset Y_{1}$. So $\alpha\left(X_{1}, Y_{1}\right)=\left(\alpha X_{1}, \alpha Y_{1}\right) \subset\left(X_{1}, Y_{1}\right)$. Thus $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ are balanced. By the symmetry of X_{1} and Y_{1}, we get $X_{1}=-X_{1}, Y_{1}=-Y_{1} \Rightarrow\left(X_{1}, Y_{1}\right)=\left(-X_{1},-Y_{1}\right)=-\left(X_{1}, Y_{1}\right)$. Thus $\left(X_{1}, Y_{1}\right)$ is symmetric and similarly $\left(X_{2}, Y_{2}\right)$ is also symmetric. $\left(X_{1}, Y_{1}\right)+\left(X_{2}, Y_{2}\right)=\left(X_{1}+X_{2}, Y_{1}+Y_{2}\right) \subset\left(W_{1}, W_{2}\right)$.

Proposition 3.10. Let V_{1} and V_{2} be real vector spaces and U_{1} be a convex set in V_{1} and U_{2} be a convex set in V_{2}, then $\left(U_{1}, U_{2}\right)$ is convex in $\wp\left(V_{1}\right) \times \wp\left(V_{2}\right)$.

Proof. Let $\left(x_{i}, y_{i}\right) \in\left(U_{1}, U_{2}\right)$ for $i=1,2$. Then $x_{i} \in U_{1}$ and $y_{i} \in U_{2}$ for $i=1,2 \Rightarrow \lambda x_{1}+(1-\lambda) x_{2} \in U_{1}$ for $0 \leq \lambda \leq 1$. And $\lambda y_{1}+(1-\lambda) y_{2} \in U_{2}$ for $0 \leq \lambda \leq 1$. So $\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda y_{1}+(1-\lambda) y_{2}\right) \in\left(U_{1}, U_{2}\right)$. Consider
$\lambda\left(x_{1}, y_{1}\right)+(1-\lambda)\left(x_{2}, y_{2}\right)=\left(\lambda x_{1}, \lambda y_{1}\right)+\left((1-\lambda) x_{2},(1-\lambda) y_{2}\right)=\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda y_{1}+(1-\lambda) y_{2}\right) \in\left(U_{1}, U_{2}\right)$ for $0 \leq \lambda \leq 1$. Thus $\left(U_{1}, U_{2}\right)$ is convex.

Corollary 3.11. If $\left(V_{1}, \tau_{1}\right)$ and $\left(V_{2}, \tau_{2}\right)$ are both locally convex topological vector spaces, then their binary product, $\left(V_{1}, V_{2}, \tau_{1} \times \tau_{2}\right)$ is a locally convex BLTS.

Proposition 3.12. Let U_{1} and U_{2} be bounded sets in two real vector spaces V_{1} and V_{2} respectively, then $\left(U_{1}, U_{2}\right)$ is also bounded.

Proof. Since U_{1} is bounded, for every neighbourhood $E_{1} \in \mathcal{N}_{0}\left(V_{1}\right), \exists s_{1} \in \mathbb{R}$ such that $\forall t>s_{1}, U_{1} \subset t E_{1}$. Similarly for every neighbourhood $E_{2} \in \mathcal{N}_{0}\left(V_{2}\right), \exists s_{2} \in \mathbb{R}$ such that $\forall t>s_{2}, U_{2} \subset t E_{2}$. Let $(E, F) \in \mathcal{N}_{0}$. Then $E \in \mathcal{N}_{0}\left(V_{1}\right)$ and $F \in \mathcal{N}_{0}\left(V_{2}\right)$. Let $t_{1} \in \mathbb{R}$ correspond to E and $t_{2} \in \mathbb{R}$ correspond to F. Then $\forall t>t_{1}, U_{1} \subset t E$ and $\forall t>t_{2}, U_{2} \subset t F$. So $\forall t>s$, where $s=\max \left\{t_{1}, t_{2}\right\}, U_{1} \subset t E$ and $U_{2} \subset t F$ i.e. $\left(U_{1}, U_{2}\right) \subset t(E, F), \forall t>s$. Thus $\left(U_{1}, U_{2}\right)$ is bounded.

Corollary 3.13. If $\left(V_{1}, \tau_{1}\right)$ and $\left(V_{2}, \tau_{2}\right)$ are both locally bounded topological vector spaces, then their binary product, $\left(V_{1}, V_{2}, \tau_{1} \times \tau_{2}\right)$ is a locally bounded BLTS.

Proposition 3.14. Let $\left(V_{1}, \tau_{1}\right)$ be a topological vector space and V_{2} be another vector space such that the map $T: V_{1} \rightarrow V_{2}$ is an isomorphism. Then $\tau_{2}=\left\{T(A): A \in \tau_{1}\right\}$ is a linear topology in V_{2} and hence $\tau_{1} \times \tau_{2}$ is a binary linear topology from V_{1} to V_{2}.

Proof. Since T is an isomorphism, $T(\phi)=\phi$ and $T\left(V_{1}\right)=V_{2}$ and so $\phi, V_{2} \in \tau_{2}$. Let $A, B \in \tau_{2}$. Then $A=T\left(A^{\prime}\right)$ and $B=T\left(B^{\prime}\right)$ for some A^{\prime} and $B^{\prime} \in \tau_{1}$. So $A^{\prime} \cap B^{\prime} \in \tau_{1}$ and $T\left(A^{\prime} \cap B^{\prime}\right) \in \tau_{2} \cdot T\left(A^{\prime} \cap B^{\prime}\right)=T\left(A^{\prime}\right) \cap T\left(B^{\prime}\right)=A \cap B$. Thus $A \cap B \in \tau_{2}$. Now let $\left\{A_{\alpha}\right\}_{\alpha \in I} \in \tau_{2}$ for some index set I. Then there exists $\left\{B_{\alpha}\right\}_{\alpha \in I} \in \tau_{1}$ such that $A_{\alpha}=T\left(B_{\alpha}\right)$ for each $\alpha \in I$. Then $\cup_{\alpha \in I} B_{\alpha} \in \tau_{1}$ and $\cup_{\alpha \in I} A_{\alpha}=\cup_{\alpha \in I} T\left(B_{\alpha}\right)=T\left(\cup_{\alpha \in I} B_{\alpha}\right) \in \tau_{2}$. Thus τ_{2} is a topology on V_{2}. Let $x_{2}, y_{2} \in V_{2}$ and there exists $B \in \tau_{2}$ such that $x_{2}+y_{2} \in B$. Then there exist $x_{1}, y_{1} \in V_{1}$ such that $T\left(x_{1}\right)=x_{2}$ and $T\left(y_{1}\right)=y_{2}$. Let $A=T^{-1}(B) \in \tau_{1}$. So $x_{1}+y_{1} \in A$ and there exists $A_{1}, A_{2} \in \tau_{1}$ such that $A_{1}+A_{2} \in A$. This implies $T\left(A_{1}+A_{2}\right) \in T(A)$. Let $B_{1}=T\left(A_{1}\right)$ and $B_{2}=T\left(A_{2}\right)$. Then $B_{1}, B_{2} \in \tau_{2}$ and $x_{1} \in A_{1} \Rightarrow x_{2}=T\left(x_{1}\right) \in T\left(A_{1}\right)=B_{1}, y_{1} \in A_{2} \Rightarrow y_{2}=T\left(y_{1}\right) \in T\left(A_{2}\right)=B_{2}$. Also $B_{1}+B_{2}=T\left(A_{1}\right)+T\left(A_{2}\right)=T\left(A_{1}+A_{2}\right) \subseteq T(A)=B$. Let $y \in V_{2}$ and $\lambda y \in U \in \tau_{2}$ for some scalar λ. Then $y=T(x)$ for some $x \in V_{1}$ and $U=T(W)$ for some $W \in \tau_{1} . y=T(x) \Rightarrow \lambda y=\lambda T(x)=T(\lambda x)$. So $\lambda y \in U \Rightarrow T(\lambda x) \in U \Rightarrow \lambda x \in W$. Since τ_{1} is a linear topology, there exists W^{\prime} in τ_{1} such that $\lambda W^{\prime} \subseteq W$. So $U^{\prime}=T\left(W^{\prime}\right) \in \tau_{2}, y=T(x) \in T\left(W^{\prime}\right)=U^{\prime}$ and $T\left(\lambda W^{\prime}\right)=\lambda T\left(W^{\prime}\right)=\lambda U^{\prime} \subseteq T(W)=U$. Thus τ_{2} is a linear topology and hence $\tau_{1} \times \tau_{2}$ is a binary linear topology.

4. Binary Metrizable and Binary Normable BLTS

Definition 4.1. A binary metric on two sets V_{1} and V_{2} is a map $d:\left(V_{1} \times V_{2}\right) \times\left(V_{1} \times V_{2}\right) \rightarrow \mathbb{R}$ satisfying the following axioms: If $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in V_{1} \times V_{2}$ then
(1). $d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right] \geq 0$
(2). $d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=0 \Leftrightarrow x_{1}=x_{2}$ and $y_{1}=y_{2}$
(3). $d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=d\left[\left(y_{1}, y_{2}\right),\left(x_{1}, x_{2}\right)\right]$ and
(4). $d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right] \leq d\left[\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right]+d\left[\left(z_{1}, z_{2}\right),\left(y_{1}, y_{2}\right)\right]$ for every $\left(z_{1}, z_{2}\right) \in V_{1} \times V_{2}$.

Definition 4.2. Let $\left(V_{1}, V_{2}, M\right)$ be a BLTS. A binary topology M is metrizable with a binary metric d if for any (x, y) in some binary open set $(A, B) \in M, \exists r>0$ such that $B_{r}(x, y) \subset(A, B)$ i.e. $\pi_{1}\left(B_{r}(x, y)\right) \subset A$ and $\pi_{2}\left(B_{r}(x, y)\right) \subset B$, where π_{i} is the projection map to V_{i} for $i=1,2$.

Proposition 4.3. If $\left(V_{1}, \tau_{1}\right)$ and $\left(V_{2}, \tau_{2}\right)$ are two linear topological spaces such that τ_{1} and τ_{2} are both metrizable with metrics d_{1} and d_{2} respectively, then $\tau_{1} \times \tau_{2}$ is binary metrizable.

Proof. Consider the map $d:\left(V_{1} \times V_{2}\right) \times\left(V_{1} \times V_{2}\right) \rightarrow \mathbb{R}$ defined by

$$
d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\frac{d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)}{2}, \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in\left(V_{1} \times V_{2}\right)
$$

If $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in V_{1} \times V_{2}$ then
(1). $d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=\frac{d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)}{2} \geq 0$, since $d_{1}\left(x_{1}, y_{1}\right)$ and $d_{2}\left(x_{2}, y_{2}\right)$ are both non-negative.
(2). $d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=\frac{d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)}{2}=0 \Leftrightarrow d_{1}\left(x_{1}, y_{1}\right)=0$ and $d_{2}\left(x_{2}, y_{2}\right)=0$. This happens if and only if $x_{1}=x_{2}$ and $y_{1}=y_{2}$ i.e. when $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$.
(3). $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\frac{d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)}{2}=\frac{d_{1}\left(y_{1}, x_{1}\right)+d_{2}\left(y_{2}, x_{2}\right)}{2}=d\left(\left(y_{1}, y_{2}\right),\left(x_{1}, x_{2}\right)\right)$ and if $\left(z_{1}, z_{2}\right) \in V_{1} \times V_{2}$
(4). $d\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=\frac{d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)}{2} \leq \frac{\left[d_{1}\left(x_{1}, z_{1}\right)+d_{1}\left(z_{1}, y_{1}\right)\right]+\left[d_{2}\left(x_{2}, z_{2}\right)+d_{2}\left(z_{2}, y_{2}\right)\right]}{2}=\frac{d_{1}\left(x_{1}, z_{1}\right)+d_{2}\left(x_{2}, z_{2}\right)}{2}+$ $\frac{d_{1}\left(z_{1}, y_{1}\right)+d_{2}\left(z_{2}, y_{2}\right)}{2}=d\left[\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right]+d\left[\left(z_{1}, z_{2}\right),\left(y_{1}, y_{2}\right)\right]$

Thus d is a binary metric. Let $(A, B) \in \tau_{1} \times \tau_{2}$ and $(x, y) \in(A, B)$. Then $x \in A \in \tau_{1}$ and $y \in B \in \tau_{2}$. Since τ_{1} and τ_{2} are metrizable, $\exists r_{1}, r_{2}>0$ with respect to d_{1} and d_{2} respectively such that $B_{r_{1}}(x) \subset A$ and $B_{r_{2}}(y) \subset B$. i.e. if $d_{1}\left(x, x_{1}\right)<r_{1}$, then $x_{1} \in B_{r_{1}}(x)$ and if $d_{2}\left(y, y_{1}\right)<r_{2}$, then $y_{1} \in B_{r_{2}}(y) \Rightarrow\left(x_{1}, y_{1}\right) \in(A, B)$. Let $r=\min \left\{r_{1}, r_{2}\right\}$ and $(u, v) \in B_{r / 2}(x, y)$. Then $d((x, y),(u, v))<\frac{r}{2}$. i.e. $\frac{d_{1}(x, u)+d_{2}(y, v)}{2}<r / 2$. So $d_{1}(x, u)+d_{2}(y, v)<r \Rightarrow d_{1}(x, u)<r<r_{1}$ and $d_{2}(y, v)<r<r_{2}$. Hence $u \in B_{r_{1}}(x) \subset A$ and $v \in B_{r_{2}}(y) \subset B$. Thus $(u, v) \in(A, B)$ showing that $B_{r / 2}(x, y) \subset(A, B)$.

Definition 4.4. A binary seminorm on two vector spaces V_{1} and V_{2} is a map, $\|\cdot\|: V_{1} \times V_{2} \rightarrow \mathbb{R}$ such that for each $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in V_{1} \times V_{2}$
(1). $\left\|\left(x_{1}, x_{2}\right)\right\| \geq 0$
(2). $\left\|\alpha\left(x_{1}, x_{2}\right)\right\|=|\alpha|\left\|\left(x_{1}, x_{2}\right)\right\|$
(3). $\left\|\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right\| \leq\left\|\left(x_{1}, x_{2}\right)\right\|+\left\|\left(y_{1}, y_{2}\right)\right\| A$ binary seminorm becomes a binary norm if the following condition holds.
(4). $\left\|\left(x_{1}, x_{2}\right)\right\|=0 \Leftrightarrow\left(x_{1}, x_{2}\right)=(0,0)$

Proposition 4.5. If $\left(V_{1}, \tau_{1}\right)$ and $\left(V_{2}, \tau_{2}\right)$ are both normable topological vector spaces, then their binary product is binary normable.

Proof. Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be the norms corresponding to τ_{1} and τ_{2} respectively. Then we get two metrics d_{1} and d_{2}, defined by $d_{i}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left\|\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right)\right\|_{i}, i=1,2$ and $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in V_{1} \times V_{2}$, with which τ_{1} and τ_{2} are metrizable respectively. So by Proposition $4.3 \tau_{1} \times \tau_{2}$ is metrizable with the binary metric $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=$ $\frac{d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)}{2}, \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in\left(V_{1} \times V_{2}\right)$. Hence the binary norm $\|\cdot\|$ defined by $\left\|\left(x_{1}, x_{2}\right)\right\|=d\left(\left(x_{1}, x_{2}\right),(0,0)\right)$ for $\left(x_{1}, x_{2}\right) \in V_{1} \times V_{2}$ corresponds to the topology $\tau_{1} \times \tau_{2}$. But this norm is same as $\frac{\|\cdot\|_{1}+\|\cdot\|_{2}}{2}$ since $\left\|\left(x_{1}, x_{2}\right)\right\|=d\left(\left(x_{1}, x_{2}\right),(0,0)\right)=$ $\frac{d_{1}\left(x_{1}, 0\right)+d_{2}\left(x_{2}, 0\right)}{2}=\frac{\left\|x_{1}-0\right\|_{1}+\left\|x_{2}-0\right\|_{2}}{2}=\frac{\left\|x_{1}\right\|_{1}+\left\|x_{2}\right\|_{2}}{2}$.

Lemma 4.6. Let V_{1} and V_{2} be two vector spaces and p be a binary seminorm on $V_{1} \times V_{2}$ Then there exists two seminorms p_{1} and p_{2} on V_{1} and V_{2} respectively.

Proof. Let $p_{1}: V_{1} \rightarrow \mathbb{R}$ be defined by $p_{1}(x)=\inf _{y}\left\{p(x, y): y \in V_{2}\right\}$. Since $p(x, y) \geq 0, \forall(x, y) \in V_{1} \times V_{2}, p_{1}(x) \geq 0 \forall x \in V_{1}$. For $x \in V_{1}$ and $\alpha \in K$

$$
\begin{aligned}
p_{1}(\alpha x) & =\inf _{y}\left\{p(\alpha x, y): y \in V_{2}\right\} \\
& =\inf _{y}\left\{|\alpha| p\left(x, \frac{1}{\alpha} y\right): y \in V_{2}\right\} \\
& \left.=|\alpha| \inf _{y} p\left(x, \frac{1}{\alpha} y\right): y \in V_{2}\right\} \\
& =|\alpha| p_{1}(x)
\end{aligned}
$$

For $x, y \in V_{1}$

$$
\begin{aligned}
p_{1}(x+y) & =\inf _{z}\left\{p(x+y, z): z \in V_{2}\right\} \\
& =\inf _{z=z_{1}+z_{2}}\left\{p\left(x+y, z_{1}+z_{2}\right): z=z_{1}+z_{2} \in V_{2}\right\} \\
& =\inf _{z_{1}, z_{2}}\left\{p\left[\left(x, z_{1}\right)+\left(y, z_{2}\right)\right]: z_{1}, z_{2} \in V_{2}\right\} \\
& \leq \inf _{z_{1}, z_{2}}\left\{p\left(x, z_{1}\right)+p\left(y, z_{2}\right): z_{1}, z_{2} \in V_{2}\right\}
\end{aligned}
$$

$$
\text { Thus } p_{1}(x+y) \leq p_{1}(x)+p_{1}(y)
$$

Hence p_{1} is a seminorm on V_{1} and similarly $p_{2}: V_{2} \rightarrow \mathbb{R}$ defined by $p_{2}(y)=\inf _{x}\left\{p(x, y): x \in V_{1}\right\}$ is a seminorm on V_{2}.

Proposition 4.7. Given a family of binary seminorms on two vector spaces V_{1} and V_{2}, then a locally convex binary linear topology is formed between V_{1} and V_{2}.

Proof. Let $\left\{p_{\alpha}\right\}_{\alpha \in J}$ be a family of binary seminorms on $V_{1} \times V_{2}$. Corresponding to each $p_{\alpha}, \alpha \in J$, there exists two seminorms $p_{1 \alpha}$ and $p_{2 \alpha}$ on V_{1} and V_{2} respectively. Thus we get a family of seminorms $\left\{p_{i \alpha}\right\}_{\alpha \in J}$ on $V_{i}, i=1,2$. Hence by theorem 2.7 there exists a locally convex linear topology, τ_{i} on V_{i} induced by $\left\{p_{i \alpha}\right\}_{\alpha \in J}, i=1,2$. Then $\tau_{1} \times \tau_{2}$ is a locally convex binary linear topology between V_{1} and V_{2}.

5. Conclusion

In this paper we have introduced the concept of linear topological spaces to situations in which we have to deal with two vector spaces and a topology between the spaces. This helps to study both the spaces simultaneously. The concept of topological vector space is well used in mathematics, engineering and science and particularly in quantum mechanics. Hence our theory of Binary Linear Topological Spaces helps in the further development of such areas.

Acknowledgement

The author is indebted to the University Grants Commission as the work is under the Faculty Development Programme of UGC(XII plan).

References

[1] Christopher E. Heil, Lecture Notes:Topologies from seminorms, Comput. Math. Appl. Math., (2008).
[2] J.L. Kelley and Isaac Namioka, Linear Topological Spaces, D. Van Nostrand Company, (1968).
[3] S. Nithyanantha Jothi and P. Thangavelu, On Binary Topological Spaces, Pacific-Asian Journal of Mathematics, $5(2)(2011)$.
[4] S. Nithyanantha Jothi and P. Thangavelu, Topology between two sets, Journal of Mathematical Sciences and Computer Applications 1(3)(2011), 95-107.
[5] Raz Kupferman, Lecture Notes: Basic Notions in Functional Analysis, TVS, (2013).

[^0]: * E-mail: tresachacko@gmail.com

