k- Harmonic Mean Labeling of Some Cycle Related Graphs

M. Tamilselvi ${ }^{1}$ and N. Revathi ${ }^{1, *}$
1 PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Trichy, Tamil Nadu, India.

Abstract

Somasundaram and Ponraj [12] have introduced the notion of mean labeling of graphs. R. Ponraj and D. Ramya introduced Super mean labeling of graphs in [5]. S. Somasundaram and S.S. Sandhya introduced the concept of Harmonic mean labeling in [6] and studied their behavior in [7-9]. In this paper, we investigate k-harmonic mean labeling of some graphs.

Keywords: Harmonic mean labeling, harmonic mean graph, k-harmonic mean labeling, k-harmonic mean graph.
Accepted on: 05.02.2018

1. Introduction

By a graph $G=(V(G), E(G))$ with p vertices and q edges we mean a simple, connected and undirected graph. In this paper a brief summary of definitions and other information is given in order to maintain compactness. The term not defined here are used in the sense of Harary [3]. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. A useful survey on graph labeling by J.A. Gallian (2016) can be found in [1]. If the domain of the mapping is the set of vertices (or edges) then the labeling is called a vertex labeling (or an edge labeling). Somasundaram and Ponraj [12] have introduced the notion of mean labeling of graphs. R. Ponraj and D. Ramya introduced Super mean labeling of graphs in [5]. S. Somasundaram and S.S. Sandhya introduced the concept of Harmonic mean labeling in [6] and studied their behavior in [7-9]. In this paper, we investigate k-harmonic mean labeling of some graphs.

1.1. Basic Definitions

Definition 1.1. Let G be $a(p, q)$ graph. A function f is called a harmonic mean labeling of a graph G if $f: V(G) \rightarrow$ $\{1,2,3, \ldots, q+1\}$ is injection and the induced edge function $f^{*}: E(G) \rightarrow\{1,2, \ldots, q\}$ defined as

$$
f^{*}(e=u v)=\left\lceil\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rceil \text { or }\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor
$$

is bijective. The graph which admits harmonic mean labeling is called harmonic mean graph.

Definition 1.2. Let G be a (p, q) graph. A function f is called a k-harmonic mean labeling of a graph G if $f: V(G) \rightarrow$ $\{k, k+1, k+2, \ldots, k+q\}$ is injection and the induced edge function $f^{*}: E(G) \rightarrow\{k, k+1, k+2, \ldots, k+q-1\}$ defined as

$$
f^{*}(e=u v)=\left\lceil\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rceil \text { or }\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor
$$

[^0]is bijective. The graph which admits k-harmonic mean labeling is called k-harmonic mean graph.

Definition 1.3. The product $P_{2} \times P_{n}$ is called a Ladder and it is denoted by L_{n}.

Definition 1.4. A Triangular ladder $T L_{n}, n \geq 2$ is a graph obtained from a ladder L_{n} by adding the edges $u_{i} v_{i+1}$ for $1 \leq i \leq n-1$, where u_{i} and $v_{i} 1 \leq i \leq n-1$, are the vertices of L_{n} such that $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ are two paths of length n in L_{n}

Definition 1.5. A Triangular snake T_{n} is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to a new vertex v_{i} for $1 \leq i \leq n-1$.

Definition 1.6. A Quadrilateral snake Q_{n} is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to new vertices v_{i} and w_{i} for $1 \leq i \leq n-1$ respectively and then joining v_{i} and w_{i}.

Definition 1.7. If G has order n, the corona of G with $H, G \odot H$ is the graph obtained by taking one copy of G and n copies of H and joining the $i^{\text {th }}$ vertex of G with an edge to every vertex in the $i^{\text {th }}$ copy of H.

2. Main Results

Theorem 2.1. $T_{n} \odot K_{1},(n \geq 2)$ is k-harmonic mean graph for all $k \geq 1$.

Proof. Let $V\left(T_{n} \odot K_{1}\right)=\left\{u_{i}, x_{i} ; 1 \leq i \leq n, v_{i}, y_{i} ; 1 \leq i \leq n\right\} ; E\left(T_{n} \odot K_{1}\right)=\left\{u_{i} u_{i+1}, u_{i} v_{i}, u_{i+1} v_{i}, v_{i} y_{i} ; 1 \leq i \leq\right.$ $\left.n-1 ; u_{i} x_{i}, 1 \leq i \leq n\right\}$ be denoted as in the following figure

First we label the vertices as follows. Define a function $f: V\left(T_{n} \odot K_{1}\right) \rightarrow\{k, k+1, k+2, \ldots, k+q\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=k+5 i-4, \text { for } 1 \leq i \leq n \\
& f\left(v_{i}\right)=k+5 i-3, \text { for } 1 \leq i \leq n-1 \\
& f\left(x_{1}\right)=k \\
& f\left(x_{2}\right)=k+4 \\
& f\left(x_{i}\right)=k+5 i-5, \text { for } 3 \leq i \leq n \\
& f\left(y_{i}\right)=k+5 i-2, \text { for } 1 \leq i \leq n-1 .
\end{aligned}
$$

Then the induced edge labels are

$$
f^{*}\left(u_{1} u_{2}\right)=k+3
$$

$$
\begin{aligned}
f^{*}\left(u_{i} u_{i+1}\right) & =k+5 i-2, \text { for } 2 \leq i \leq n-1 \\
f^{*}\left(u_{i} x_{i}\right) & =k+5 i-5, \text { for } 1 \leq i \leq n \\
f^{*}\left(u_{i} v_{i}\right) & =k+5 i-4, \text { for } 1 \leq i \leq n-1 \\
f^{*}\left(u_{i+1} v_{i}\right) & =k+5 i-1, \text { for } 1 \leq i \leq n-1 \\
f^{*}\left(v_{1} y_{1}\right) & =k+2 \\
f^{*}\left(v_{i} y_{i}\right) & =k+5 i-3, \text { for } 2 \leq i \leq n-1 .
\end{aligned}
$$

The above defined function f provides k-harmonic mean labeling of the graph. Hence $T_{n} \odot K_{1},(n \geq 2)$ is k-harmonic mean graph for all $k \geq 1$.

Example 2.2. 500-harmonic mean labeling of $T_{6} \odot K_{1}$ is as follows:

Figure 1. 500-harmonic mean labeling of $T_{6} \odot K_{1}$.

Theorem 2.3. $Q_{n} \odot K_{1},(n \geq 2)$ is k-harmonic mean graph for all $k \geq 1$.

Proof. Let $V\left(Q_{n} \odot K_{1}\right)=\left\{u_{i}, x_{i} ; 1 \leq i \leq n, v_{i}, w_{i}, y_{i}, z_{i} ; 1 \leq i \leq n-1\right\} ; E\left(Q_{n} \odot K_{1}\right)=\left\{u_{i} u_{i+1}, u_{i} v_{i}, w_{i} z_{i}, v_{i} y_{i}, u_{i+1} w_{i} ; 1 \leq\right.$ $\left.i \leq n-1 ; u_{i} x_{i}, 1 \leq i \leq n\right\}$ be denoted as in the following figure

First we label the vertices as follows. Define a function $f: V\left(Q_{n} \odot K_{1}\right) \rightarrow\{k, k+1, k+2, \ldots, k+q\}$ by

$$
\begin{aligned}
& f\left(u_{1}\right)=k+2 \\
& f\left(u_{i}\right)=k+7 i-6, \text { for } 2 \leq i \leq n \\
& f\left(v_{1}\right)=k+1 \\
& f\left(v_{i}\right)=k+7 i-5, \text { for } 2 \leq i \leq n-1 \\
& f\left(x_{1}\right)=k+3
\end{aligned}
$$

$$
\begin{aligned}
& f\left(x_{i}\right)=k+7 i-8, \text { for } 2 \leq i \leq n \\
& f\left(y_{1}\right)=k \\
& f\left(y_{i}\right)=k+7 i-4, \text { for } 2 \leq i \leq n-1 \\
& f\left(w_{i}\right)=k+7 i-3, \text { for } 1 \leq i \leq n-1 \\
& f\left(z_{i}\right)=k+7 i-2, \text { for } 1 \leq i \leq n-1
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{array}{rlrl}
f^{*}\left(u_{1} u_{2}\right) & = \begin{cases}k+4 \text { if } k \leq 5 \\
k+5 \text { if } k \geq 6\end{cases} \\
f^{*}\left(u_{i} u_{i+1}\right) & =k+7 i-3, & \text { for } 2 \leq i \leq n-1 \\
f^{*}\left(u_{1} x_{1}\right) & =k+3 & \\
f^{*}\left(u_{i} x_{i}\right) & =k+7 i-7, & \text { for } 2 \leq i \leq n \\
f^{*}\left(u_{i} v_{i}\right) & =k+7 i-6, & \text { for } 1 \leq i \leq n-1 \\
f^{*}\left(v_{1} y_{1}\right) & =k & \\
f^{*}\left(v_{i} y_{i}\right) & =k+7 i-5, & \text { for } 2 \leq i \leq n-1 \\
f^{*}\left(v_{1} w_{1}\right) & =k+2 & & \\
f^{*}\left(v_{i} w_{i}\right) & =k+7 i-4, & & \text { for } 2 \leq i \leq n-1
\end{array}
$$

The above defined function f provides k -harmonic mean labeling of the graph. Hence $Q_{n} \odot K_{1},(n \geq 2)$ is k -harmonic mean graph for all $k \geq 1$.

Example 2.4. 550 harmonic mean labeling of $Q_{6} \odot K_{1}$ is as follows:

Figure 2. $\quad \mathbf{5 5 0}$ harmonic mean labeling of $Q_{6} \odot K_{1}$.

Theorem 2.5. $T L_{n} \odot K_{1},(n \geq 2)$ is k - harmonic mean graph for all $k \geq 1$.
Proof. Let $V\left(T L_{n} \odot K_{1}\right)=\left\{u_{i}, v_{i}, x_{i}, y_{i} ; 1 \leq i \leq n\right\} ; E\left(T L_{n} \odot K_{1}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i+1} ; 1 \leq i \leq n-\right.$ 1, $\left.u_{i} v_{i}, x_{i} u_{i}, y_{i} v_{i} ; 1 \leq i \leq n\right\}$ be denoted as in the following figure

First we label the vertices as follows. Define a function $f: V\left(T L_{n} \odot K_{1}\right) \rightarrow\{k, k+1, k+2, \ldots, k+q\}$ by

$$
\left.\begin{array}{l}
f\left(u_{1}\right)=\left\{\begin{array}{l}
k+3 \text { if } k \leq 2 \\
k+2 \text { if } k \geq 3
\end{array}\right. \\
f\left(u_{i}\right)=k+6 i-3, \quad \text { for } 2 \leq i \leq n
\end{array}\right] \begin{aligned}
& f\left(v_{1}\right)=k+1 \\
& f\left(v_{i}\right)=k+6 i-6, \quad \text { for } 2 \leq i \leq n \\
& f\left(x_{1}\right)=\left\{\begin{array}{l}
k+2 i f k \leq 2 \\
k+3 i f k \geq 3 \\
f\left(x_{i}\right)=k+6 i-4, \quad \text { for } 2 \leq i \leq n \\
f\left(y_{1}\right)=k \\
f\left(y_{i}\right)=k+6 i-7, \quad \text { for } 2 \leq i \leq n
\end{array}\right. \\
& \\
& f
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
f^{*}\left(u_{1} u_{2}\right) & =k+5 \\
f^{*}\left(u_{i} u_{i+1}\right) & =k+6 i, \quad \text { for } 2 \leq i \leq n-1 \\
f^{*}\left(v_{i} v_{i+1}\right) & =k+6 i-3, \text { for } 1 \leq i \leq n \\
f^{*}\left(u_{i} v_{i+1}\right) & =k+6 i-2, \text { for } 1 \leq i \leq n-1 \\
f^{*}\left(u_{i} v_{i}\right) & =k+6 i-5, \text { for } 1 \leq i \leq n \\
f^{*}\left(u_{i} x_{i}\right) & =k+6 i-4, \text { for } 1 \leq i \leq n \\
f^{*}\left(v_{1} y_{1}\right) & =k \\
f^{*}\left(v_{1} y_{2}\right) & =k+6 \\
f^{*}\left(v_{i} y_{i}\right) & =k+6 i-7, \text { for } 3 \leq i \leq n
\end{aligned}
$$

The above defined function f provides k -harmonic mean labeling of the graph. Hence $T L_{n} \odot K_{1},(n \geq 2)$ is k - harmonic mean graph for all $k \geq 1$.

Example 2.6. 300 harmonic mean labeling of $T L_{8} \odot K_{1}$ is as follows:

Figure 3. 300 harmonic mean labeling of $T L_{8} \odot K_{1}$.

Theorem 2.7. $L_{n} \odot \overline{k_{2}}(n \geq 2)$ is k - harmonic mean graph for all $k \geq 1$.

Proof. Let $V\left(L_{n} \odot \overline{k_{2}}\right)=\left\{u_{i}, v_{i}, s_{i}, t_{i}, x_{i}, y_{i} ; 1 \leq i \leq n\right\} ; E\left(L_{n} \odot \overline{k_{2}}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} ; 1 \leq i \leq n-\right.$ $\left.1, s_{i} u_{i}, t_{i} u_{i}, u_{i} v_{i}, v_{i} x_{i}, v_{i} y_{i} ; 1 \leq i \leq n\right\}$ be denoted as in the following figure

First we label the vertices as follows. Define a function $f: V\left(L_{n} \odot \overline{k_{2}}\right) \rightarrow\{k, k+1, k+2, \ldots, k+q\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right)=k+7 i-6, & \text { for } 1 \leq i \leq n \\
f\left(v_{1}\right)=k+4 & \\
f\left(v_{2}\right)=k+9 & \\
f\left(v_{3}\right)=k+18 & \\
f\left(v_{i}\right)=k+7 i-5, & \text { for } 4 \leq i \leq n \\
f\left(x_{i}\right)=k+7 i-4, & \text { for } 1 \leq i \leq n \\
f\left(y_{1}\right)=k+5 & \\
f\left(y_{2}\right)=k+16 & \\
f\left(y_{i}\right)=k+7 i-2, & \text { for } 2 \leq i \leq n \\
f\left(s_{1}\right)=k & \\
f\left(s_{i}\right)=k+7 i-8, & \\
f\left(t_{1}\right)=k+2 & \\
f\left(t_{i}\right)=k+7 i-7, & \text { for } 2 \leq i \leq n
\end{array}
$$

Then the induced edge labels are

$$
\begin{aligned}
& f^{*}\left(u_{1} u_{2}\right)=\left\{\begin{array}{l}
k+3 \text { if } k \leq 3 \\
k+4 \text { if } k \geq 4
\end{array}\right. \\
& f^{*}\left(u_{2} u_{3}\right)=k+11 \\
& f^{*}\left(u_{3} u_{4}\right)=k+18 \\
& f^{*}\left(u_{i} u_{i+1}\right)=k+7 i-2, \quad \text { for } 4 \leq i \leq n-1 \\
& f^{*}\left(v_{i} v_{i+1}\right)=k+7 i-1, \quad \text { for } 1 \leq i \leq n-1 \\
& f^{*}\left(v_{1} x_{1}\right)=\left\{\begin{array}{l}
k+4 \text { if } k \leq 3 \\
k+3 \text { if } k \geq 4
\end{array}\right. \\
& f^{*}\left(v_{i} x_{i}\right)=k+7 i-4, \quad \text { for } 2 \leq i \leq n \\
& f^{*}\left(v_{1} y_{1}\right)=k+5 \\
& f^{*}\left(v_{2} y_{2}\right)=k+12 \\
& f^{*}\left(v_{3} y_{3}\right)=k+19 \\
& f^{*}\left(v_{i} y_{i}\right)=k+7 i-3, \quad \text { for } 4 \leq i \leq n \\
& f^{*}\left(u_{i} v_{i}\right)=k+7 i-5, \quad \text { for } 1 \leq i \leq n \\
& f^{*}\left(u_{i} s_{i}\right)=k+7 i-7, \quad \text { for } 1 \leq i \leq n \\
& f^{*}\left(u_{i} t_{i}\right)=k+7 i-6, \quad \text { for } 1 \leq i \leq n
\end{aligned}
$$

The above defined function f provides k -harmonic mean labeling of the graph. Hence $L_{n} \odot \overline{k_{2}},(n \geq 2)$ is k - harmonic mean graph for all $k \geq 1$.

Example 2.8. 800 harmonic mean labeling of $L_{6} \odot \overline{k_{2}}$ is as follows:

Figure 4. 800 harmonic mean labeling of $L_{6} \odot \overline{k_{2}}$.

Theorem 2.9. $C_{2 n+1} \odot K_{1},(n \geq 1)$ is k-harmonic mean graph for all $k \geq 1$.
Proof. Let $V\left(C_{2 n+1} \odot K_{1}\right)=\left\{v_{i}, u_{i} ; 1 \leq i \leq 2 n+1\right\} ; E\left(C_{2 n+1} \odot K_{1}\right)=\left\{e_{i}=\left(v_{i} v_{i+1}\right) ; 1 \leq i \leq 2 n\right\} \cup e_{2 n+1}=$ $\left(v_{2 n+1}, v_{1}\right) \cup\left\{e_{i}^{\prime}=\left(v_{i}, u_{i}\right) ; 1 \leq i \leq 2 n+1\right\}$ be denoted as in the following figure

First we label the vertices as follows. Define a function $f: V\left(C_{2 n+1} \odot K_{1}\right) \rightarrow\{k, k+1, k+2, \ldots, k+q\}$ by

$$
\begin{aligned}
f\left(v_{1}\right) & =k+1 \\
f\left(v_{i}\right) & =k+4 i-6, \quad \text { for } 2 \leq i \leq n+2 \\
f\left(v_{n+i}\right) & =k+4 n-4 i+9, \text { for } 3 \leq i \leq n+1 \\
f\left(u_{1}\right) & =k \\
f\left(u_{i}\right) & =k+4 i-5, \quad \text { for } 2 \leq i \leq n+1 \\
f\left(u_{n+2}\right) & =k+4 n+1 \\
f\left(u_{n+i}\right) & =k+4 n-4 i+8, \text { for } 3 \leq i \leq n+1
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{array}{rlrl}
f^{*}\left(e_{1}\right) & =k+1 & \\
f^{*}\left(e_{i}\right) & =k+4 i-4, & & \text { for } 2 \leq i \leq n+1 \\
f^{*}\left(e_{n+i}\right) & =k+4 n-4 i+7, & & \text { for } 2 \leq i \leq n \\
f^{*}\left(u_{i} v_{i}\right) & =k+5 i-4, & & \text { for } 1 \leq i \leq n-1 \\
f^{*}\left(u_{i+1} v_{i}\right) & =k+5 i-1, & & \text { for } 1 \leq i \leq n-1 \\
f^{*}\left(e_{1}^{\prime}\right) & =k & \\
f^{*}\left(e_{2}^{\prime}\right) & = \begin{cases}k+3 \text { if } k=1 \\
k+2 \text { if } k \geq 2\end{cases} & \\
f^{*}\left(e_{i}^{\prime}\right) & =k+4 i-6, & \text { for } 3 \leq i \leq n+1 \\
f^{*}\left(e_{n+i}^{\prime}\right) & =k+4 n-4 i+9, & & \text { for } 2 \leq i \leq 2 n+1
\end{array}
$$

The above defined function f provides k -harmonic mean labeling of the graph. Hence $C_{2 n+1} \odot K_{1},(n \geq 1)$ is k - harmonic mean graph for all $k \geq 1$.

Example 2.10. 200 harmonic mean labeling of $C_{19} \odot K_{1}$ is as follows:

Figure 5. 200 harmonic mean labeling of $C_{19} \odot K_{1}$.

Theorem 2.11. $C_{2 n} \odot K_{1},(n \geq 2)$ is k - harmonic mean graph for all $k \geq 1$.

Proof. Let $V\left(C_{2 n} \odot K_{1}\right)=\left\{v_{i}, u_{i} ; 1 \leq i \leq 2 n\right\} ; E\left(C_{2 n} \odot K_{1}\right)=\left\{e_{i}=\left(v_{i} v_{i+1}\right) ; 1 \leq i \leq 2 n-1\right\} \cup e_{2 n}=\left(v_{2 n}, v_{1}\right) \cup\left\{e_{i}^{\prime}=\right.$ $\left.\left(v_{i}, u_{i}\right) ; 1 \leq i \leq 2 n\right\}$ be denoted as in the following figure

Figure 6. 200 harmonic mean labeling of $C_{19} \odot K_{1}$.

First we label the vertices as follows. Define a function $f: V\left(C_{2 n} \odot K_{1}\right) \rightarrow\{k, k+1, k+2, \ldots, k+q\}$ by

$$
\begin{aligned}
f\left(v_{1}\right) & =k+1 \\
f\left(v_{i}\right) & =k+4 i-6, \quad \text { for } 2 \leq i \leq n+1 \\
f\left(v_{n+i}\right) & =k+4 n-4 i+5, \text { for } 2 \leq i \leq n \\
f\left(u_{1}\right) & =k \\
f\left(u_{i}\right) & =k+4 i-5, \quad \text { for } 2 \leq i \leq n+1
\end{aligned}
$$

$$
\begin{aligned}
& f\left(u_{n+2}\right)=k+4 n+1 \\
& f\left(u_{n+i}\right)=k+4 n-4 i+4, \text { for } 3 \leq i \leq n
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
f^{*}\left(e_{1}\right) & =k+1 \\
f^{*}\left(e_{i}\right) & =k+4 i-4, \quad \text { for } 2 \leq i \leq n \\
f^{*}\left(e_{n+1}\right) & =k+4 n-3 \\
f^{*}\left(e_{n+i}\right) & =k+4 n-4 i+3, \quad \text { for } 2 \leq i \leq n-1 \\
f^{*}\left(e_{1}^{\prime}\right) & =k \\
f^{*}\left(e_{2}{ }^{\prime}\right) & = \begin{cases}k+3 \text { if } k=1 \\
k+2 \text { if } k \geq 2\end{cases} \\
f^{*}\left(e_{i}^{\prime}\right) & =k+4 i-6, \quad \text { for } 3 \leq i \leq n \\
f^{*}\left(e_{n+1}^{\prime}\right) & =k+4 n-1 \quad \\
f^{*}\left(e_{n+2}{ }^{\prime}\right) & =k+4 n-2 \quad \\
f^{*}\left(e_{n+i}{ }^{\prime}\right) & =k+4 n-4 i+5, \quad \text { for } 3 \leq i \leq n-1 \\
f^{*}\left(e_{2}^{\prime}\right) & = \begin{cases}k+2 \text { if } k=1 \\
k+3 \text { if } k \geq 2\end{cases}
\end{aligned}
$$

The above defined function f provides k-harmonic mean labeling of the graph. Hence $C_{2 n} \odot K_{1},(n \geq 2)$ is k - harmonic mean graph for all $k \geq 1$.

Example 2.12. 100 harmonic mean labeling of $C_{16} \odot K_{1}$ is as follows:

Figure 7. 100 harmonic mean labeling of $C_{16} \odot K_{1}$.

References

[1] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 2016(2016), \#DS6.
[2] B. Gayathri and M. Tamilselvi, k-super mean labeling of some trees and cycle related graphs, Bulletin of Pure and Applied Sciences, 26E(2)(2007), 303-311.
[3] F. Harary, Graph theory, Narosa Publishing House Reading, New Delhi, (1998).
[4] P. Jeyanthi and D. Ramya, Super mean labeling of some classes of graphs, International Journal of Math. Combin., 1 (2012), 83-91.
[5] R. Ponraj and D. Ramya, Super mean labeling of graphs, Preprint.
[6] S.S. Sandhya, S. Somasundaram and R. Ponraj, Some results on Harmonic mean graphs, International Journal of Contemporary Mathematical Sciences, 7(4)(2012), 197-208.
[7] S. S. Sandhya, S. Somasundaram and R. Ponraj, Some more results on Harmonic mean graphs, Journal of Mathematics Research, 4(1)(2012), 21-29.
[8] S. S. Sandhya, S. Somasundaram and R. Ponraj, Harmonic mean labeling of some Cycle Related Graphs, International Journal of Mathematical Analysis, 6(40)(2012), 1997-2005.
[9] S. S. Sandhya and C. David Raj, Some results on Super Harmonic mean graphs, International Journal of Mathematics Trends and Technology, 6(2014).
[10] S. S. Sandhya, E. Ebin Raja Merly and B. Shiny, Some more results on super geometric mean labeling, International Journal of Mathematical Archive, 6(1)(2015), 121-132.
[11] SelvamAvadayappan and R. Vasuki, New families of mean graphs, International J. Math. Combin., 2(2010), 68-80.
[12] S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy of Science Letters, 26(2003), 210-213.
[13] M. Tamilselvi, A study in Graph Theory-Generalization of super mean labeling, Ph.D. Thesis, Vinayaka Mission University, Salem, August (2011).
[14] M. Tamilselvi and N. Revathi, k-Super harmonic mean labeling of some graphs, Aryabhatta Journal of Mathematics and Informatics, $9(1)(2017), 779-787$.
[15] M. Tamilselvi and N. Revathi, k-super harmonic mean labeling of some disconnected graphs, International Journal of Recent Innovation in Engineering and Technology, 2(8)(2017), 27-32.
[16] M. Tamilselvi and N. Revathi, k - harmonic mean labeling of some graphs, International Journal of Mathematics Trends and Technology, 52(4)(2017), 216-222.
[17] R. Vasuki and A. Nagarajan, Further results on mean graphs, Scientia Manga, 6(3)(2010), 1-14.

[^0]: * E-mail: revathisigin@gmail.com

