ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

On πg^* s-Irresolute Functions in Topological Spaces

P. Sathishmohan¹, V. Rajendran¹ and P. Jeevitha^{1,*}

1 Department of Mathematics, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India.

Abstract:

The purpose of this paper is to defined and studied the notion of π generalized star semi-closed sets in topological spaces and some of their basic properties are investigated. This new class of sets lies between the class of πg -closed sets and the class of πg -closed sets. Further the notion of πg *s-open sets, πg *s-continuous functions and πg *s-irresolute functions are defined and the composition of two πg *s-irresolute functions are discussed. Several examples are provided to illustrate the behaviour of new sets and functions.

MSC:

54405

Keywords: πg^* s-closed sets, πg^* s-open sets, πg^* s-continuous functions, πg^* s-irresolute functions.

© JS Publication.

Accepted on: 31.03.2018

1. Introduction

The study of g-closed sets in a topological space was initiated by Levine [11]. Veerakumar [23] introduced the notion of g^* -closed sets. Pushpalatha. P and Anitha. K [20] introduced the concept of g^* s-closed sets. Zaitsav [24] introduced and investigated the concepts of π -closed sets. J. Dontchev, T. Noiri [7] obtained the concept of πg -closed sets. Aslim, Guler and Noiri [3] introduced $\pi g s$ -closed sets. In this paper we study the properties of πg generalized star semi-closed sets(briefly $\pi g^* s$ -closed sets). Moreover in this paper, we defined $\pi g^* s$ -open sets and obtained some of its properties.

2. Preliminaries

Let us recall the following definitions which we shall require in sequal.

Definition 2.1. A subset A of a topological space (X, τ) is called

- (1). a pre-open set [14] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$.
- (2). a semi-open set [10] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
- (3). an α -open set[16] if $A \subseteq int(cl(int(A)))$ and an α -closed set if $cl(int(cl(A))) \subseteq A$.
- (4). a semi-pre open set $(=\beta$ -open) [2] if $A \subseteq cl(int(cl(A)))$ and a semi-pre closed set $(=\beta$ -closed) if $int(cl(int(A))) \subseteq A$.
- (5). a regular open set if A = int(cl(A)) [22] and a regular closed set if A = cl(int(A)).

^{*} E-mail: teddyjeevi@qmail.com

(6). a π -closed set [24] if A is the union of regular closed sets.

The intersection of all semi-closed (resp. pre-closed, semi-pre-closed, regular-closed and α -closed) sets containing a subset A of (X, τ) is called the semi-closure (resp. pre-closure, semi-pre-closure, regular-closure and α -closure) of A and is denoted by scl(A) (respectively pcl(A), spcl(A), rcl(A) and $\alpha cl(A)$).

Definition 2.2. A subset A of a topological space (X, τ) is called

- (1). a generalized semi-closed set (briefly gs-closed) [1] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (2). a semi generalized closed set (briefly sg-closed) [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X, τ) .
- (3). a regular generalized closed set (briefly rg-closed) [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .
- (4). a generalized pre closed set (briefly gp-closed) [13] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (5). a generalized semi-preclosed set (briefly gsp-closed) [6] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (6). an α generalized closed set (briefly αg -closed) [12] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (7). a π generalized closed set (briefly πg -closed) [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X, τ) .
- (8). $a \pi$ generalized α closed set (briefly $\pi g \alpha$ -closed) [9] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X, τ) .
- (9). a π generalized regular closed set (briefly π gr-closed) [8] if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X, τ) .
- (10). a π generalized pre-closed set (briefly π gp-closed) [18] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X, τ) .
- (11). $a \pi generalized semi-closed set (briefly <math>\pi gs$ -closed) [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X, τ) .
- (12). $a \pi$ generalized β closed set (briefly $\pi g\beta$ -closed) [21] if $\beta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X, τ) .
- (13). a regular weekly generalized closed set (briefly rwg-closed) [15] if $cl(Int((A)) \subseteq U$ whenever $A \subseteq U$ and U is r-open in (X, τ) .

Definition 2.3. A function $f: X \to Y$ from a topological space X into a topological space Y is called

- (1). r-continuous [22] if the inverse image of a closed set in Y is r-closed set in X.
- (2). gs-continuous [5] if the inverse image of a closed set in Y is gs-closed set in X.
- (3). gp-continuous [17] if the inverse image of a closed set in Y is gp-closed set in X.
- (4). π -continuous [24] if the inverse image of a closed set in Y is π -closed set in X.
- (5). πg -continuous [7] if the inverse image of a closed set in Y is πg -closed set in X.
- (6). πgs -continuous [3] if the inverse image of a closed set in Y is πgs -closed set in X.
- (7). πgr -continuous [8] if the inverse image of a closed set in Y is πgr -closed set in X.
- (8). $\pi g \beta$ -continuous [21] if the inverse image of a closed set in Y is $\pi g \beta$ -closed set in X.

3. πq^* s-Closed Sets

In this section, we defined a new class of sets called πg^* s-closed sets, πg^* s-open sets and study some of its properties.

Definition 3.1. A subset A of a topological space (X, τ) is called π generalized star semi-closed set(briefly πg^* s-closed set) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is πg -open in (X, τ) .

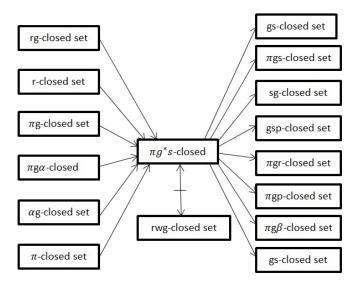
Theorem 3.2. Every r-closed set is πg^* s-closed.

Proof. Let A be a r-closed set in X. Let U be a πg -open set such that $A \subseteq U$. Since A is r-closed we have $rcl(A) = A \subseteq U$. But, $scl(A) \subseteq rcl(A) \subseteq U$. Therefore $scl(A) \subseteq U$. Hence A is a πg^* s-closed set in X.

Remark 3.3. The converse of the above theorem need not be true as seen in the following example.

Example 3.4. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{b\}, X\}$. Then r-closed set= $\{\phi, X\}$ and πg^*s -closed set= $\{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Let $A = \{a\}$. Then the subset A is πg^*s -closed but not a r-closed set.

Remark 3.5. The following diagram shows the relationship of πg^*s -closed set with other known existing sets.



 $A \rightarrow B$ represents A implies B but not conversely.

Example 3.6. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{c\}, \{a, b\}, X\}$. Then πg^*s -closed set= $\{\phi, \{c\}, \{a, b\}, X\}$, gs-closed, sg-closed, gp-closed, gsp-closed, πgr -closed, πgr -closed and $\pi g\beta$ -closed set= $\{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let $A = \{a\}$. Then the subset A is gs-closed, sg-closed, gp-closed, gsp-closed, πgr -closed, πgr -closed and $\pi g\beta$ -closed set but not πg^*s -closed set.

Theorem 3.8. Union of two πg^*s -closed subset is πg^*s -closed.

Proof. Let A and B be any two πg^* s-closed sets in X. Such that $A \subseteq U$ and $B \subseteq U$ where U is πg -open in X and so $A \cup B \subseteq U$. Since A and B are πg^* s-closed. $A \subseteq scl(A)$ and $B \subseteq scl(A)$ and hence $A \cup B \subseteq scl(A) \cup scl(B) \subseteq scl(A \cup B)$. Thus, $A \cup B$ is πg^* s-closed set in (X, τ) .

Example 3.9. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$. Then πg^*s -closed = $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Let $A = \{a\}$ is πg^*s -closed set and $B = \{b\}$ is πg^*s -closed set, then $A \cup B = \{a\} \cup \{b\} = \{a, b\}$ is also πg^*s -closed set.

Theorem 3.10. Intersection of two πg^*s -closed subset is πg^*s -closed.

Proof. Let A and B be any two πg^* s-closed sets in X. Such that $A \subseteq U$ and $B \subseteq U$ where U is πg -open in X and so $A \cap B \subseteq U$. Since A and B are πg^* s-closed. $A \subseteq scl(A)$ and $B \subseteq scl(A)$ and hence $A \cap B \subseteq scl(A) \cap scl(B) \subseteq scl(A \cap B)$. Thus, $A \cap B$ is πg^* s-closed set in (X, τ) .

Example 3.11. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Then πg^*s -closed= $\{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$. Let $A = \{a, b\}$ is and $B = \{b, c\}$ then $A \cap B = \{b\}$ is also πg^*s closed set.

Theorem 3.12. A subset A of X is πg^* s-closed if and only if scl(A) - A contains no non-empty closed set in X.

Proof. Let A be a πg^* s-closed set. Suppose F is a non-empty closed set such that $F \subseteq scl(A) - A$. Then $F \subseteq scl(A) \cap A^c$, since $scl(A) - A = scl(A) \cap A^c$. Therefore $F \subseteq scl(A)$ and $F \subseteq A^c$. Since F^c is open, it is πg -open. Now, by the definition of πg^* -closed set, $scl(A) \subseteq F^c$, That is $F \subseteq [scl(A)]^c$. Hence $F \subseteq scl(A) \cap [scl(A)]^c = \phi$. That is $F = \phi$, which is a contradiction. Thus, scl(A) - A contains no non-empty closed set in X. Conversely, assume that scl(A) - A contains no non-empty closed set. Let $A \subseteq U$, where U is πg -open. Suppose that scl(A) is not contained in U, then $scl(A) \cap U^c$ is a non-empty closed subset of scl(A) - A, which is a contradiction. Therefore $scl(A) \subseteq U$ and hence A is πg^* s-closed.

Theorem 3.13. For any element $x \in X$, the set $X/\{x\}$ is πg^*s -closed set or πg -open.

Proof. Suppose $X/\{x\}$ is not π g-open, then X is the only π g-open set containing $X/\{x\}$. This implies $scl X/\{x\} \subseteq X$. Hence $X/\{x\}$ is πg^* s-closed or π g-open in X.

Theorem 3.14. If A is an πg^* s-closed subset of X such that $A \subseteq B \subseteq scl(A)$, then B is an πg^* s-closed set in X.

Proof. Let A be a πg^* s-closed set of X such that $A \subseteq B \subseteq scl(A)$. Let U be a πg -open set of X such that $B \subseteq U$, then $A \subseteq U$. Since A is πg^* s-closed. We have $scl(A) \subseteq U$. Now $scl(B) \subseteq scl(scl(A)) = scl(A) \subseteq U$. Therefore B is an πg^* s-closed set in X.

Definition 3.15. A subset A of (X, τ) is called πg^* s-open set if and only if A^c is πg^* s-closed in (X, τ) .

Theorem 3.16. A set A is πg^* s-open if and only if $F \subseteq Int(A)$, where F is πg -closed and $F \subseteq A$.

Proof. If $F \subseteq Int(A)$ where F is πg -closed and $F \subseteq A$. Let $A^c \subseteq G$ where $G = F^c$ is πg -open. Then $G^c \subseteq A$ and $G^c \subseteq Int(A)$. Then we have A^c is πg^* s-closed. Hence A is πg^* s-open. Conversely If A is πg^* s-open, $F \subseteq A$ and F is πg -closed. Then F^c is πg -open and $A^c \subseteq F$. Therefore $cl(A^c) \subseteq (F^c)$. But $cl(A^c) = (Int(A))^c$. Hence $F \subseteq Int(A)$.

Theorem 3.17. If A is a subset of a topological space X is s-open and πgs -closed then A is πg^*s -open set.

Proof. Suppose a subset A of X is both s-open and π gs-closed. Now $A \supseteq scl(A) \supseteq [scl(A)]^c$. Therefore $A \subseteq sInt(A)$. Thus A is open in X.

Theorem 3.18. If a subset A of a topological space X is πg^* s-closed then it is πg s-closed.

Proof. Suppose A is πg^* s-closed in X. Let U be an open set containing A in X. Then $U \subseteq scl(A)$. Now $U \supseteq scl(A)$. Thus A is πg s-closed in X.

Theorem 3.19. If A is both rwg-open and πg -closed in X, Then it is πg^*s -closed in X.

Proof. Let A be an rwg-open and πg -closed set in X. Let $A \subset U$ and let U be πg -open in X. Now $A \subset A$. By hypothesis scl(A). That is $scl(A) \subset U$. Thus A is πg^* s-closed in X.

4. πq^* s-Continuous Functions

In this chapter, we introduce a function called πg^* s-continuous function and obtain some of its basic results.

Definition 4.1. If $f: X \to Y$ is called πg^*s -continuous, if $f^{-1}(A)$ is πg^*s -closed set in X for every closed set A in Y.

Theorem 4.2.

- (i). If $f: X \to Y$ is πg^*s -continuous, then f is r-continuous.
- (ii). If $f: X \to Y$ is πg^*s -continuous, then f is π -continuous.

Proof.

(i). Let F be a closed set in Y. Since f is πg^* s-continuous, then $f^{-1}(F)$ is πg^* s-closed in X. Since every πg^* s-closed set is r-closed, then $f^{-1}(F)$ is r-closed in X. Hence f is r-continuous.

Example 4.3. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then $\sigma = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$, $\sigma^c = \{\phi, \{a, c\}, \{c\}, \{a\}, X\}$. Let $r\text{-closed} = \{\phi, X\}$, $\pi\text{-closed} = \{\phi, X\}$ and $\pi g^*s\text{-closed} = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Define a map f(a) = b, f(b) = a, f(c) = c, then $f^{-1}(ac) = bc$, $f^{-1}(c) = c$, $f^{-1}(a) = b$ which is in πg^*s -closed set in X. But not in r-closed set and π -closed set. Therefore f is πg^*s -continuous function but not r-continuous and π -continuous function.

Theorem 4.4. (i). If $f: X \to Y$ is πgr -continuous, then f is πg^* s-continuous.

- (ii). If $f: X \to Y$ is gs-continuous, then f is πg^* s-continuous.
- (iii). If $f: X \to Y$ is gp-continuous, then f is πg^* s-continuous.
- (iv). If $f: X \to Y$ is $\pi g \beta$ -continuous, then f is πg^* s-continuous.

Proof. (i). Let F be a closed set in Y. Since f is π gr-continuous, then $f^{-1}(F)$ is π gr-closed in X. Since every π gr-closed set is πg^* s-closed, then $f^{-1}(F)$ is π gr-closed in X. Hence f is π gr-continuous.

Proof of (ii),(iii),(iv) is obvious
$$\Box$$

Example 4.5. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}X\}$. Then $\sigma = \{\phi, \{c\}, X\}$, πgr , gs, gp-closed= $\{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$ and $\pi g^*s\text{-}closed\text{=}$ $\{\phi, \{a\}, \{b, c\}, X\}$. Define a map f(a) = a, f(b) = b, f(c) = c, then $f^{-1}(ab) = ab$, which is in πgr , gs, gp-closed set in X. But not in $\pi g^*s\text{-}closed$ set. Therefore f is πgr , gp, gs-continuous function but not $\pi g^*s\text{-}continuous$ function.

5. πg^* s-Irresolute Function

In this section we defined the concept of πg^* s-irresolute functions in topological spaces.

Definition 5.1. If $f: X \to Y$ is called πg^*s -irresolute function, if $f^{-1}(A)$ is πg^*s -closed set in X for every πg^*s -closed set A in Y.

Theorem 5.2. Every πg^*s -irresolute functions is πg^*s -continuous.

Remark 5.3. The converse of the above theorem need not be true as seen in the following example.

Example 5.4. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$. Then πg^*s -closed= $\{\phi, \{c\}, X\}$, $\sigma = \{\phi, \{a\}, \{b, c\}, X\}$ and $\pi g^*s = \{\phi, \{a\}, \{b, c\}, X\}$. Define a map f(a) = a and f(b) = b, f(c) = c then $f^{-1}(a) = a$, $f^{-1}(b, c) = bc$, which is not πg^*s -circulate, since it is πg^*s -closed set of Y but the inverse is not a πg^*s -closed set of X. But it is πg^*s -continuous.

Theorem 5.5. A map $f: X \to Y$ is πg^*s -irresolute function if and only if, for every πg^*s -open set A of Y, $f^{-1}(A)$ is πg^*s -open in Y.

Proof. Necessity: If $f: X \to Y$ is πg^* s-irresolute, then for every πg^* s-closed B of Y, $f^{-1}(B)$ is πg^* s-closed in X. If A is any πg^* s-open subset of Y, then A^c is πg^* s-closed. Thus $f^{-1}(A^c)$ is πg^* s-closed, but $f^{-1}(A^c) = (f^{-1}(A))^c$ so that $f^{-1}(A)$ is πg^* s-open.

Sufficiency: If for all πg^* s-open subsets A of Y, $f^{-1}(A)$ is πg^* s-open in X, and if B is any πg^* s-closed subset of Y, then B c is πg^* s-open. Also $f^{-1}(B^c) = (f^{-1}(B))^c$ is πg^* s-open. Thus $f^{-1}(B)$ is πg^* s-closed.

Theorem 5.6. If $f: X \to Y$ and $g: Y \to Z$ are both πg^*s -irresolute function, then $gof: X \to Z$ is πg^*s -irresolute.

Proof. If $A \subset Z$ is πg^* s-open, then $g^{-1}(A)$ is πg^* s-open and $f^{-1}(g^{-1}(A))$ is πg^* s-open since g and f are πg^* s-irresolute. Thus $(gof)^{-1}(A) = f^{-1}(g^{-1}(A))$ is πg^* s-open and gof is πg^* s-irresolute.

Theorem 5.7. Let X, Y and Z be any topological spaces. For any πg^*s -irresolute map $f: X \to Y$ and any πg^*s -continuous map $g: Y \to Z$, the composition $gof: X \to Z$ is πg^*s -continuous.

References

- [1] S.P. Arya and T.M. Nour, Characterization of s-normal spaces, Indian J. pure Appl. Math., 21(8)(1990), 717-719.
- [2] D. Andrijevic, $semi\ pre\text{-}open\ sets,$ Mat. Vesnik, 38(1)(1986), 24-32.
- [3] G. Aslim, A. Caksu Guler and T. Noiri, On πgs -closed sets in toplogical spaces, Acta Math. Hunger., 112(4)(2006), 275-283.
- [4] P. Bhathacharyya and B.K. Lahiri, Semi generalized closed set in toplogy, Indian Jl. Math., 29(1987), 376-382.
- [5] R. Devi, H. Maki and K. Balachandran, semi-generalized homeomorphisms and generalized semi-homeomorphisms, Indian J. Pure. Appl. Math., 26(3)(1995), 271-284.
- [6] J. Dontchev, On generalized semi pre open sets, Mem. Fac. Kochi. Univ. Math., 16(1995), 35-48.
- [7] J. Dontchev and T. Noiri, Quasi Normal spaces and πg -closed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
- [8] V. Jeyanthi and C. Janaki, πgr -closed sets in topological spaces, Assian Journal of Current Engg. Math., 1(5)(2012), 241-246.
- [9] C. Janaki, Studies on $\pi g \alpha$ -closed sets in topology, Ph.D Thesis, Bharathiar University, (2009).
- [10] N. Levine, semi-open and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [11] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Patermo, 2(19)(1970), 89-96.
- [12] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.
- [13] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T1/2, Mem. Fac. Sci. Kochi Univ., Ser. A. Math., 17(1996), 33-42.

- [14] A.S. Mashhour, M.E. Abd. EL-Monsef and S.N. EL-Deef, On pre-continuous and week pre-continuou mappings, Proc. Math, Phys. Soc. Egypt, 53(1982), 47-53.
- [15] N. Nagaveni, Studies on generalized homeomorphisms in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, (1999).
- [16] O. Njastad, some classes of nearly open-sets, Pacific J. Math., 15(1965), 961-970.
- [17] T. Noiri, H. Maki and J. Umehara, Gneralized pre-closed functions, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 19(1998), 13-20.
- [18] J.H. Park, On πgp -closed sets in topological spaces, Indian J. Pure Appl. Math., (2004).
- [19] N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyung-pook Math. J., 33(1993), 211-219.
- [20] P. Pushpalatha and K. Anitha, g*s-closed sets in topological spaces, Int.J. Contemp. Math. Science, 6(2011), 917-929.
- [21] M.S. Sarasak and N. Rajesh, π -Generalised semi-preclosed sets, International Mathematical Forum, 5(2010), 473-578.
- [22] M. Stone, Application of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.
- [23] M.K.R.S. Veerakumar, Between generalized*-closed sets and g-closed sets, Antarctica J. Math., 3(1)(2006), 67-83.
- [24] Zaitsev, On certain classes of topological spaces and their bicomactifications, Dokl. Akad. Nauk. SSSR., 178(1968), 778-779.