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Abstract: In this paper, we prove that there is no factoriangular number that is also factorial. An expression of factoriangular

number explicitly in terms of triangular number is given. Bounds of the ratio of consecutive factoriangular number are
given. It is shown that for n ≥ 5, there exists no Ftn which divides Ftn+1. Patterns in factoriangular number modulo

n is also observed. It is conjectuerd that there exists no factoriangular number that is a perfect square. It has also been

conjectured that for n ≥ 6, 8n! + 1 is not a perfect square. A conjecture [3] that there is no factoriangular number that
is an even perfect number is proved.
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1. Introduction

Definition 1.1 ([9]). Triangular number is a number obtained by adding all positive integers less than or equal to a given

positive integer n, i.e., Tn =
n(n+ 1)

2
.

Definition 1.2 ([3]). Factoriangular number is defined as the sum of the first n natural numbers plus the factorial of n. i.e.

Ftn =
n(n+ 1)

2
+ n!.

Definition 1.3 ([7]). Generalized factoriangular number is defined is also called (n, k) - factoriangular numbers. The (n, k)

- factoriangular number is defined by the formula Ftn,k = n!+Tk where n! = 1.2.3...n and Tk = 1+2+3+ ...+k =
k(k + 1)

2

for natural numbers n, k ≥ 1.

Definition 1.4 ([2]). Perfect number is a positive integer that is equal to the sum of its proper positive divisors, that is, the

sum of its positive divisors excluding the number itself. i.e. σ(n) = 2n. For example, the first few perfect numbers are 6, 28,

496, 8128, ...

It has been found [5] that Ft6 = T38 = 741 is one of the numbers that is both Triangular and Factoriangular number. An

open question [5] has been raised if there is any other number that is both triangular and Factoriangular. We will prove

that except Ft1 = 2, there is no Factoriangular number that is also Factorial.

Theorem 1.5. Except Ft1 = 2, there is no Factoriangular number that is also Factorial.
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Proof. If n = 1, it is easily shown that Ft1 = 2 and 2! = 2. (Proof by contradiction). For n ≥ 2, assume there exist n

and x where x > n, such that

Ftn = x!

n! +
n(n+ 1)

2
= x!

n(n+ 1)

2
= x!− n!

n(n+ 1) = 2n![x(x− 1)..(n− 1)!− 1]

(n+ 1) = 2(n− 1)!k where k = [x(x− 1)...(n− 1)!− 1] and k > n.

n+ 1 = 2(n− 1)k! > 2(n− 1)!n.

Hence n+ 1 > 2n! But n+ 1 < 2n! whenever n ≥ 2. Hence we reach a contradiction.

A number which is simultaneously square and triangular is called Square Triangular number. Let Tn denote the nth triangular

number and Sm the mth square number, then a number which is both triangular and square satisfies the equation Tn = Sm.

[15] The first few solutions are (x,y)=(3,2), (17, 12), (99, 70), (577, 408), .... In 1730, Euler showed that there are an infinite

number of such solutions. [15] A natural question is to ask whether there is any Factoriangular number that is a perfect

square.

n Ftn Prime Factors

1 2 2

2 5 5

3 12 22.3

4 34 2.17

5 135 33.5

6 741 3.13.19

7 5068 22.7.181

8 40356 22.32.19.59

9 362955 33.52.1613

10 3628855 5.557.3303

11 39916866 2.3.11.604801

12 479001678 2.3.79833613

13 6227020891 72.13.9775543

14 87178291305 3.5.7.14779.56179

15 1307674368120 23.3.5.10897286401

16 20922789888136 23.29.90184439173

17 355687428096153 32.17.298373.7791437

18 6402373705728171 32.317693.2239189583

19 121645100408832190 2.5.19.2801.228574570001

20 2432902008176640210 2.3.5.7.59.251.383.2042588183

By the observation of prime factors of Ftn, there is no number that is a perfect square and also the number of factor keeps

on increasing as n gets larger. Hence it can be conjectured that there is no factoriangular number that is a perfect square.

Now we will give the expression of the Factoriangular number explicitly in terms of Triangular number.

Theorem 1.6. If m is a positive integer where m ≥ 1, then Ftm = Tm! − Tm!−1 + Tm.

Proof. We can always write m! =
m!(m! + 1)

2
− m!(m!− 1)

2
= Tm! − Tm!−1. Adding Tm on both sides we get Ftm =

Tm! − Tm!−1 + Tm.

It has been conjectured that For n, x ≥ 1, and n 6= x, Ftn is the nth factoriangular number and Ti is the ith triangular

number, the only solution for Ftn = Tx + Tn is (n, x) = (5, 15). [5] It is consistent with the conjecture given by Christopher
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Tomaszewski that 1, 6 and 120 are the only numbers which are both triangular and factorials. [12] ie. m,n, s ≥ 0,

m! =
n(n+ 1)

2
= s if and only if s ∈ {1, 6, 120}. Let’s look at how this is possible. Ftn = Tx + Tn ⇒ Tn + n! = Tx + Tn ⇒

n! =
x(x+ 1)

2
= s if and only if s ∈ {1, 6, 20}.

Case 1: n = 1, then
x(x+ 1)

2
= 1⇒ x2 +x−2 = 0⇒ x = 1 or −2. Negative value can be avoided. Hence x = 1. Therefore

(n, x) = (1, 1). But this value can be discarded as n 6= x.

Case 2: n! = 6, then n = 3 and
x(x+ 1)

2
= 6⇒ x2 + x− 12 = 0⇒ x = 3 or −4. We can neglect negative values and hence

x = 3. ie., (n, x) = (3, 3). But this can be discarded as well since n 6= x.

Case 3: n! = 120 =
x(x+ 1)

2
, then n = 5 and x2 + x − 240 = 0 ⇒ x = 15 or −16. Neglecting negative values x = 15. i.e

(n, x) = (5, 15).

Hence for n, x ≥ 1 and n 6= x, the only solution for Ftn = Tn + Tx is (n, x) = (5, 15). Furthermore it has been proved that

for n, x ≥ 1, Ftn is the nth triangular number and Ti is the ith triangular number, Ftn = Tx + Tn if and only if 8n! + 1 is a

square [5]. Ftn = Tx + Tn ⇒ n! = Tx ⇒ n! = Tx = {1, 6, 120} i.e. n = 1, 3, 5. Then a conjecture can be stated as follows:

For n ≥ 6, 8n! + 1 is not a square. It was checked and found to be true for n ≤ 100. If a counterexample is found the same

number is a counterexample to the conjecture given by [12] Christopher Tomaszewski. Now we look under what condition

the Factoriangular number is twice the triangular number.

Theorem 1.7. If Ftn is a factoriangular number and n! is a factorial then, Ftn = 2n! if and only if n = 1, 3.

Proof. If Ftn is a factoriangular number and n! is a factorial number Ftn = 2n! ⇔ n! + Tn = 2n! ⇔ Tn = n! ⇔
n(n+ 1)

2
= n!. Clearly this is true for n = 1. If

n+ 1

2
< n− 1, then

n(n+ 1)

2
< n(n− 1) < n!. So there exists no solution

such that
n+ 1

2
< n− 1⇒ n+ 1 < 2n− 2⇒ 3 < n. Hence n = 1, 2, 3 are the only solution but 2 can be discarded since it

doesn’t satisfy the equation. Hence 1 and 3 are the only solutions.

2. Bounds of Factoriangular Numbers

We will now look into the upper bound and lower bound for the ratio of Triangular number, Factoriangular number and

Factorial number and look at their limiting values.

Observation 2.1. For all n > 3,
Ftn
n!

< 2.

Proof. We can easily see that n! >
n(n+ 1)

2
for all n > 3. Ftn = Tn + n! < n! + n! < 2n!. Hence

Ftn
n!

< 2.

Observation 2.2. For all n ≥ 5,
Ftn+1

Ftn
> n.

Proof. Assume to the contrary
Ftn+1

Ftn
≤ n⇒ Ftn+1 ≤ nFtn

⇒ (n+ 1)! +
(n+ 1)(n+ 2)

2
≤ n[n! +

n(n+ 1)

2
]

⇒ n! +
n(n+ 1)

2
+ (n+ 1) ≤ n2(n+ 1)

2

⇒ n! ≤ (n+ 1)[
n2

2
− n

2
+ 1]

⇒ n! ≤ (n+ 1)2(n− 2)

2
.

For n ≥ 5, n! >
(n+ 1)2(n− 2)

2
which contradicts our assumption. Hence, the proof.

Observation 2.3. For all n ≥ 2,
Ftn+1

Ftn
< n+ 1.
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Proof.
Ftn+1

Ftn
=

(n+ 1)[n! +
n+ 2

2
]

n! +
n(n+ 1)

2

⇒ Ftn+1

Ftn
= (n + 1)k where k =

n! +
n+ 2

2

n! +
n(n+ 1)

2

. If k < 1, then the proof follows

since
Ftn+1

Ftn
= (n+ 1)k < n+ 1. To show k < 1, assume to the contrary that k ≥ 1, then

n! +
n+ 2

2

n! +
n(n+ 1)

2

≥ 1⇒ n! +
n+ 2

2
≥ n! +

n(n+ 1)

2
⇒ n+ 2

2
≥ n(n+ 1)

2
⇒ n+ 2 ≥ n(n+ 1)⇒ 2 ≥ n2.

But for n ≥ 2, we get a contradiction. Hence k < 1.

From Observation 2.2 and 2.3, we can deduce that for n ≥ 5, no Ftn divides Ftn+1.

Theorem 2.4. If Ftn is the nth Factoriangular number and n! is the nth Factorial number then, lim
n→∞

Ftn
n!

= 1.

Proof.

Ftn
n!

=
n(n− 1)(n− 2)...1 +

n(n+ 1)

2
n(n− 1)(n− 2)....1

= 1 +

n(n+ 1)

2
n(n− 1)(n− 2)...1)

= 1 +
n+ 1

2(n− 1)(n− 2)...1

= 1 +
n

2(n− 1)(n− 2)...1
+

1

2(n− 1)(n− 2)...1

= 1 +
1

2(1− 1/n)(n− 2)...1
+

1

2(n− 1)(n− 2)...1

Hence, lim
n→∞

Ftn
n!

= 1.

Theorem 2.5. If Ftn+1 is the (n + 1)th Factoriangular number and Ftn is the nth Factoriangular number then,

lim
n→∞

Ftn+1

(n+ 1)Ftn
= 1.

Proof.

Ftn+1

(n+ 1)Ftn
=

(n+ 1)! + (n+ 1)(n+ 2)/2

(n+ 1)[n! +
n(n+ 1)

2
]

=
n! +

n+ 2

2

n! +
n(n+ 1)

2

=
1 +

n+ 2

2n!

1 +
n(n+ 1)

2n!

=

1 +
1

2(n− 1)!
+

1

n!

1 +
n+ 1

2(n− 1)!

=

1 +
1

2(n− 1)!
+

1

n!

1 +
n

2(n− 1)!
+

1

2(n− 1)!

=

1 +
1

2(n− 1)!
+

1

n!

1 +
1

2(1− 1/n)(n− 2)..1
+

1

2(n− 1)!

Hence, lim
n→∞

Ftn+1

(n+ 1)Ftn
= 1.
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3. Patterns in Factoriangular Number mod n

We look at the triangular number modulo a positive integer k [9]. Reading the triangular numbers modulo 2, we get the

following pattern which repeats every 4 steps:

1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, ...

Similarly, Tn modulo 3 gives the following pattern of numbers which repeats every 3 steps:

1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, ...

Tn modulo 4, we get a sequence that repeats every 8 steps:

1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, ...

Tn modulo 5, we get a sequence that repeats every 5 steps:

1, 3, 1, 0, 0, 1, 3, 1, 0, 0, ...

and Tn modulo 6, we get this pattern:

1, 3, 0, 4, 3, 3, 4, 0, 3, 1, 0, 0, 1, 3, 0, 4, ...

Since Factoriangular number is the sum of triangular and factorial number, we expect some patterns while looking at

factoriangular number mod n. Now we look at the Factoriangular number mod n and we have seen a pattern in Ftn mod

2, 3, 4, 5 and 6. We will give the pattern in the following table.

n Ftn Ftn mod 2

1 2 0

2 5 1

3 12 0

4 34 0

5 135 1

6 741 1

7 5068 0

8 40356 0

9 362955 1

10 3628855 1

11 39916866 0

12 479001678 0

13 6227020891 1

14 87178291305 1

15 1307674368120 0

16 20922789888136 0

17 355687428096153 1

18 6402373705728171 1

19 121645100408832190 0

20 2432902008176640210 0

Looking at the table, after n ≥ 2, Ftn mod 2 gives the following pattern which repeats after every 4 steps:

1, 0, 0, 1, 1, 0, 0, 1, ...

Theorem 3.1. For n ≥ 2, Ftn mod 2 is 0 if n is of the form 4k for integer k ≥ 1, 4k+3 for integer k ≥ 0 and Ftn mod 2

is 1 if n is of the form 4k + 1 for integer k ≥ 1, 4k + 2 for integer k ≥ 0.
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Proof. Four cases are considered as follows:

Case 1: The natural number n is of the form 4k, for integer k ≥ 1. (Note that if k = 0, then n = 0, which is not considered

here). If n = 4k, then Ft4k = (4k)! +
4k(4k + 1)

2
= 2[4k(4k − 1)...3.1 + k(4k + 1)] which is in the form Ft4k = 2a, where

a = [4k(4k − 1)...3.1 + k(4k + 1)]. Hence Ft4k mod 2 = 0.

Case 2: The natural number n is of the form 4k + 1 for integer k ≥ 1. If n = 4k + 1, then Ft4k+1 = (4k + 1)! +

(4k + 1)(4k + 2)

2
= (4k + 1)[(4k)! + (4k + 1)(2k + 1)]. But (4k + 1) is always odd, (4k)! is even and 4k + 1 and 2k + 1 is

odd. And the product of 4k + 1 and 2k + 1 is odd. Ft4k+1 is odd. Hence Ft4k+1 mod 2 is 1.

Case 3: If the natural number n is of the form 4k+2, for integer k ≥ 0. If n = 4k+2, then Ft4k+2 = 2m+
(4k + 1)(4k + 3)

2
=

2m+ (2k + 1)(4k + 3). But The product of two odd is odd and hence Ft4k+2 is odd and Ft4k+2 mod 2 is 1.

Case 4: If the natural number n is of the form 4k + 3, for integer k ≥ 0, then Ft4k+3 = 2m +
(4k + 3)(4k + 4)

2
=

2m+ (4k + 3)(2k + 2). But the product of even and odd is even. Hence Ft4k+3 mod 2 is 0.

n Ftn Ftn mod 3

1 2 2

2 5 2

3 12 0

4 34 1

5 135 0

6 741 0

7 5068 1

8 40356 0

9 362925 0

10 3628855 1

11 39916866 0

12 479001678 0

13 6227020891 1

14 87178291305 0

15 1307674368120 0

16 20922789888136 1

17 355687428096153 0

18 6402373705728171 0

19 121645100408832190 1

20 2432902008176640210 0

For n≥ 3, Ftn mod 3 gives the following pattern which repeats after every 3 steps:

0, 1, 0, 0, 1, 0, 0, 1, 0, ...

Theorem 3.2. For n ≥ 3, Ftn mod 3 is 0 if n is of the form 3k for integer k ≥ 1, 3k+ 2 for integer k ≥ 1 and Ftn mod 3

is 1 if n is of the form 3k + 1 for integer k ≥ 1.

Proof. Three cases will be considered where each n ≥ 3 can be written in the form of either 3k, 3k+ 1 or 3k+ 2 for k ≥ 1.

Case 1: The natural number n is of the form 3k for integer k ≥ 1. If n = 3k, then Ft3k = (3k)! +
3k(3k + 1)

2
= 3[3k(3k −

1)..4.2.1 +
k(3k + 1)

2
]. Now Ft3k can be written in the form 3m, m is an integer where m = 3[3k(3k− 1)..4.2.1 +

k(3k + 1)

2
].

Hence Ft3k mod 3 = 0.

Note: The problem arises if
k(3k + 1)

2
is fraction but we are assured that this is not the case. If k is even, 3k + 1 is odd

hence the product of even and odd number is even and 2 will be cancelled out. If k is odd, 3k + 1 is always even and it

follows that 2 will be cancelled out.

Case 2: The natural number n is of the form 3k + 1, for integer k ≥ 1. If n = 3k + 1, then Ft3k+1 = (3k + 1)! +

(3k + 1)(3k + 2)

2
= (3k+ 1)! +

9k2 + 9k + 2

2
= (3k+ 1)! +

9k(k + 1)

2
+ 1 = 3[(3k+ 1).3k..4.2 +

3k(k + 1)

2
] + 1. Now Ft3k+1
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can be written in the form 3m + 1 where m is an integer and m = (3k + 1).3k..4.2 +
3k(k + 1)

2
= (3k + 1).3k..4.2 + 3Tk.

Hence Ft3k+1 mod 3 = 1.

Case 3: The natural number n is of the form 3k + 2, for integer k ≥ 1. If n = 3k + 2, then Ft3k+2 = (3k + 2)! +

(3k + 2)(3k + 3)

2
= 3[(3k+ 2)(3k+ 1)..4.2.1 +

(3k + 2)(k + 1)

2
]. Now Ft3k+2 can be written in the form of 3m where m is an

integer and m = (3k+ 2)(3k+ 1)..4.2.1 +
(3k + 2)(k + 1)

2
. To make sure

(3k + 2)(k + 1)

2
is an integer, If k is odd then k+ 1

is even cancelling out 2. If k is even, 3k + 2 is always even and hence cancelling out 2. Therefore, Ft3k+2 mod 3 = 0.

n Ftn Ftn mod 4

1 2 2

2 5 1

3 12 0

4 34 2

5 135 3

6 741 1

7 5068 0

8 40356 0

9 362925 1

10 3628855 3

11 39916866 2

12 479001678 2

13 6227020891 3

14 87178291305 1

15 1307674368120 0

16 20922789888136 0

17 355687428096153 1

18 6402373705728171 3

19 121645100408832190 2

20 2432902008176640210 2

For n ≥ 4, we see a pattern in Ftn mod 4 which repeats after every 8 steps:

2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, ...

n Ftn Ftn mod 5

1 2 2

1 5 0

3 12 2

4 34 4

5 135 0

6 741 1

7 5068 3

8 40356 1

9 362925 0

10 3628855 0

11 39916866 1

12 479001678 3

13 6227020891 1

14 87178291305 0

15 1307674368120 0

16 20922789888136 1

17 355687428096153 3

18 6402373705728171 1

19 121645100408832190 0

20 2432902008176640210 0

For n ≥ 5, we see a pattern in Ftn mod 5 which repeats after every 5 steps:
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0, 1, 3, 1, 0, 0, 1, 3, 1, 0, ...

Theorem 3.3. For n ≥ 5, Ftn mod 5 = 0 if n is of the form 5k or 5k + 4 for the integer k ≥ 1; Ftn mod 5 = 1 if n is of

the form 5k + 1 or 5k + 3 for the integer k ≥ 1 and Ftn mod 5 = 3 if n is of the form 5k + 2 for the integer k ≥ 1.

Proof. Five cases will be considered as follows.

Case 1: If n = 5k, Ft5k = (5k)! +
5k(5k + 1)

2
= 5[5k(5k − 1)...6.4! +

k(5k + 1)

2
] = 5m, m is an integer where m =

5k(5k − 1)...6.4! +
k(5k + 1)

2
. The problem arises when

k(5k + 1)

2
is fraction. But that is not the case because if k is even,

2 will be cancelled out and if k is odd, 5k + 1 is always even cancelling out 2. Hence Ftn mod 5 = 0 when n is of the form

5k for k ≥ 1.

Case 2: If n = 5k+1, Ft5k+1 = (5k+1)!+
(5k + 1)(5k + 2)

2
= (5k+1)!+

25k2 + 15k + 2

2
= 5[(5k+1)5k...6.4!+

5k(5k + 3)

2
]+

1 = 5m + 1 where m is an integer and m = (5k + 1)5k...6.4! +
5k(5k + 3)

2
. We have to check whether

5k(5k + 3)

2
is an

integer to make sure m is an integer. If k is even then 2 will be cancelled out and if k is odd then 5k + 3 is always even

which will cancel out 2. Hence m is always an integer and Ftn mod 5 = 1 if n is of the form 5k + 1.

Case 3: If n is of the form 5k + 2 where k ≥ 1, then Ft5k+2 = (5k + 2)! +
(5k + 2)5k + 3

2
= (5k + 2)! +

25k2 + 25k + 6

2
=

5[(5k+ 2)...6.4! +
5k(k + 1)

2
] + 3 = 5m+ 3 where m is an integer and m = (5k+ 2)..6.4! +

5k(k + 1)

2
= (5k+ 2)...6.4! + 5Tk.

Hence Ftn mod 5 = 3 when n is of the form 5k + 2.

Case 4: If n is of the form 5k+3 where k ≥ 1, then Ft5k+3 = (5k+3)!+
(5k + 3)(5k + 4)

2
= (5k+3)!+

25k2 + 35k + 12)

2
=

5[(5k+ 3)...6.4! +
5k(k + 7)

2
+ 1] + 1 = 5m+ 1 where m is an integer and m = (5k+ 3)...6.4! +

5k(k + 7)

2
+ 1. We can show

m is an integer by showing that
k(k + 7)

2
is an integer. If k is even, 2 will be cancelled out and If k is odd, k+ 7 is even and

2 will be cancelled. Hence it is an integer. Therefore Ftn mod 5 = 1.

Case 5: If n = 5k + 4, Ft5k+4 = (5k + 4)! +
(5k + 4)(5k + 5)

2
= 5[(5k + 4)...6.4! +

(5k + 4)(k + 1)

2
] = 5m where m is

an integer and m = (5k + 4)...6.4! +
(5k + 4)(k + 1)

2
. To show m is an integer it suffices to show

(5k + 4)(k + 1)

2
is an

integer. If k is even, 5k + 4 is even and 2 will be cancelled out. If k is odd, k + 1 is even and 2 will be cancelled out. Hence

Ft5k+4 mod 5 = 0.

After some experimentation, we are able to guess that the Ftn mod k repeats every k steps for n ≥ k, if k is odd, and every

2k steps if k is even. We give the condition under which Ftn,k = 2Ftn.

Theorem 3.4. For n, k ≥ 1, Ftn,k = 2Ftn if and only if 8Ftn + 8Tn + 1 is a perfect square.

Proof.

Ftn,k = 2Ftn

⇔ n! + Tk = 2n! + 2Tn

⇔ Tk = n! + 2Tn

⇔ Tk = Ftn + Tn

⇔ k(k + 1)

2
= Ftn + Tn

⇔ k2 + k = 2Ftn + 2Tn

⇔ k2 + k − (2Ftn + 2Tn) = 0

⇔ k =
−1±

√
1 + 4(2Ftn + 2Tn)

2
.

For k to be an integer , 8Ftn + 8Tn + 1 must be a perfect square.
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4. Proof of a Conjecture

We will prove the conjecture that there is no factoriangular number that is an even perfect number [3].

Theorem 4.1. There is no factoriangular number that is an even perfect number.

Proof. We will prove this by contradiction. We know that every even perfect number n can be represented in the form

n = 2p−1(2p−1) where 2p−1 is a prime number. Assume to the contrary that there exists a factoriangular number Ftn such

that Ftn = 2p−1(2p − 1) where 2p − 1 is a prime number. Then

n! +
n(n+ 1)

2
= 2p−1(2p − 1) (1)

Equation (1) ⇒ 2n! + n(n+ 1) = 2p(2p − 1)⇒ n[2(n− 1)! + (n+ 1)] = 2p(2p − 1). Then n | 2p(2p − 1) which implies n | 2p

or n | (2p − 1). Our claim is that n - 2p nor n - (2p − 1) which will lead us to contradiction and hence proving the theorem.

Since 2p − 1 is prime and for n to divide 2p − 1, either n = 1 or n = 2p − 1 itself. When n = 1, Ftn = 2 which is not equal

to an even perfect number so we can discard n = 1. When n = 2p − 1, Equation (1) ⇒ n! +
n(n+ 1)

2
=
n(n+ 1)

2
⇒ n! = 0

which gives that n = 0. When n = 0, Ftn does not exist so we can discard this value of n as well.

Hence the only way is n | 2p. Since we are considering even perfect number, Ftn must be even and We have a Theorem [3]

Ftn is even if and only if n = 4k or 4k+3. But n 6= 4k+3 since 4k+3 - 2p. Hence it must be of the form n = 4k = 22k. Now

n = 4k, 4k | 2p ⇒ k | 2p−2. This can happen if and only if k is of the form 2a where a is some integer. k | 2p−2 ⇒ 2p−2 = km

where m is of the form 2b ⇒ 2p = 4km implies

2p − 1 = (4km− 1) (2)

Equation (1) ⇒ (4k)! +
4k(4k + 1)

2
= 2p−1(2p − 1) ⇒ 4k[(4k − 1)! +

4k + 1

2
] = 2km(4km − 1) [From Equation (2)]

⇒ 2(4k − 1)! + (4k + 1) = m(4km− 1) which is a contradiction since 2(4k − 1)! is even and (4k + 1) is odd and the sum of

even and odd number is odd But m is even and 4km− 1 is odd and the product of even and odd number is even.

5. Conclusion

It was proved that there is no Factoriangular number that is factorial number except Ft1 = 2. Factoriangular number was

expressed explicitly in terms of sum of Triangular number. We have also found some bounds of the ratio of factoriangular

numbers. It is conjectured that there is no factoriangular number that is a perfect square. It is also conjectured that for

n ≥ 6, 8n! + 1 is not a perfect square. A conjecture has been proved that there exists no factoriangular number that is an

even perfect number [3]. There are many open problems [3, 5] left to the reader. There is lot of scope for the further study

on the generalized Factoriangular Number.
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