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1. Introduction

Molodtsov [16] introduced the notion of soft set as a mathematical tool for modelling uncertainties. It has a set E of all

possible adjectives or descriptors or attributes, called parameters pertaining to a collection of objects U , called a universal

set. Since any one attribute e in E can naturally be associated with a sub collection σEe of the collection of objects U ,

intrinsically it has a map σE from the set of all adjectives E to the set of all sub collections P (U) of the given collection.

Thus, a soft set is a pair consisting of a parameter set E and a map σE from this parameter set E into the power set

P (U). Ever since the notion of soft set is introduced, several mathematicians imposed various algebraic, topological and

topologically algebraic structures and substructures on the soft sets studying some of the basic properties and now there are

well over a thousand papers available in print on the net.

For studies in various soft algebraic structures and substructures, one can refer to Aktas-Cagman [3] for soft groups; Sezgin-

Atagun [22] for soft groups and normalistic soft groups; Feng-Jun-Zhao [12] for soft semi rings; Acer-Koyuncu-Tanay [1] for

soft rings; Sun-Zhang-Liu [24] for soft modules; Sezgin-Atagun-Ayugn [21] for soft near-rings and idealistic soft near-rings;

Atagun-Sezgin [6] for soft substructures of rings, fields and modules, Murthy-Maheswari [17, 18] for f(p)-soft τ -algebras and

their ω-subalgebras and Changphas-Thongkam [8] for soft algebras in a general viewpoint; for studies in soft topological

structures and substructures, one can refer to Shabir-Naz [23], Peyghan-Samadi-Tayebi [20] and Cagman-Karatas-Enginoglu

[7] for soft topological space and soft topology; Ahmad-Hussain [2] for some structures of soft topology and Kannan [14] for

soft generalized closed sets in soft topological spaces; for studies in soft topological algebraic structures and substructures,

one can refer to Das-Majumdar-Samanta [9] for soft linear spaces and soft normed linear spaces; Das-Samanta [10, 11] for
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soft metric spaces and soft inner product spaces etcetera.

Please notice that the above list is far from being complete and our aim is to suggest a few papers for a beginner in each

direction. However, our aim in this paper is to construct, for any soft set, a crisp set in such a way that 1. the complete

poset of all soft subsets of the former is complete epimorphic to a complete poset of certain subsets of the later, where the

join in the later is the meet induced join and 2. the complete poset of all regular soft subsets of the given soft set is complete

isomorphic to a complete poset of certain subsets of the crisp set, where the meet in the former complete poset is the join

induced meet and the join in the later complete poset is the meet induced join.

2. Preliminaries

We assume the following notions from Lattice Theory: poset, least upper bound, greatest lower bound, (meet/join) complete

poset, (meet/join) complete subposet, (meet/join) complete homomorphism (isomorphism) of (meet/join) complete posets,

complete ideal (filter), one can refer to any standard text books on Lattice Theory for them. Observe that by a meet (join)

complete poset we mean a poset in which every non-empty subset S has infimum (supremum), denoted by ∧S (∨S); by a

meet complimented meet complete poset we mean a meet complete poset in which for every element α there exists β such

that α∧β = 0, where 0 is the least element; by a complete poset or a complete lattice we mean a poset which is both a meet

complete poset and a join complete poset; a subset of a meet (join) complete poset is a meet (join) complete subposet iff it

is closed under infimum (supremum) for all its non-empty subsets; a subset of a complete lattice is a complete sublattice iff

it is both a meet complete subposet and a join complete subposet; by a meet (join) complete homomorphism we mean any

map between meet (join) complete posets which preserves infimums (supremums) for all non-empty subsets; by a complete

homomorphism we mean any map between complete lattices which preserves infimums and supremums for all non-empty

subsets; by a complete isomorphism we mean any complete homomorphism between complete lattices which is both one-one

and onto; by a complete ideal I of a complete lattice L we mean a subset I of L which is closed under the supremum for every

non-empty subset of I and also closed under all the elements of L that are smaller than elements of I and by a complete

filter F of a complete lattice L we mean a subset F of L which is closed under the infimum for every non-empty subset of

F and also closed under all the elements of L that are larger than elements of F .

Proofs are omitted for two reasons: 1. to minimize the size of the document and 2. in most cases, they are either easy or

straight forward and a little involving.

2.1. Lattices

In what follows we recall some of the set theoretic and lattice theoretic results which are used in the main results:

(a). For any index set I and for any family of sets (Ui)i∈I such that Πi∈IUi = U , P (U), the power set of U , is a complete

boolean algebra with the partial ordering given by the usual set inclusion, the meet given by the usual set intersection,

the join given by the usual set union and the complement given by the usual set complement.

(b). For any index set I and for any family of complete lattices (Li)i∈I , the product set Πi∈ILi = L is a complete lattice

with the partial ordering, the meet and the join defined as follows: for f, g ∈ L, f ≤ g iff f(i) ≤ g(i) for all i ∈ I, for

(fj)j∈J in L, ∧j∈Jfj and ∨j∈Jfj in L are given by (∧j∈Jfj)(i) = ∧j∈J fj(i) and (∨j∈Jfj)(i) = ∨j∈J fj(i).

(c). For any index set I and for any family of complete Boolean algebras (Bi)i∈I , the product set Πi∈IBi = B is a complete

Boolean algebra with the partial ordering, the meet, the join and the complement defined as follows: for f, g ∈ B,

f ≤ g iff f(i) ≤ g(i) for all i ∈ I, for (fj)j∈J in B, ∧j∈Jfj and ∨j∈Jfj in B are given by (∧j∈Jfj)(i) = ∧j∈J fj(i) and
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(∨j∈Jfj)(i) = ∨j∈J fj(i) and (fc)(i) = (f(i))c.

(d). Let L be a meet complete poset with the largest element 1L. For any non-empty subset S of L define ∨S =

∧α≤β, α∈S, β∈Lβ. Then L is a complete lattice, where the join is given by ∨.

(e). For any meet complete poset L with 1L, the join defined as above is called the meet induced join in L and the complete

lattice L defined as above is called the associated complete lattice for the meet complete poset L.

(f). Let L be a meet complete subposet of the complete lattice M with 1L = 1M . Then the associated complete lattice

for the meet complete poset L still remains as a meet complete subposet of M without necessarily being a complete

sublattice of M .

In other words, in the above, when L is a meet complete subposet of a complete lattice M , it may so happen that L

may not even be closed under the ∨ of M but its meet induced join in L exists so that the associated complete lattice

L is not necessarily a complete sublattice of M .

(g). However, if L is a complete sublattice of the complete lattice M then for any non-empty subset S of L, ∨LS = ∨LS =

∨MS = ∨MS.

(h). Let L be a join complete poset with the least element 0L. For any non-empty subset S of L define ∧S = ∨β≤α, α∈S, β∈Lβ.

Then L is a complete lattice, where the meet is given by ∧.

(i). For any join complete poset L with 0L, the meet defined as above is called the join induced meet in L and the complete

lattice L defined as above is called the associated complete lattice for the join complete poset L.

(j). Let L be a join complete subposet of the complete lattice M with 0L = 0M . Then the associated complete lattice for

the join complete poset L still remains as a join complete subposet of M without necessarily being a complete sublattice

of M .

In other words, in the above, when L is a join complete subposet of a complete lattice M , it may so happen that L may

not even be closed under the ∧ of M but its join induced meet in L exists so that the associated complete lattice L is

not necessarily a complete sublattice of M .

(k). However, if L is a complete sublattice of the complete lattice M then for any non-empty subset S of L, ∧LS = ∧LS =

∧MS = ∧MS.

(l). For any subset (αi)i∈I of a meet complete subposet L with 1L of a complete lattice M , ∨i∈Iαi in M ≤M ∨i∈Iαi in L.

However, ∨i∈Iαi =L ∨i∈Iαi whenever ∨i∈Iαi ∈ L.

(m). For any subset (αi)i∈I of a join complete subposet L with 0L of the complete lattice M , ∧i∈Iαi in L ≤M ∧i∈Iαi in M .

However, ∧i∈Iαi =L ∧i∈Iαi whenever ∧i∈Iαi ∈ L.

(n). For any meet complete isomorphism φ : L→M of a meet complete poset L with 1L to a complete lattice M , φ is a join

complete isomorphism (and hence a complete isomorphism), where the join in L is the join induced by the meet in L.

(o). For any join complete isomorphism φ : L→M of a join complete poset L with 0L to a complete lattice M , φ is a meet

complete isomorphism (and hence a complete isomorphism), where the meet in L is the meet induced by the join in L.

(p). For any meet complete isomorphism φ : L → M of a complete lattice L to a meet complete poset M with 1M ,

φ−1 : M → L is a meet complete isomorphism.
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(q). For any join complete isomorphism φ : L→M of a complete lattice L to a join complete poset M with 0M , φ−1 : M → L

is a join complete isomorphism.

(r). For any meet complete isomorphism φ : L → M of a complete lattice L to a meet complete poset M with 1M , φ is a

join complete isomorphism (and hence a complete isomorphism), where the join in M is the join induced by the meet

in M .

(s). For any join complete isomorphism φ : L→M of a complete lattice L to a join complete poset M with 0M , φ is a meet

complete isomorphism (and hence a complete isomorphism), where the meet in M is the meet induced by the join in

M .

2.2. Soft Sets

In what follows we recall some of the basic notions in Soft Set Theory which are used in the main results:

(a). [16] Let U be a universal set, P (U) be the power set of U and E be a set of parameters. A pair (F,E) is called a soft

set over U iff F : E → P (U) is a mapping defined by for each e ∈ E, F (e) is a subset of U . In other words, a soft set

over U is a parametrized family of subsets of U . Notice that a collective presentation of all the notions algebras, soft

sets, fuzzy soft sets, f-soft algebras, f-fuzzy soft algebras in the single paper, Murthy-Maheswari[17] raised some serious

notational conflicts and to fix the same we deviated from the above notation for a soft set and adapted the following

notation for convenience as follows:

Let U be a universal set. A typical soft set over U is an ordered pair E = (σE , E), where E is a set of parameters, called

the (underlying) parameter set for E, P (U) is the power set of U and σE : E → P (U) is a map, called the underlying

set valued map for E. Some times σE is also called the soft structure on E.

(b). [5] The empty soft set over U is a soft set with the empty parameter set, denoted by Φ = (σφ, φ). Clearly, it is unique.

(c). [5] A soft set E over U is said to be a null soft set, denoted by ΦE , iff σEe = φ, the empty set, for all e ∈ E.

(d). [4] A soft set E over U is said to be a whole soft set, denoted by UE , iff σEe = U for all e ∈ E.

(e). [19] For any pair of soft sets A and B over U , A is a soft subset of B, denoted by A ⊆ B, iff (i) A ⊆ B (ii) σAa ⊆ σBa

for all a ∈ A. The set of all soft subsets of E is denoted by SU (E).

(f). [4] The complement of a soft set E = (σE , E), denoted by Ec = (σE , E)c, is defined by (σE , E)c = (σcE , E), where

σcE : E → P (U) is a mapping given by σcE(e) = U − σE(e) for all e ∈ E. For any pair of soft sets A, B.

(g). A is a d-total soft subset of B iff A is a soft subset of B and A = B. The set of all d-total soft subsets of E is denoted

by SdU (E).

(h). A is a strong soft subset of B iff A is a soft subset of B and σAa = σBa for all a ∈ A. Notice that the empty soft set Φ

is trivially strong soft subset of E because there is no e ∈ φ such that σφe 6= σEe. The set of all strong soft subsets of

E is denoted by SsU (E).

(i). A soft subset A of E is regular soft subset iff σAa 6= φ for all a ∈ A. Notice that the empty soft set Φ is trivially regular

because there is no e ∈ φ such that σφe = φ. The set of all regular soft subsets of E is denoted by SrU (E).

(j). The following are easy to see:
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(1). Always the empty soft set Φ is a soft subset of every soft set A

(2). A = B iff A ⊆ B and B ⊆ A iff A = B and σA = σB .

For any family of soft subsets (Ai)i∈I of E,

(k). [12] the soft union of (Ai)i∈I , denoted by ∪i∈IAi, is defined by the soft set A, where (i) A = ∪i∈IAi (ii) σAa = ∪i∈IaσAia,

where Ia = {i ∈ I/a ∈ Ai}, for all a ∈ A

(l). the soft intersection of (Ai)i∈I , denoted by ∩i∈IAi, is defined by the soft set A, where (i) A = ∩i∈IAi (ii) σAa =

∩i∈IσAia for all a ∈ A. Notice that ∩i∈IAi can become empty resulting the soft intersection is the empty soft set.

(m). [17] For any soft set E over U , the following are true:

(1). The complete lattice of all (crisp) subsets of the underlying set E is complete isomorphic to the complete sublattice

of all strong soft subsets of E

(2). Whenever E is a whole soft set, the complete sublattice of all d-total soft subsets of E is complete isomorphic to

the complete lattice of all P (U)-fuzzy subsets of E (in the sense of Goguen [13]).

Thus, soft sets are a proper generalization of crisp sets and in a sense a special case of Goguen fuzzy sets.

In what follows essentially we show that for any soft set E over U , 1. the complete lattice of all soft subsets of E is complete

epimorphic to the complete filter of all the factorizable subsets of the associated product set for the extended soft subset of

E over U , where the join in the later is the meet induced join and 2. the complete lattice of all regular soft subsets of E is

complete isomorphic to the complete filter of all the factorizable subsets of the associated product set for the extended soft

subset of E over U , where the meet in the former is the join induced meet and the join in the later is the meet induced join.

3. Factorizable Sets

In this section we study the lattice theoretic properties of the collection of all factorizable subsets of a product set. Notice

that through out this paper, we assume that all the index sets are non-empty.

Lemma 3.1. For a pair of index sets I, J , for a pair of families of sets (Ai)i∈I and (Bi)i∈I and for any family of sets

(Aj,i)(j,i)∈(J×I), the following are true:

(a). Ai ⊆ Bi for all i ∈ I implies Πi∈IAi ⊆ Πi∈IBi but not conversely. However, converse is also true whenever Πi∈IAi 6= φ.

(b). ∩j∈J(Πi∈IAj,i) = Πi∈I(∩j∈JAj,i).

Proof. (a) is straight forward and (b) follows from (a).

The following Example shows that converse of (a) in the above Lemma need not be true:

Example 3.2. Let A1 = φ = B2 and A2 = U = B1. Then A1 ×A2 = B1 ×B2 but A2 6⊆ B2.

Definitions 3.3. Let I be an index set, (Ui)i∈I be a family of sets such that Πi∈IUi = U and P (U) be the power set of U .

Then
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(a). a set A ∈ P (U) is factorizable iff A = Πi∈IAi, Ai ⊆ Ui for all i ∈ I. Notice that φ is factorizable and whenever A =

Πi∈IAi, A 6= φ iff Ai 6= φ for all i ∈ I. Thus, the set of all factorizable subsets of U , denoted by F (U), is given by F (U)

= {A ∈ P (U)/φ 6= A = Πi∈IAi, Ai ⊆ Ui for all i ∈ I} ∪ {φ}.

(b). the binary relation � on F (U), defined by � = {(φ,A)/A ∈ F (U)} ∪ {(A,B)/A 6= φ,Ai ⊆ Bi for all i ∈ I}, is clearly a

partial order on F (U) so that (F (U),�) is a poset.

Lemma 3.4. For any family of sets (Ui)i∈I , |F (Πm
i=1Ui)| = 1 + Πm

i=1(2|Ui| − 1). In particular, |F (UE)| = 1 + (2|U| − 1)|E|.

Proof. It is straight forward.

Theorem 3.5. For any index set I and for any family of sets (Ui)i∈I such that Πi∈IUi = U , the following are true:

(a). F (U) is a meet complete subposet of P (U) with 1F (U) = U = 1P (U) and 0F (U) = φ = 0P (U)

(b). The meet complete poset F (U) with the largest element U is a complete lattice with the meet induced join ∨, given by,

for any family (Aj)j∈J in F (U), where Aj = Πi∈IAj,i, Aj,i ⊆ Ui for all i ∈ I, ∨j∈JAj = Πi∈I(∪j∈JAj,i). Further,

∨j∈JAj in P (U) ≤P (U) ∨j∈JAj in F (U).

Proof. (a). follows from 3.3(b), 3.1(b) and

(b). follows from (a), 2.1(d) and 2.1(l).

Corollary 3.6. For any index set E and for any set U , the following are true:

(a). F (UE) is a meet complete subposet of P (UE) with 1F (UE) = UE = 1P (UE) and 0F (UE) = φ = 0P (UE)

(b). The meet complete poset F (UE) with the largest element UE is a complete lattice with the meet induced join ∨. Further,

for any family (Aj)j∈J in F (UE), ∨j∈JAj in P (UE) ≤P (UE) ∨j∈JAj in F (UE).

Proof. It follows from 3.5 above.

Theorem 3.7. For any index set I, for any family of sets (Ui)i∈I such that Πi∈IUi = U and for any u in U , the following

are true:

(a). F = {A ∈ F (U)/u ∈ A} is a complete lattice with

(1). the partial ordering defined by: for any A,B ∈ F , A ≤ B iff Ai ⊆ Bi for all i ∈ I

(2). the largest element 1F = U and the least element 0F = u and with

(3). for any family (Aj)j∈J in F , ∧j∈JAj = ∩j∈JAj and ∨j∈JAj = ∨j∈JAj (cf.3.5(b)), where ∨ is the meet induced

join in F . Further, F is also a complete filter in F (U)

(b). F = {A ∈ P (U)/u ∈ A} is a complete lattice with

(1). the partial ordering defined by: for any A,B ∈ F , A ≤ B iff A ⊆ B

(2). the largest element 1F = U and the least element 0F = u and with

(3). for any family (Aj)j∈J in F , ∧j∈JAj = ∩j∈JAj and ∨j∈JAj = ∪j∈JAj. Further, F is also a complete filter in

P (U).

Proof. (a) follows from 3.1(b) and 2.1(d) and (b) is straight forward.
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Definitions 3.8.

(a). The complete filter in 3.7(a) above is denoted by (u)F (U) and is called the complete filter of factorizable subsets of U

generated by u.

(b). The complete filter in 3.7(b) above is denoted by (u)P (U) and is called the complete filter of subsets of U generated by u.

Notice that (1) (u)F (U) ⊆ F (U) ⊆ P (U) (2) (u)F (U) ⊆ (u)P (U).

4. Various Soft Subsets

In this section we introduce the notions of extended soft subset and reparametrization for a soft subset and study the

lattice homomorphic properties of the operators induced by the same and lattice theoretic properties of various types of sub

collections of soft subsets.

Definitions and Statements 4.1.

(a). For any set U , the extended set, denoted by U , is defined by U = U ∪ {∞}, where ∞ is not in U . Notice that such ∞

exists because for example, one can take ∞ = U .

(b). For any soft subset A of a soft set E over U , the extended soft set for A over U , denoted by A′, is defined by the d-total

soft set, where A′ = E and σA′ : E → P (U) is defined by

σA′e =


σAe ∪ {∞} if σAe 6= φ

{∞} if σAe = φ or e ∈ E −A

Notice that

(1). the extended soft set for E over U given by E′, where E′ = E and σE′ : E → P (U) is given by

σE′e =


σEe ∪ {∞} if σEe 6= φ

{∞} if σEe = φ

(2). whenever A is a soft subset of E over U , observe that A′ is a soft subset of E′ over U .

The set of all extended soft sets over U for all soft subsets of E over U , is denoted by SU (E)′. In other words, SU (E)′ =

{A′/A ∈ SU (E)}. Clearly, for any soft subset A of a soft set E, both of the extended soft subsets A′ and E′ over U are

always d-total and regular.

(c). Clearly, for any soft set E over U , E′ is a soft set over U and for any soft subset A of the soft set E, A′ is a soft subset

of the soft set E′. Thus, SU (E)′ ⊆ SU (E′), the set of all soft subsets of E′ over U . In fact, SU (E)′ ⊆ Sd,r
U

(E′), the set of

all d-total and regular soft subsets of E′, and the inclusion in the above can be proper as any soft subset with parameter

set A = E and σAa 6= φ for all a ∈ A with ∞ /∈ σAa0 ∈ P (U) for some a0 ∈ A, is an element of Sd,r
U

(E′) but not in

SU (E)′.

(d). Observe that the assignment A→ A′ defines an operator ε : SU (E)→ SU (E)′.
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(e). Clearly, SrU (E) is a subset of SU (E) and the restriction of the operator ε to SrU (E) is denoted by ε|SrU (E).

Observe that for any regular soft subset A of a soft set E over U , the extended soft subset A′ of E′ over U is given by

the d-total soft subset, where A′ = E and σA′ : E → P (U) is given by

σA′e =


σAe ∪ {∞} if e ∈ A

{∞} if e ∈ E −A

(f). For any soft subset A of a soft set E, the support of A, denoted by Supp(A), is defined by Supp(A) = {a ∈ A/σAa 6= φ}.

Theorem 4.2. For any soft set E over U , the following are true:

(a). The set SU (E) = {A/A ⊆ E} of all soft subsets of E is a complete lattice with

(1). the partial ordering defined by: for any A,B ∈ SU (E), A ≤ B iff A ⊆ B

(2). the largest element 1SU (E) = E, the soft set, and the least element 0SU (E) = Φ, the empty soft set, and with

(3). for any family (Ai)i∈I in SU (E), ∧i∈IAi = ∩i∈IAi and ∨i∈IAi = ∪i∈IAi

(b). The set SrU (E) = {A/A ⊆ E, φ 6= σAe ⊆ σEe for all e ∈ A} of all regular soft subsets of E is a join complete subposet of

SU (E) with

(1). the induced partial ordering from the super set SU (E)

(2). the largest element 1Sr
U

(E) = L, where L = Supp(E) and σLe = σEe for all e ∈ L, and the least element 0Sr
U

(E) =

Φ and with

(3). for any family (Ai)i∈I in SrU (E), ∨i∈IAi = ∪i∈IAi. Notice that 1Sr
U

(E) ≤ 1SU (E) and equality holds whenever E itself

is regular. Further, SrU (E) is a complete lattice with the join induced meet ∧. In fact,

(4). For any family (Ai)i∈I in SrU (E), ∧i∈IAi = A, where A = {e ∈ ∩i∈IAi/ ∩i∈I σAie 6= φ} and σAe = ∩i∈IσAie for

all e ∈ A

(5). However, SrU (E) is ∩-closed iff |U | = 1 or |E| = 0.

(c). The set SdU (E) = {A/A = E, σAe ⊆ σEe for all e ∈ A} of all d-total soft subsets of E is a complete sublattice of SU (E)

with

(1). the induced partial ordering from the super set SU (E)

(2). the largest element 1Sd
U

(E) = E and the least element 0Sd
U

(E) = ΦE, null soft set (cf.2.2(c)), and with

(3). for any family (Ai)i∈I in SdU (E), ∧i∈IAi = ∩i∈IAi and ∨i∈IAi = ∪i∈IAi

(d). The set SsU (E) = {A/A ⊆ E, σAe = σEe for all e ∈ A} of all strong soft subsets of E is a complete sublattice of SU (E)

with

(1). the induced partial ordering from the super set SU (E)

(2). the largest element 1Ss
U

(E) = E and the least element 0Ss
U

(E) = Φ and with

(3). for any family (Ai)i∈I in SsU (E), ∧i∈IAi = ∩i∈IAi and ∨i∈IAi = ∪i∈IAi

(e). The set Sd,sU (E) = {A/A = E, σAe = σEe for all e ∈ A} of all d-total and strong soft subsets of E is {E}
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(f). The set Sr,sU (E) = {A/A ⊆ E, φ 6= σAe = σEe for all e ∈ A} of all regular and strong soft subsets of E is a complete

sublattice of SU (E) with

(1). the induced partial ordering from the super set SU (E)

(2). the largest element 1Sr,s
U

(E) = L, where L = Supp(E) and σLe = σEe for all e ∈ L, and the least element 0Sr,s
U

(E)

= Φ and with

(3). for any family (Ai)i∈I in Sr,sU (E), ∧i∈IAi = ∩i∈IAi and ∨i∈IAi = ∪i∈IAi.

Proof. Straight forward.

The following Example shows that SrU (E) is not closed under intersections:

Example 4.3. Let U = {u1, u2}, E = ({(e, U)}, {e}), A1 = ({(e, {u1})}, {e}) and A2 = ({(e, {u2})}, {e}). Then A1 and A2

are regular soft subsets of E but A1 ∩ A2 = A, where A = {e} and σAe = {u1} ∩ {u2} = φ, is not regular.

In what follows, we study the lattice homomorphic properties of the operator definable by the extended soft subset over U

for a soft subset over U .

Theorem 4.4. For any soft set E over U , the map ε : SU (E) → SU (E)′ defined by for any A ∈ SU (E), εA = A′ being the

extended soft subset of E′ over U , satisfies the following properties:

(a). The map ε is onto

(b). For any A, B ∈ SU (E), A ⊆ B implies εA ⊆ εB

For any family (Ai)i∈I in SU (E),

(c). ε(∪i∈IAi) = ∪i∈I εAi

(d). ε(∩i∈IAi) = ∩i∈I εAi

(e). However, the restricted map ε|SrU (E) : SrU (E)→ SU (E)′ satisfies the following properties:

(1). ε|SrU (E) is both one-one and onto

(2). For any A, B ∈ SrU (E), A ⊆ B implies εA ⊆ εB

For any family (Ai)i∈I in SrU (E),

(3). ε(∪i∈IAi) = ∪i∈I εAi

(4). ε(∧i∈IAi) = ∩i∈I εAi.

Proof. (a). is clear by the definition of map;

(b). follows from the definition of map and 2.2(e);

(c). follows from the definition of map, 2.2(k) and 2.2(j)(2);

(d). follows from the definition of map, 2.2(l) and 2.2(j)(2); and

(e). (1) follows from the definition of map, 2.2(j)(2); (2) and (3) are similar as (b) and (c) above and (4) follows from

4.2(b)(4), the definition of map and 2.2(j)(2).

Definition 4.5. The complete epimorphism ε defined as in 4.4 above is called the extention operator.
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The following Example shows that (1) the map ε is not one-one (2) converse of (b) in the above Theorem is not true:

Example 4.6. Let U be a universal set, E = ({(e1, U), (e2, U), (e3, U)}, {e1, e2, e3}), A = ({(e1, φ), (e3, U)}, {e1, e3}) and B

= ({(e3, U)}, {e3}). Then A′ = ({(e1,∞), (e2,∞), (e3, U)}, {e1, e2, e3}) and B′ = ({(e1,∞), (e2,∞), (e3, U)}, {e1, e2, e3}).

Clearly, (1) A′ = B′ but A 6= B and (2) A′ ⊆ B′ but A 6⊆ B.

Notice that Molodtsov [16] introduced the notion of soft set as a natural mathematical tool for modelling uncertainties,

consisting a set E of all possible adjectives or descriptors, called parameters pertaining to a collection of objects U , called

a universal set and a map σE from the set of all attributes E to the set of all, preferably non-empty sub collections P (U)

of the given collection U . Consequently, for a parameter e in E if the associated sub collection σEe is empty, the parameter

may as well be omitted from the parameter set E. In what follows we study some mathematical properties of this process

of omission of such parameters from the parameter set E:

Theorem 4.7. For any soft set E over U , the map ρ : SU (E)→ SrU (E) defined by for any A ∈ SU (E), ρA = B, where B =

Supp(A) and σBe = σAe for all e ∈ B, satisfies the following properties:

(a). For any A ∈ SU (E), ρA ⊆ A. However, equality holds whenever A is regular

(b). The map ρ is onto

(c). For any A,B ∈ SU (E), A ⊆ B implies ρA ⊆ ρB

For any family (Ai)i∈I in SU (E),

(d). ρ(∪i∈IAi) = ∪i∈IρAi

(e). ρ(∩i∈IAi) = ∧i∈IρAi, where ∧ is the join induced meet in SrU (E).

Proof. (a) and (c) follows from the definition of map and 2.2(e); (b) is straight forward; (d) follows from 2.2(k), the

definition of map and 2.2(j)(2); and (e) follows from 2.2(l), the definition of map, 4.2(b)(4) and 2.2(j)(2).

Definition 4.8. The complete epimorphism ρ defined as in 4.7 above is called the reparametrization or regularization map.

The following Example shows that ρ is not one-one:

Example 4.9. Let U be a universal set, E = ({(e1, U), (e2, U)}, {e1, e2}), A = ({(e1, U)}, {e1}) and B =

({(e1, U), (e2, φ)}, {e1, e2}). Then ρA = A = ρB but A 6= B.

Theorem 4.10. For any soft set E over U , the following are true:

(a). For any B ∈ Sd
U

(E′) such that ∞ ∈ σBb for all b ∈ B there exists unique A in SrU (E) such that B = A′. In particular,

for any B ∈ SU (E)′ there exists unique A ∈ SrU (E) such that A′ = B. Consequently, SdU (E)′ = SrU (E)′

(b). The operator ν : Sd
U

(E′) → SrU (E) defined by ν(B) = A, where A in SrU (E) is unique such that A′ = B as in (a) above,

satisfies the following properties:

(1). ν is both one-one and onto

For any family (Bi)i∈I in SU (E′),

(2). ν(∪i∈IBi) = ∪i∈IνBi

(3). ν(∩i∈IBi) = ∧i∈IνBi
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(c). For any B,D ∈ SU (E)′, define B ≤ D in SU (E)′ iff A ≤ C in SrU (E), where B = A′ and D = C′. Then ≤ defines a partial

order on SU (E)′.

Proof. (a) is straight forward; (b) (1) follows from 2.2(j)(2) and the definition of map, (2) follows from 2.2(k), the definition

of map and 2.2(j)(2) and (3) follows from 2.2(l), the definition of map, 4.2(b)(4) and 2.2(j)(2) and (c) is straight forward.

Theorem 4.11. For any soft set E over U , the following are true:

(a). The set SU (E)′ = {A′/A ∈ SU (E)} of all extended soft sets over U for all soft subsets of E over U is a complete lattice

with

(1). the induced partial ordering from the super set SU (E′)

(2). the largest element 1SU (E)′ = E′, the extended soft set for E, and the least element 0SU (E) = Φ′, where φ′ = E and

σφ′ = {∞} for all e ∈ φ′, and with

(3). for any family (A′i)i∈I in SU (E)′, ∧i∈IA′i = ∩i∈IA′i and ∨i∈IA′i = ∪i∈IA′i

(b). In fact, SU (E)′ is a complete filter of SU (E′)

(c). Further, SU (E)′ = {B ∈ Sd
U

(E′)/∞ ∈ σBb for all b ∈ B}.

Proof. Straight forward.

5. Representation of Soft Subsets by Products

In this section we introduce the notion of an associated product set for a (extended) soft set and study the relations between

the complete lattice of all (regular) soft subsets of a soft set, the complete lattice of all factorizable subsets of the associated

product set for the given soft set.

Definitions and Statements 5.1.

(a). For a set E and ∞ ∈ U , ∞ : E → U is a map defined by ∞(e) = ∞ for all e ∈ E.

(b). For any soft subset A of a soft set E, the associated product set for A, denoted by ΠA, is defined by ΠA = Πa∈AσAa.

Notice that, the associated product set ΠA for a soft set A can be empty. However, ΠA 6= φ iff A is regular.

In particular, for any extended soft subset A′ of an extended soft set E′, the associated product set for A′ is given by

ΠA′ = Πe∈EσA′e.

Notice that, ΠA′ is always non-empty because A′ is regular.

(c). For any soft subset A of a soft set E, the set of all factorizable subsets (cf.3.3(a)) of ΠA, denoted by F (ΠA), is given by

F (ΠA) = {X ∈ P (ΠA)/φ 6= X = Πa∈AXa, Xa ⊆ σAa for all a ∈ A} ∪ {φ}.

In particular, for any extended soft subset A′ of E′, the set of all factorizable subsets of ΠA′ is given by F (ΠA′) =

{X ∈ P (ΠA′)/φ 6= X = Πe∈EXe, Xe ⊆ σA′e for all e ∈ E} ∪ {φ}.

(d). The binary relation � on F (ΠA) (cf.3.3(b)), given by � = {(φ,X)/X ∈ F (ΠA)} ∪ {(X,Y )/X 6= φ,Xa ⊆ Ya for all a ∈

A}, is clearly a partial order on F (ΠA) so that (F (ΠA),�) is a poset.

In particular, the binary relation � on F (ΠA′), given by � = {(φ,X)/X ∈ F (ΠA′)} ∪ {(X,Y )/X 6= φ,Xe ⊆

Ye for all e ∈ E}, is clearly a partial order on F (ΠA′) so that (F (ΠA′),�) is a poset.
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Corollary 5.2. For any soft set E over U , the following are true:

(a). F (ΠE′) is a meet complete subposet of P (ΠE′) with 1F (ΠE′) = ΠE′ = 1P (ΠE′) and 0F (ΠE′) = ∅ = 0P (ΠE′)

(b). The meet complete poset F (ΠE′) with the largest element ΠE′ is a complete lattice with the meet induced join ∨, given

by, for any family (Xj)j∈J in F (ΠE′), where Xj = Πe∈EXj,e, Xj,e ⊆ σE′e for all e ∈ E, ∨j∈JXj = Πe∈E(∪j∈JXj,e).

Further, ∨j∈JXj in P (ΠE′) ≤P (ΠE′) ∨j∈JXj in F (ΠE′).

Proof. (a) follows from 3.5(a) and (b) follows from 3.5(b).

Corollary 5.3. For any soft set E over U , the following are true:

(a). F = {X ∈ F (ΠE′)/∞ ∈ X} is a complete lattice with

(1). the partial ordering given by: for any X,Y ∈ F , X ≤ Y iff Xe ⊆ Ye for all e ∈ E

(2). the largest element 1F = ΠE′ and the least element 0F = ∞ and with

(3). for any family (Xj)j∈J in F , ∧j∈JXj = ∩j∈JXj and ∨j∈JXj = ∨j∈JXj, where ∨ is the meet induced join in F .

Further, F is a complete filter in F (ΠE′)

(b). F = {X ∈ P (ΠE′)/∞ ∈ X} is a complete lattice with

(1). the partial ordering given by: for any X,Y ∈ F , X ≤ Y iff X ⊆ Y

(2). the largest element 1F = ΠE′ and the least element 0F = ∞ and with

(3). for any family (Xj)j∈J in F , ∧j∈JXj = ∩j∈JXj and ∨j∈JXj = ∪j∈JXj. Further, F is a complete filter in P (ΠE′).

Proof. (a) follows from 3.7(a) and (b) follows from 3.7(b).

Definitions 5.4.

(a). The complete filter in 5.3(a) above is denoted by (∞)F (ΠE′) and is called the complete filter of factorizable subsets of

ΠE′ generated by ∞.

(b). The complete filter in 5.3(b) above is denoted by (∞)P (ΠE′) and is called the complete filter of subsets of ΠE′ generated

by ∞.

Notice that (1) (∞)F (ΠE′) ⊆ F (ΠE′) ⊆ P (ΠE′) (2) (∞)F (ΠE′) ⊆ (∞)P (ΠE′).

Theorem 5.5. For any soft set E over U , the maps

λ : SU (E)′ → (∞)F (ΠE′) defined by for any B ∈ SU (E)′, λB=Πe∈EσBe and

µ : (∞)F (ΠE′) → SU (E)′ defined by for any X ∈ (∞)F (ΠE′), µX = B, where B = E and σBe = Xe for all e ∈ B,

satisfy the following properties:

(a). λ ◦ µ = 1(∞)F (ΠE′)

(b). µ ◦ λ = 1SU (E)′

(c). λ, µ both are one-one and onto

(d). For any A′,B′ ∈ SU (E)′, A′ ⊆ B′ implies λA′ ≤ λB′
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(e). For any X,Y ∈ (∞)F (ΠE′), X ≤ Y implies µX ⊆ µY

For any (A′i)i∈I in SU (E)′,

(f). λ(∩i∈IA′i) = ∩i∈I λA′i

(g). λ(∪i∈IA′i) = ∨i∈I λA′i

For any (Xi)i∈I in (∞)F (ΠE′),

(h). µ(∩i∈IXi) = ∩i∈I µXi

(i). µ(∨i∈IXi) = ∪i∈I µXi.

Proof. (a) and (b) are straight forward; (c) follows from 3.1(a), the definitions of λ, µ and (a), (b) above; (d) and (e) are

straight forward; (f) follows from 2.2(l), the definition of λ and 3.1(a); (g) follows from 2.2(k), the definition of λ, 3.5(b)

and 3.1(a); (h) follows from 3.1(b), the definition of µ and 2.2(j)(2) and (i) follows from 3.5(b), the definition of µ and

2.2(j)(2).

The following Example shows that ∪i∈IλA′i need not be in (∞)F (ΠE′) and a strict containment can hold in ∪i∈IλA′ ⊆

λ(∪i∈IA′):

Example 5.6. Let U = {u1, u2,∞}, E′ = ({(e1, U), (e2, U)}, {e1, e2}), A′1 = ({(e1, {u1,∞}), (e2, {u2,∞})}, {e1, e2}), A′2

= ({(e1, {u2,∞}), (e2, {u1,∞})}, {e1, e2}). Then A′1 ∪ A′2 = E′, λ(A′1 ∪ A′2) = U × U , λA′1 = {u1,∞} × {u2,∞}, λA′2 =

{u2,∞}× {u1,∞} and λA′1 ∪ λA′2 = {(u1, u2), (u1,∞), (∞, u2), (∞,∞), (u2, u1), (u2,∞), (∞, u1)}. Clearly, λA′1 ∪ λA′2 /∈

(∞)F (ΠE′) because it not factorizable and λA′1 ∪λA′2 ⊂ λ(A′1 ∪A′2). Further, λA′1 ∨λA′2 = ({u1,∞}∪{u2,∞}) × ({u2,∞}∪

{u1,∞}) = {u1, u2,∞} × {u1, u2,∞} = U × U = λ(A′1 ∪ A′2).

The following Example shows that ∪i∈IXi need not be in (∞)F (ΠE′) so that µ(∪i∈IXi) is not defined.

Example 5.7. Let U = {u1, u2,∞}, E′ = ({(e1, U), (e2, U)}, {e1, e2}), X1 = {u1,∞} × {u2,∞}, X2 = {u2,∞} ×

{u1,∞}. Then ΠE′ = U × U , µX1 = A′1 = ({(e1, {u1,∞}), (e2, {u2,∞})}, {e1, e2}), µX2 = A′2 = ({(e1, {u2,∞}),

(e2, {u1,∞})}, {e1, e2}), µX1 ∪ µX2 = A′1 ∪ A′2 = E′, X1 ∪ X2 = {(u1, u2), (u1,∞), (∞, u2), (∞,∞)} ∪ {(u2, u1),

(u2,∞), (∞, u1), (∞,∞)} = {(u1, u2), (u1,∞), (∞, u2), (∞,∞), (u2, u1), (u2,∞), (∞, u1)}. Clearly, X1∪X2 /∈ (∞)F (ΠE′)

because it is not factorizable so µ(X1 ∪X2) is not defined. Further, X1 ∨X2 = ({u1,∞} ∪ {u2,∞}) × ({u2,∞}∪ {u1,∞})

= {u1, u2,∞} × {u1, u2,∞} = U × U . Now µ(X1∨X2) = C′ = ({(e1, U), (e2, U)}, {e1, e2}) = E′ = µX1 ∪ µX2.

Theorem 5.8. For any soft set E over U , the map

λ ◦ ε : SU (E) → (∞)F (ΠE′) defined by for any A ∈ SU (E), (λ ◦ ε)A = λ(εA) = λ(A′) = Πe∈EσA′e, satisfies the following

properties:

(a). λ ◦ ε is onto

For any (Ai)i∈I in SU (E),

(b). (λ ◦ ε)(∩i∈IAi) = ∩i∈I (λ ◦ ε)Ai

(c). (λ ◦ ε)(∪i∈IAi) = ∨i∈I (λ ◦ ε)Ai.

Proof. (a) follows from 4.4(a) and 5.5(c); (b) follows from 4.4(d) and 5.5(f) and (c) follows from 4.4(c) and 5.5(g).

Theorem 5.9. For any soft set E over U , the map

λ ◦ ε : SrU (E) → (∞)F (ΠE′) defined by for any A ∈ SrU (E), (λ ◦ ε)A = λ(εA) = λ(A′) = Πe∈EσA′e, satisfies the following

properties:
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(a). λ ◦ ε is both one-one and onto

For any (Ai)i∈I in SrU (E),

(b). (λ ◦ ε)(∧i∈IAi) = ∩i∈I (λ ◦ ε)Ai

(c). (λ ◦ ε)(∪i∈IAi) = ∨i∈I (λ ◦ ε)Ai.

Proof. (a) follows from 4.4(e)(1) and 5.5(c); (b) follows from 4.4(e)(4) and 5.5(f) and (c) follows from 4.4(e)(3) and

5.5(g).

Corollary 5.10. For any soft set E over U ,

(a). there is a crisp set P such that the complete lattice of all soft subsets of E is complete epimorphic to a complete lattice

of certain subsets of P , where the join in the later is the meet induced join

(b). there is a crisp set P such that the complete lattice of all regular soft subsets of E is complete isomorphic to a complete

lattice of certain subsets of P , where the meet in the former is the join induced meet and the join in the later is the

meet induced join.

Proof. (a) follows from 5.8 and (b) follows from 5.9.
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