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1. Introduction

Molodtsov [16] introduced the notion of soft set as a mathematical tool for modelling uncertainties. It has a set E of all
possible adjectives or descriptors or attributes, called parameters pertaining to a collection of objects U, called a universal
set. Since any one attribute e in E can naturally be associated with a sub collection oge of the collection of objects U,
intrinsically it has a map og from the set of all adjectives E to the set of all sub collections P(U) of the given collection.
Thus, a soft set is a pair consisting of a parameter set ' and a map og from this parameter set F into the power set
P(U). Ever since the notion of soft set is introduced, several mathematicians imposed various algebraic, topological and
topologically algebraic structures and substructures on the soft sets studying some of the basic properties and now there are
well over a thousand papers available in print on the net.

For studies in various soft algebraic structures and substructures, one can refer to Aktas-Cagman [3] for soft groups; Sezgin-
Atagun [22] for soft groups and normalistic soft groups; Feng-Jun-Zhao [12] for soft semi rings; Acer-Koyuncu-Tanay [1] for
soft rings; Sun-Zhang-Liu [24] for soft modules; Sezgin-Atagun-Ayugn [21] for soft near-rings and idealistic soft near-rings;
Atagun-Sezgin [6] for soft substructures of rings, fields and modules, Murthy-Maheswari [17, 18] for f(p)-soft T-algebras and
their w-subalgebras and Changphas-Thongkam [8] for soft algebras in a general viewpoint; for studies in soft topological
structures and substructures, one can refer to Shabir-Naz [23], Peyghan-Samadi-Tayebi [20] and Cagman-Karatas-Enginoglu
[7] for soft topological space and soft topology; Ahmad-Hussain [2] for some structures of soft topology and Kannan [14] for
soft generalized closed sets in soft topological spaces; for studies in soft topological algebraic structures and substructures,

one can refer to Das-Majumdar-Samanta [9] for soft linear spaces and soft normed linear spaces; Das-Samanta [10, 11] for
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soft metric spaces and soft inner product spaces etcetera.

Please notice that the above list is far from being complete and our aim is to suggest a few papers for a beginner in each
direction. However, our aim in this paper is to construct, for any soft set, a crisp set in such a way that 1. the complete
poset of all soft subsets of the former is complete epimorphic to a complete poset of certain subsets of the later, where the
join in the later is the meet induced join and 2. the complete poset of all regular soft subsets of the given soft set is complete
isomorphic to a complete poset of certain subsets of the crisp set, where the meet in the former complete poset is the join

induced meet and the join in the later complete poset is the meet induced join.

2. Preliminaries

We assume the following notions from Lattice Theory: poset, least upper bound, greatest lower bound, (meet/join) complete
poset, (meet/join) complete subposet, (meet/join) complete homomorphism (isomorphism) of (meet/join) complete posets,
complete ideal (filter), one can refer to any standard text books on Lattice Theory for them. Observe that by a meet (join)
complete poset we mean a poset in which every non-empty subset S has infimum (supremum), denoted by AS (VS); by a
meet complimented meet complete poset we mean a meet complete poset in which for every element « there exists 8 such
that a A8 = 0, where 0 is the least element; by a complete poset or a complete lattice we mean a poset which is both a meet
complete poset and a join complete poset; a subset of a meet (join) complete poset is a meet (join) complete subposet iff it
is closed under infimum (supremum) for all its non-empty subsets; a subset of a complete lattice is a complete sublattice iff
it is both a meet complete subposet and a join complete subposet; by a meet (join) complete homomorphism we mean any
map between meet (join) complete posets which preserves infimums (supremums) for all non-empty subsets; by a complete
homomorphism we mean any map between complete lattices which preserves infimums and supremums for all non-empty
subsets; by a complete isomorphism we mean any complete homomorphism between complete lattices which is both one-one
and onto; by a complete ideal I of a complete lattice L we mean a subset I of L which is closed under the supremum for every
non-empty subset of I and also closed under all the elements of L that are smaller than elements of I and by a complete
filter F' of a complete lattice L we mean a subset F' of L which is closed under the infimum for every non-empty subset of
F' and also closed under all the elements of L that are larger than elements of F'.

Proofs are omitted for two reasons: 1. to minimize the size of the document and 2. in most cases, they are either easy or

straight forward and a little involving.

2.1. Lattices

In what follows we recall some of the set theoretic and lattice theoretic results which are used in the main results:

(a). For any index set I and for any family of sets (U;):er such that Il;e;U; = U, P(U), the power set of U, is a complete
boolean algebra with the partial ordering given by the usual set inclusion, the meet given by the usual set intersection,

the join given by the usual set union and the complement given by the usual set complement.

(b). For any index set I and for any family of complete lattices (L;);ecr, the product set II;e;L; = L is a complete lattice
with the partial ordering, the meet and the join defined as follows: for f,g € L, f < g iff f(:) < g(i) for all ¢ € I, for

(fi)jes in L, Njesfj and Vjesfj in L are given by (Ajes fi)(i) = Ajes f5(3) and (Vjes f3)(@) = Vjes fi(i).

(c). For any index set I and for any family of complete Boolean algebras (B;)icr, the product set Il;erB; = B is a complete
Boolean algebra with the partial ordering, the meet, the join and the complement defined as follows: for f,g € B,

f<giff f(i) <g(i)forall i € I, for (f;)jcs in B, Ajesf; and Vjesf; in B are given by (Ajesf;)(i) = Njes f;(i) and

228



Nistala V.E.S. Murthy and Chundru Maheswari

(Vies f5)(i) = Vjes f;(3) and (f)(i) = (f(9))°.

. Let L be a meet complete poset with the largest element 1;. For any non-empty subset S of L define VS =

Na<B, acs, peLB. Then L is a complete lattice, where the join is given by V.

. For any meet complete poset L with 11, the join defined as above is called the meet induced join in L and the complete

lattice L defined as above is called the associated complete lattice for the meet complete poset L.

. Let L be a meet complete subposet of the complete lattice M with 1, = 1. Then the associated complete lattice

for the meet complete poset L still remains as a meet complete subposet of M without necessarily being a complete
sublattice of M.

In other words, in the above, when L is a meet complete subposet of a complete lattice M, it may so happen that L
may not even be closed under the V of M but its meet induced join in L exists so that the associated complete lattice

L is not necessarily a complete sublattice of M.

. However, if L is a complete sublattice of the complete lattice M then for any non-empty subset S of L, V.S = VLS =

VuS =VuS.

. Let L be a join complete poset with the least element Or. For any non-empty subset S of L define AS = Vg<a, acs, serB-

Then L is a complete lattice, where the meet is given by A.

. For any join complete poset L with O, the meet defined as above is called the join induced meet in L and the complete

lattice L defined as above is called the associated complete lattice for the join complete poset L.

. Let L be a join complete subposet of the complete lattice M with 0, = 0ps. Then the associated complete lattice for

the join complete poset L still remains as a join complete subposet of M without necessarily being a complete sublattice

of M.

In other words, in the above, when L is a join complete subposet of a complete lattice M, it may so happen that L may
not even be closed under the A of M but its join induced meet in L exists so that the associated complete lattice L is

not necessarily a complete sublattice of M.

. However, if L is a complete sublattice of the complete lattice M then for any non-empty subset S of L, AS = ALS =

AmS = AumS.

. For any subset (a;)ier of a meet complete subposet L with 11 of a complete lattice M, Viera; in M <pr Viera; in L.

However, Vicra; =1 Viera; whenever Viera; € L.

. For any subset («a;):er of a join complete subposet L with Oz of the complete lattice M, Aicray in L <pr Ajeray in M.

However, Ajcra; =p Aicra; whenever Ajera; € L.

. For any meet complete isomorphism ¢ : L. — M of a meet complete poset L with 11, to a complete lattice M, ¢ is a join

complete isomorphism (and hence a complete isomorphism), where the join in L is the join induced by the meet in L.

. For any join complete isomorphism ¢ : L — M of a join complete poset L with Oz to a complete lattice M, ¢ is a meet

complete isomorphism (and hence a complete isomorphism), where the meet in L is the meet induced by the join in L.

. For any meet complete isomorphism ¢ : L — M of a complete lattice L to a meet complete poset M with 1/,

¢~ ': M — L is a meet complete isomorphism.



Representation of Soft Subsets by Products

(a)

(r).

2.

. For any join complete isomorphism ¢ : L — M of a complete lattice L to a join complete poset M with Oar, ¢~ : M — L

is a join complete isomorphism.

For any meet complete isomorphism ¢ : L — M of a complete lattice L to a meet complete poset M with 157, ¢ is a
join complete isomorphism (and hence a complete isomorphism), where the join in M is the join induced by the meet

in M.

. For any join complete isomorphism ¢ : L — M of a complete lattice L to a join complete poset M with Oas, ¢ is a meet
complete isomorphism (and hence a complete isomorphism), where the meet in M is the meet induced by the join in

M.

2. Soft Sets

In what follows we recall some of the basic notions in Soft Set Theory which are used in the main results:

(a)

(i)

—
(-

i)
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. [16] Let U be a universal set, P(U) be the power set of U and E be a set of parameters. A pair (F, E) is called a soft
set over U iff F : E — P(U) is a mapping defined by for each e € E, F(e) is a subset of U. In other words, a soft set
over U is a parametrized family of subsets of U. Notice that a collective presentation of all the notions algebras, soft
sets, fuzzy soft sets, f-soft algebras, f-fuzzy soft algebras in the single paper, Murthy-Maheswari[17] raised some serious
notational conflicts and to fix the same we deviated from the above notation for a soft set and adapted the following
notation for convenience as follows:

Let U be a universal set. A typical soft set over U is an ordered pair E = (o, E), where E is a set of parameters, called
the (underlying) parameter set for E, P(U) is the power set of U and og : E — P(U) is a map, called the underlying

set valued map for E. Some times o is also called the soft structure on E.
. [5] The empty soft set over U is a soft set with the empty parameter set, denoted by ® = (04, ). Clearly, it is unique.
. [5] A soft set E over U is said to be a null soft set, denoted by ®g, iff cge = ¢, the empty set, for all e € E.
. [4] A soft set E over U is said to be a whole soft set, denoted by Ug, iff cge = U for all e € E.

. [19] For any pair of soft sets A and B over U, A is a soft subset of B, denoted by A C B, iff (i) A C B (ii) caa C opa

for all a € A. The set of all soft subsets of E is denoted by Sy (E).

. [4] The complement of a soft set E = (0g, E), denoted by E® = (o, E), is defined by (0g, E)° = (0%, E), where

0% E — P(U) is a mapping given by of(e) = U — og(e) for all e € E. For any pair of soft sets A, B.

. A is a d-total soft subset of B iff A is a soft subset of B and A = B. The set of all d-total soft subsets of E is denoted

by S&(E).

. A is a strong soft subset of B iff A is a soft subset of B and c4a = opa for all a € A. Notice that the empty soft set ®
is trivially strong soft subset of E because there is no e € ¢ such that oge # oge. The set of all strong soft subsets of

E is denoted by S (E).

. A soft subset A of E is regular soft subset iff caa # ¢ for all a € A. Notice that the empty soft set ® is trivially regular

because there is no e € ¢ such that oge = ¢. The set of all regular soft subsets of E is denoted by S (E).

. The following are easy to see:
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(1). Always the empty soft set @ is a soft subset of every soft set A

(2. A=Bif ACBand BCAiff A= B and o4 = 03B.
For any family of soft subsets (A;)ier of E,

(k). [12] the soft union of (A;)icr, denoted by U;erA;, is defined by the soft set A, where (i) A = UserA; (il) caa = User, 04, a,

where I, = {i € [/a € A;}, for alla € A

(1). the soft intersection of (A;)icr, denoted by NicrA;, is defined by the soft set A, where (i) A = NicrA; (ii) ocaa =

Nicroa,a for all a € A. Notice that N;erA; can become empty resulting the soft intersection is the empty soft set.
(m). [17] For any soft set E over U, the following are true:

(1). The complete lattice of all (crisp) subsets of the underlying set E is complete isomorphic to the complete sublattice

of all strong soft subsets of E

(2). Whenever E is a whole soft set, the complete sublattice of all d-total soft subsets of E is complete isomorphic to

the complete lattice of all P(U)-fuzzy subsets of E (in the sense of Goguen [13]).
Thus, soft sets are a proper generalization of crisp sets and in a sense a special case of Goguen fuzzy sets.

In what follows essentially we show that for any soft set E over U, 1. the complete lattice of all soft subsets of E is complete
epimorphic to the complete filter of all the factorizable subsets of the associated product set for the extended soft subset of
E over U, where the join in the later is the meet induced join and 2. the complete lattice of all regular soft subsets of E is
complete isomorphic to the complete filter of all the factorizable subsets of the associated product set for the extended soft

subset of E over U, where the meet in the former is the join induced meet and the join in the later is the meet induced join.

3. Factorizable Sets

In this section we study the lattice theoretic properties of the collection of all factorizable subsets of a product set. Notice

that through out this paper, we assume that all the index sets are non-empty.

Lemma 3.1. For a pair of index sets 1,J, for a pair of families of sets (A;)icr and (Bi)icr and for any family of sets

(Aj.4)(Giyerx1), the following are true:

(a). A; C B; foralli € I implies I;erA; C Il;erB; but not conversely. However, converse is also true whenever ;e A; # ¢.
(b). Njes(WierAj) = Wier(NjesAji)-

Proof.  (a) is straight forward and (b) follows from (a). O
The following Example shows that converse of (a) in the above Lemma need not be true:

Example 3.2. Let Ay = ¢ = Bz and A2 =U = By1. Then A1 X Az = By X By but As  Bs.

Definitions 3.3. Let I be an index set, (Us;)icr be a family of sets such that Il;c;U; = U and P(U) be the power set of U.
Then

[\
w
—



Representation of Soft Subsets by Products

(a). a set A € P(U) is factorizable iff A = I;erAs, A; CU; for all i € 1. Notice that ¢ is factorizable and whenever A =
MicrAi, A ¢ iff As # ¢ for alli € I. Thus, the set of all factorizable subsets of U, denoted by F(U), is given by F(U)
= {A S P(U)/¢ 7é A= HiEIAiyA’i C UifO’I" alli € I} U {¢}

(b). the binary relation < on F(U), defined by = = {(¢,A)/A € F(U)} U {(A,B)/A # ¢, A; C B; for alli € I}, is clearly a
partial order on F(U) so that (F(U),=) is a poset.

Lemma 3.4. For any family of sets (Us)icr, |F(II7U;)| = 1+ 1172, (219 — 1), In particular, |F(UF)] =1+ 21V —1)21,
Proof. 1t is straight forward. O
Theorem 3.5. For any index set I and for any family of sets (U;)icr such that Il,c1U; = U, the following are true:

(a). F(U) is a meet complete subposet of P(U) with 1pwy =U = lpw) and Opwy = ¢ = 0p)

(b). The meet complete poset F(U) with the largest element U is a complete lattice with the meet induced join V, given by,
for any family (A;)jes in F(U), where A; = WierAju, Aji C Ui for alli € I, ViesA; = Wier(UjesAj:). Further,
ViesAj in P(U) SP(U) ViesAj in F(U)

Proof. (a). follows from 3.3(b), 3.1(b) and

(b). follows from (a), 2.1(d) and 2.1(1). O
Corollary 3.6. For any index set E and for any set U, the following are true:

(a). F(UP) is a meet complete subposet of P(U®) with lpwe) = UF = lpwey and Op ey = ¢ = OpyE)

(b). The meet complete poset F(UE) with the largest element U is a complete lattice with the meet induced join V. Further,

for any family (A;)jes in F(UP), ViesA; in P(UP) <pwry Vies4; in FUP).
Proof. Tt follows from 3.5 above. O

Theorem 3.7. For any index set I, for any family of sets (U;)ier such that Il;c;U; = U and for any @ in U, the following

are true:
(a). F ={A e F(U)/u € A} is a complete lattice with

(1). the partial ordering defined by: for any A,Be€ F, A< B iff Ai C B; foralli eI
(2). the largest element 17 = U and the least element 0 = and with

(3). for any family (Aj)jcs in F, NjesA; = NjesAj and VijesA; = VicsAj (c¢f.3.5(b)), where V is the meet induced

join in F. Further, F is also a complete filter in F(U)
(b). F ={A € P(U)/uec A} is a complete lattice with

(1). the partial ordering defined by: for any A, B€ F, A< B iff ACB
(2). the largest element 17 = U and the least element 0 = w and with

(3). for any family (A;)jcs in F, NjesA; = NjesAj and VjegA; = UjesAj. Further, F is also a complete filter in
P(U).

Proof.  (a) follows from 3.1(b) and 2.1(d) and (b) is straight forward. O
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Definitions 3.8.

(a). The complete filter in 3.7(a) above is denoted by (W)py and is called the complete filter of factorizable subsets of U

generated by w.
(b). The complete filter in 3.7(b) above is denoted by (@) pvy and is called the complete filter of subsets of U generated by .

Notice that (1) (w)rw) € F(U) € P(U) (2) (@)rw) € @)pw)-

4. Various Soft Subsets

In this section we introduce the notions of extended soft subset and reparametrization for a soft subset and study the
lattice homomorphic properties of the operators induced by the same and lattice theoretic properties of various types of sub

collections of soft subsets.
Definitions and Statements 4.1.

(a). For any set U, the extended set, denoted by U, is defined by U = U U {00}, where 0o is not in U. Notice that such co

exists because for example, one can take co = U.

(b). For any soft subset A of a soft set E over U, the extended soft set for A over U, denoted by A', is defined by the d-total
soft set, where A’ = E and o4 : E — P(U) is defined by

caeU {0} ifcae# ¢

{o0} ifoae=¢orec E—A

O'A/e:

Notice that

(1). the extended soft set for E over U given by E', where E' = E and o : E — P(U) is given by

ocpeU{x} ifope# ¢

O'E/e:

{oo} ifope=¢

. whenever A is a soft subset o over U, observe that 18 a soft subset o over U.
2 h A b E U, ob hat A’ i b E U

The set of all extended soft sets over U for all soft subsets of E over U, is denoted by Sy(E)’. In other words, Sy(E)' =
{A'JA € Su(E)}. Clearly, for any soft subset A of a soft set E, both of the extended soft subsets A’ and E' over U are

always d-total and reqular.

(c). Clearly, for any soft set E over U, E is a soft set over U and for any soft subset A of the soft set E, A" is a soft subset
of the soft set E'. Thus, Su(E)’ C Sz(E'), the set of all soft subsets of E over U. In fact, Su(E)' C S%T(E'), the set of
all d-total and reqular soft subsets of E', and the inclusion in the above can be proper as any soft subset with parameter

set A= E and oaa # ¢ for all a € A with oo ¢ oaag € P(U) for some ag € A, is an element of S%T(E') but not in

Su(E).

(d). Observe that the assignment A — A’ defines an operator € : Sy(E) — Su(E)’.

[\
w
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(e).

(£)-

Clearly, Si;(E) is a subset of Su(E) and the restriction of the operator € to Si;(E) is denoted by €|Si;(E).
Observe that for any regular soft subset A of a soft set E over U, the extended soft subset A" of E over U is given by
the d-total soft subset, where A’ = E and o4/ : E — P(U) is given by

caeU{cx} ifec A
gp€ =

{0} ifec E—A

For any soft subset A of a soft set E, the support of A, denoted by Supp(A), is defined by Supp(A) = {a € AJoaa # ¢}.

Theorem 4.2. For any soft set E over U, the following are true:

(a).

(b).

(c).

().

(e)-

234

The set Su(E) = {A/A C E} of all soft subsets of E is a complete lattice with

(1). the partial ordering defined by: for any A,B € Sy(E), A< Biff ACB

(2). the largest element 1s, gy = E, the soft set, and the least element Os, gy = ®, the empty soft set, and with

(3). for any family (A:)icr in Su(E), NictAi = NierAi and VierAi = UierA;

The set Si;(E) = {AJAC E,¢ # oae C oge for alle € A} of all regular soft subsets of E is a join complete subposet of
Sv (E) with

(1). the induced partial ordering from the super set Sy (E)

(2). the largest element lsrp =L, where L = Supp(E) and ore = oge for all e € L, and the least element Os7.(p) =

® and with

8). for any family (A:)icr in S§ , VierAi = U;erAi. Notice that 1sr < s, (5 and equality holds whenever E itself
U o (E) u (E)

is reqular. Further, Si;(E) is a complete lattice with the join induced meet A. In fact,

(4). For any family (Ai)icr in SG(E), NictAi = A, where A = {e € Nic1Ai/ Nicr oa,e # ¢} and cae = Nicroa,e for
allee A

(5). However, St;(E) is N-closed iff [U| =1 or |E| = 0.

The set SE(E) = {A/A = E,04e C ogefor alle € A} of all d-total soft subsets of E is a complete sublattice of Sy (E)
with

(1). the induced partial ordering from the super set Sy (E)

(2). the largest element lsap = E and the least element Osd (5) = Dg, null soft set (cf.2.2(c)), and with

(3). for any family (Ai)icr in SE(E), NierAi = NicrAi and VierAi = Uicr A

The set Si(E) = {AJA C E,04e = oge for alle € A} of all strong soft subsets of E is a complete sublattice of Su(E)
with

(1). the induced partial ordering from the super set Sy (E)

(2). the largest element 1sg (g) = E and the least element Osg (5) = ® and with

(3). for any family (Ai)icr in Si(E), NictAi = NicrAi and VicrAi = UicrA;

e set Sy = = Fk,0ae =o0gejfor alle € of all d-total and strong soft subsets o 18
Th 833 A/A=F f ll A} of all d l and ft sub f E E
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(f). The set S;;°(E) = {AJA C E,¢ # oae = opefor alle € A} of all regular and strong soft subsets of E is a complete
sublattice of Su(E) with

(1). the induced partial ordering from the super set Sy (E)

(2). the largest element 15;},5(5) = L, where L = Supp(E) and ore = oge for all e € L, and the least element OS[TJ’S(E)
= & and with

(3) fOT‘ any family (Ai)iel mn S{J’S(E), NierAi = NicrAi and VierAi = UierA;.
Proof.  Straight forward. O

The following Example shows that Si;(E) is not closed under intersections:

Example 4.3. Let U = {u1,u2}, E = ({(e,U)},{e}), A1 = ({(e,{u1})},{e}) and As = ({(e,{uz2})},{€e}). Then A1 and A

are regular soft subsets of E but Ay N Az = A, where A = {e} and oae = {u1} N{uz} = ¢, is not regular.

In what follows, we study the lattice homomorphic properties of the operator definable by the extended soft subset over U

for a soft subset over U.

Theorem 4.4. For any soft set E over U, the map ¢ : Su(E) — Su(E)" defined by for any A € Sy(E), eA = A’ being the

extended soft subset of E over U, satisfies the following properties:
(a). The map € is onto

(b). For any A, B€ Sy(E), AC B implies céA C eB
For any family (Ai)icr in Su(E),

(c). e(UierA;) = UiereA;
(d). e(MierAi) = NierA;
(e). However, the restricted map e|Si;(E) : S (E) — Su(E)" satisfies the following properties:

(1). €|S;(E) is both one-one and onto

2). For any A, B € Si;(E), AC B implies cA C eB
Y U
For any family (A:)icr in S (E),

(3). e(Uic1A;) = User eA;
(4). e(NictAi) = Nicr €A;.
Proof. (a). is clear by the definition of map;
(b). follows from the definition of map and 2.2(e);
(c). follows from the definition of map, 2.2(k) and 2.2(j)(2);
(d). follows from the definition of map, 2.2(1) and 2.2(j)(2); and

(e). (1) follows from the definition of map, 2.2(j)(2); (2) and (3) are similar as (b) and (c) above and (4) follows from
4.2(b)(4), the definition of map and 2.2(j)(2). O

Definition 4.5. The complete epimorphism € defined as in 4.4 above is called the extention operator.

[\
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The following Example shows that (1) the map ¢ is not one-one (2) converse of (b) in the above Theorem is not true:

Example 4.6. Let U be a universal set, E = ({(e1,U), (e2,U), (e3,U)}, {e1,e2,e3}), A = ({(e1,d), (es,U)},{e1,es}) and B

= ({(es,U)},{e3}). Then A" = ({(e1,00), (e2,00),(es,U)},{e1,e2,e3}) and B = ({(e1,00), (e2,0), (es,U)}, {e1,e2,e3}).
Clearly, (1) A =B but A% Band (2) A CB but AZ B.

Notice that Molodtsov [16] introduced the notion of soft set as a natural mathematical tool for modelling uncertainties,
consisting a set I of all possible adjectives or descriptors, called parameters pertaining to a collection of objects U, called
a universal set and a map og from the set of all attributes E to the set of all, preferably non-empty sub collections P(U)
of the given collection U. Consequently, for a parameter e in E if the associated sub collection oge is empty, the parameter
may as well be omitted from the parameter set E. In what follows we study some mathematical properties of this process

of omission of such parameters from the parameter set E:

Theorem 4.7. For any soft set E over U, the map p : Su(E) — Si;(E) defined by for any A € Su(E), pA = B, where B =

Supp(A) and ope = cae for all e € B, satisfies the following properties:
(a). For any A € Su(E), pA C A. However, equality holds whenever A is reqular
(b). The map p is onto

(c). For any A, B € Su(E), A C B implies pA C pB
For any family (Ai)ier in Su(E),

(d). p(UierAi) = UicrpA;
(e). p(Nic1Ai) = NicipAi, where N is the join induced meet in Si;(E).

Proof. (a) and (c) follows from the definition of map and 2.2(e); (b) is straight forward; (d) follows from 2.2(k), the
definition of map and 2.2(j)(2); and (e) follows from 2.2(1), the definition of map, 4.2(b)(4) and 2.2(j)(2). O

Definition 4.8. The complete epimorphism p defined as in 4.7 above is called the reparametrization or regularization map.
The following Example shows that p is not one-one:

Example 4.9. Let U be a universal set, E = ({(e1,U),(e2,U)}, {er,e2}), A = ({(e1,U)},{e1}) and B =
({(ex,U), (e2,0)},{e1,e2}). Then pA = A = pB but A+# B.

Theorem 4.10. For any soft set E over U, the following are true:

(a). For any B € S%(E') such that co € opb for all b € B there exists unique A in Si;(E) such that B = A'. In particular,

for any B € Sy(E) there exists unique A € Si;(E) such that A’ = B. Consequently, S&(E)' = Si(E)’

(b). The operator v : Se(E') — St;(E) defined by v(B) = A, where A in Si;(E) is unique such that A" = B as in (a) above,

satisfies the following properties:

(1). v is both one-one and onto

For any family (B;)icr in Sg(E'),
(2). v(UierB;) = UservB;

(3). v(Nic1B;i) = NiervB;
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(c). For any B,D € Sy(E)’, define B< D in Sy(E)" iff A< Cin Si;(E), where B = A" and D = C'. Then < defines a partial
order on Sy (E)".

Proof.  (a) is straight forward; (b) (1) follows from 2.2(j)(2) and the definition of map, (2) follows from 2.2(k), the definition

of map and 2.2(j)(2) and (3) follows from 2.2(1), the definition of map, 4.2(b)(4) and 2.2(j)(2) and (c) is straight forward. O
Theorem 4.11. For any soft set E over U, the following are true:

(a). The set Sy(E)' = {A'/A € Su(E)} of all extended soft sets over U for all soft subsets of E over U is a complete lattice
with
(1). the induced partial ordering from the super set Sg(E')

2). the largest element 1s,, gy = E, the extended soft set for E, and the least element O = @', where ¢’ = E and
u (E) v (E)

oy = {oc} for alle € ¢, and with

(8). for any family (A%)icr in Su(E)', NierA; = Nicr A} and Vier A = UicrA;
(b). In fact, Su(E)" is a complete filter of Si(E)
(c). Further, Sy(E)’ = {B € S&(E')/oc € opbfor allb € B}.

Proof.  Straight forward. O

5. Representation of Soft Subsets by Products

In this section we introduce the notion of an associated product set for a (extended) soft set and study the relations between
the complete lattice of all (regular) soft subsets of a soft set, the complete lattice of all factorizable subsets of the associated

product set for the given soft set.
Definitions and Statements 5.1.
(a). For a set E and oo € U, 5 : E — U is a map defined by 35(e) = oo for all e € E.

(b). For any soft subset A of a soft set E, the associated product set for A, denoted by IIA, is defined by IIA = Ilaea0aa.
Notice that, the associated product set IIA for a soft set A can be empty. However, II1A # ¢ iff A is regqular.
In particular, for any extended soft subset A" of an extended soft set E, the associated product set for A" is given by
A = Tlecpoae.

Notice that, IIA" is always non-empty because A’ is reqular.

(c). For any soft subset A of a soft set E, the set of all factorizable subsets (cf.3.3(a)) of IIA, denoted by F(IIA), is given by
FMA) ={X € PMIA)/¢ # X = acaXa, Xa C oaafor alla € A} U {¢}.
In particular, for any extended soft subset A" of E', the set of all factorizable subsets of TIA" is given by F(TIA") =

{X € P(TIA) /¢ # X =TeepXe, X C oaefor alle € E} U {¢}.

(d). The binary relation = on F(IIA) (cf.3.3(b)), given by < = {(¢, X)/X € F(IIA)} U {(X,Y)/X # ¢, Xoa C Yg for alla €

A}, is clearly a partial order on F(ITA) so that (F(IIA), <) is a poset.

N

In particular, the binary relation < on F(IIA'), given by < = {(¢,X)/X € FUA)} U {(X,Y)/X # ¢, X.

Y. for alle € E}, is clearly a partial order on F(IIA") so that (F(IIA'), <) is a poset.

[\
w
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Corollary 5.2. For any soft set E over U, the following are true:
(a). F(IIE') is a meet complete subposet of P(IIE') with 1pmey = IE = lpme) and Opmey = 0 = 0pmie)

(b). The meet complete poset F(IIE') with the largest element ILE is a complete lattice with the meet induced join V, given

by, for any family (X;)jcs in F(UE), where X; = HecpXje, Xje Copre foralle € B, VicsX; = Necp(Ujes Xje).
Further, VjesX; in PAIE') <pmg) VijesX; in F(IIE).
Proof.  (a) follows from 3.5(a) and (b) follows from 3.5(b). O
Corollary 5.3. For any soft set E over U, the following are true:
(a) F ={X € F(IIE') /5 € X} is a complete lattice with

(1). the partial ordering given by: for any X, Y € F, X <Y iff Xc C Y. foralle € E
(2). the largest element 17 = IIE and the least element O = o0 and with

(3). for any family (X;)jcs in F, NjesX; = NjesX; and VjesX; = VjesX;, where V is the meet induced join in F.

Further, F is a complete filter in F(TIE)
(b). F ={X € P(IE) /0 € X} is a complete lattice with

(1). the partial ordering given by: for any X, Y € F, X <Y iff X CY
(2). the largest element 17 = IIE and the least element 0 = 0 and with

(3). for any family (X;)jes in F, NjesX; =NjesX; and Ve X; =UjesX;. Further, F is a complete filter in P(IIE').
Proof.  (a) follows from 3.7(a) and (b) follows from 3.7(b). O
Definitions 5.4.

(a). The complete filter in 5.3(a) above is denoted by (0)pmey and is called the complete filter of factorizable subsets of

IIE generated by 0.

(b). The complete filter in 5.3(b) above is denoted by (30) p(ney and is called the complete filter of subsets of IIE generated

by 0.
Notice that (1) (50)pmey C F(IIE') C P(IIE') (2) () pney C (39) paniery -

Theorem 5.5. For any soft set E over U, the maps
A:Su(E) — (%) rery defined by for any B € Su(E), AB=Ile.cpope and
p: () pey — Su(E)' defined by for any X € (0) p(ney, pX = B, where B = E and ope = X, for alle € B,

satisfy the following properties:

(@) Aop = 1),

(b) Hno A= ].SU(E)/

(¢). X, p both are one-one and onto

(d). For any A',B' € Sy(E), A’ C B implies NA' < \B
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e). For any X,Y € (0)pmey, X <Y implies pX C puY
(I1E")
For any (A5)icr in Su(E),

(f). MNicrA}) = Nicr AA;

(9). MUie1Al) = Vier MA;]
For any (Xz‘)iel n (@)F(HE’);
(h). p(NierXi) = Nicr pX;
(i). p(VierX:) = Uier pXi.
Proof. (a) and (b) are straight forward; (c) follows from 3.1(a), the definitions of A, 4 and (a), (b) above; (d) and (e) are
straight forward; (f) follows from 2.2(1), the definition of A and 3.1(a); (g) follows from 2.2(k), the definition of A, 3.5(b)

and 3.1(a); (h) follows from 3.1(b), the definition of p and 2.2(j)(2) and (i) follows from 3.5(b), the definition of u and
2.2(j)(2). O

The following Example shows that U;e;AA; need not be in (50)pme/y and a strict containment can hold in U;erAA" C

A(UiEIA/):

Example 5.6. Let U = {u1,us,00}, E' = ({(e1,U), (e2,U)}, {e1,e2}), A1 = ({(e, {ur,00}), (2, {u2,00})}, {e1, e2}), A
= ({(e1, {u2,00}), (e2, {u1,00})}, {e1,e2}). Then A{UA, = E, A(A{UA}) =U x U, A} = {u1,00} x {u2,00}, A5 =
{uz,00} x {u1,00} and AA} UMA, = {(u1,u2), (u1,00), (00, uz), (00,00), (u2,u1), (uz,00), (00, u1)}. Clearly, NA] U A, ¢
(00) r(niery because it not factorizable and AATUANAY C M(Ay UAL). Further, AATV AAy = ({u1, 00} U{uz,00}) x ({uz,00} U

{u1,00}) = {u1,u2,00} x {ur,us, 00} =U x U = A\(A] U AY).

The following Example shows that Us;cr X; need not be in (30) p(nery so that u(UierXs) is not defined.

Example 5.7. Let U = {ur,us, 00}, E = ({(ex, D), (e2, T} {er,e2}), X1 = {ur, 00} x {uz, 00}, Xo = {us,o0} x
{ui,00}. Then IIE' = U x U, uX1 = Ay = ({(ex, {u1,00}), (e2, {uz,00})}, {er, e2}), uX2 = Ay = ({(er, {uz, 00}),
(e2,{u1,00})}, {er,e2}), pX1 UpXz = AL U Ay, = E, X3 UXo = {(u1,uz), (u1,00), (00, u2), (00,00)} U {(uz,u1),
(u2,00), (00, u1), (00,00)} = {(u1,u2), (u1,00), (00,u2), (00,00), (uz2,u1), (uz2,00),(c0,u1)}. Clearly, X1UX2 ¢ (0)rme)
because it is not factorizable so u(X1 U X2) is not defined. Further, X1V Xo = ({u1,00} U {u2,00}) x ({uz, 00} U{u1,0})

= {u1,uz,00} x {u1,uz2,00} =U x U. Now u(X1VX2) = C = ({(e1,U), (e2,0)},{e1,e2}) = E = pX1 UpXo.

Theorem 5.8. For any soft set E over U, the map
Aoe: Sy(E) = (0)pme) defined by for any A € Sy(E), (Aoe)A = AeA) = AA') = llecpoare, satisfies the following

properties:

(a). Aoe is onto

For any (A)icr in Su(E),
(0). (Aoe)(NierAi) = Nier (Ao g)A;
(¢). (Aoe)(UicrAi) = Vier (Ao e)A;.
Proof.  (a) follows from 4.4(a) and 5.5(c); (b) follows from 4.4(d) and 5.5(f) and (c) follows from 4.4(c) and 5.5(g). O

Theorem 5.9. For any soft set E over U, the map
Xoe : SH(E) = (30)pmey defined by for any A € S(E), (Aoe)A = MeA) = MA') = Hecroare, satisfies the following

properties:
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(a). Xoe is both one-one and onto

For any (Ai)ier in S (E),
(b). (Aoe)(NierAi) = Nier (Aoe)A;
(c). (Aoe)(UierAi) = Vier (Aoeg)A;.

Proof. (a) follows from 4.4(e)(1) and 5.5(c); (b) follows from 4.4(e)(4) and 5.5(f) and (c) follows from 4.4(e)(3) and
5.5(g). O

Corollary 5.10. For any soft set E over U,

(a). there is a crisp set P such that the complete lattice of all soft subsets of E is complete epimorphic to a complete lattice

of certain subsets of P, where the join in the later is the meet induced join

(b). there is a crisp set P such that the complete lattice of all reqular soft subsets of E is complete isomorphic to a complete
lattice of certain subsets of P, where the meet in the former is the join induced meet and the join in the later is the

meet induced join.

Proof. (a) follows from 5.8 and (b) follows from 5.9. O
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