

International Journal of Mathematics And its Applications

Almost β -Regular Spaces and Almost $rg\beta$ -Closed Functions

Hamant Kumar^{1,*}

1 Department of Mathematics, Government Degree College, Bilaspur, Rampur, Uttar Pradesh, India.

Abstract: The aim of this paper is to introduce and study a new class of spaces, namely almost β -regular spaces which are generalizations of the concepts of almost regular spaces and β -regular spaces and to obtain some characterizations of almost β -regular spaces. Further, by using $rg\beta$ -closed sets, we define almost $rg\beta$ -closed functions and to obtain preservation theorems of almost β -regular spaces. The relationships among p-regular, β -regular, almost regular, almost p-regular, almost p-regular spaces are investigated. The main result of this paper is that almost β -regularity is preserved under M- β -open β -rgg β -closed surjective R-maps.

MSC: 54D10, 54D15, 54A05, 54C08.

Keywords: β-open and regular open sets, almost regular and almost β-regular spaces, β-gβ-closed, β-rgβ-closed, almost β-closed, almost rgβ-closed and almost continuous functions.
(c) JS Publication.

1. Introduction

In 1969, Singal and Arya [20] introduced a weak form of regular spaces called almost regular spaces and obtained their characterizations. In 1970, Levine [6] introduced and studied generalized closed sets in general topology as a generalization of closed sets. This concept was found to be useful and many results in general topology were improved. In 1983, El-Deeb [5] introduced the notion of p-regular spaces by using p-open sets and obtained their characterizations and preservation theorems. In 1985, Mahmoud [7] introduced the concept of β -regular spaces. In 1990, Malghan and Navalagi [10] defined and studied almost p-regular spaces which were generalizations of both almost regular spaces and p-regular spaces. In 1993, palaniappan and Rao [16] introduced and studied regular generalized closed sets. In 1995, Dontchev [4] defined and investigated generalized β -closed sets. In 1998, Noiri [14] introduced rgp-closed sets and used these sets to obtain further characterizations of almost regular spaces and almost p-regular spaces. In 2005, Tahiliani [22] introduced generalized β -closed functions and obtained some new characterizations of β -regular spaces. Recently, by using β -closed sets, M. C. Sharma and Hamant Kumar [19] introduced almost β -closed functions.

In this paper, we introduce and study a new class of spaces, namely almost β -regular spaces and to obtain some characterizations of almost β -regular spaces. Further, by using $rg\beta$ -closed sets, we define β - $rg\beta$ -closed functions and to obtain preservation theorems of almost β -regular spaces. The relationships among p-regular, β -regular, almost regular, almost p-regular, almost β -regular spaces are investigated. The main result of this paper is that almost β -regularity is preserved under M- β -open β - $rg\beta$ -closed surjective R-maps.

^{*} E-mail: hamantmaths@gmail.com

2. Preliminaries

Throughout this paper, spaces (X, τ) , (Y, σ) , and (Z, γ) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by Cl(A)and Int(A) respectively. A is said to be α -open [12] if $A \subset Int(Cl(Int(A)))$, p-open [11] if $A \subset Int(Cl(A))$, β -open [1] if $A \subset Cl(Int(Cl(A)))$. The complement of a α -open (respectively p-open, β -open) set is said to be α -closed (respectively p-closed, β -closed). The intersection of all α -closed (respectively p-closed, β -closed) sets containing A is called α -closure (respectively p-closure, β -closure) of A, and is denoted by $\alpha Cl(A)$ (respectively pCl(A), $\beta Cl(A)$). The β -Interior [2] of A, denoted by $\beta Int(A)$, is defined as union of all β -open sets contained in A. The family of regularly open (respectively regularly closed, β -open, β -closed) sets of a space X is denoted by RO(X) (respectively RC(X), $\beta O(X)$, $\beta C(X)$). It is well known that $sCl(A) = A \cup Int(Cl(A))$, $sInt(A) = A \cap Cl(Int(A))$, $pCl = A \cup Cl(Int(A))$, $pInt(A) = A \cap Int(Cl(A))$, $\alpha Cl(A) =$ $A \cup Cl(Int(Cl(A)))$, $\alpha Int(A) = A \cap Int(Cl(Int(A)))$, $\beta Cl(A) = A \cup Int(Cl(Int(A)))$ and $\beta Int(A) = A \cap Cl(Int(Cl(A)))$.

Definition 2.1. A subset A of a space (X, τ) is said to be

- (1). generalized-closed (briefly g-closed) [6] if $Cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.
- (2). regular generalized-closed (briefly rg-closed) [16] if $Cl(A) \subset U$ whenever $A \subset U$ and $U \in RO(X)$.
- (3). α -generalized closed (briefly α g-closed) [9]) if $\alpha Cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.
- (4). regular generalized α -closed (briefly rg α -closed) [15]) if $\alpha Cl(A) \subset U$ whenever $A \subset U$ and $U \in RO(X)$.
- (5). generalized pre-closed (briefly gp-closed) [13] if $pCl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.
- (6). regular generalized pre-closed (briefly rgp-closed) [14] if $pCl(A) \subset U$ whenever $A \subset U$ and $U \in RO(X)$.
- (7). generalized β -closed (briefly $g\beta$ -closed) [4] if $\beta Cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.
- (8). regular generalized β -closed (briefly $rg\beta$ -closed) [17] if $\beta Cl(A) \subset U$ whenever $A \subset U$ and $U \in RO(X)$.
- (9). g-open (respectively rg-open, αg -open, $rg\alpha$ -open, gp-open, $rg\beta$ -open, $rg\beta$ -open) if the complement of A is g-closed (respectively rg-closed, αg -closed, $rg\alpha$ -closed, gp-closed, $rg\beta$ -closed, $rg\beta$ -closed).

Remark 2.2. We have the following implications for the properties of subsets:

$$\begin{array}{cccc} closed &\Rightarrow g\text{-}closed \Rightarrow rg\text{-}closed \\ \Downarrow & \Downarrow & \Downarrow \\ \alpha\text{-}closed \Rightarrow \alpha g\text{-}closed \Rightarrow rg\alpha\text{-}closed \\ \Downarrow & \Downarrow & \Downarrow \\ p\text{-}closed \Rightarrow gp\text{-}closed \Rightarrow rgp\text{-}closed \\ \Downarrow & \Downarrow & \Downarrow \\ \beta\text{-}closed \Rightarrow g\beta\text{-}closed \Rightarrow rg\beta\text{-}closed \end{array}$$

Where none of the implications is reversible as can be seen from the following examples:

Example 2.3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, X\}$. Then the subset $A = \{b\}$ is g-closed as well as α g-closed but not closed.

Example 2.4. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then the subset $A = \{a\}$ is $rg\beta$ -closed not g-closed.

Example 2.5. Let $X = \{a, b, c, \}$ and $\tau = \{\phi, \{a\}, X\}$. Then the subset $A = \{a, b\}$ is g-closed as well as rg-closed.

Example 2.6. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}, X\}$. Then the subset $A = \{a\}$ is α -closed as well as p-closed but not closed.

Example 2.7. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then the subset $A = \{a, c\}$ is g-closed as well rg-closed. But it is not p-closed.

Example 2.8. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then the subset $A = \{b\}$ is $rg\beta$ -closed not rg-closed.

Lemma 2.9 ([22]). Let A be a subset of a space X and $x \in X$. The following properties hold for $\beta Cl(A)$:

(1). $x \in \beta C1(A)$ if and only if $A \cap U \neq \phi$ for every $U \in \beta O(X)$ containing x.

- (2). A is β -closed if and only if $A = \beta Cl(A)$.
- (3). $\beta Cl(A) \subset \beta Cl(B)$ if $A \subset B$.
- (4). $\beta Cl(\beta Cl(A)) = \beta Cl(A)$.
- (5). $\beta Cl(A)$ is β -closed.

Lemma 2.10 ([22]). A subset A of a space X is $g\beta$ -open in X if and only if $F \subset \beta Int(A)$ whenever $F \subset A$ and F is closed in X.

Lemma 2.11 ([17]). A subset A of a space X is $rg\beta$ -open in X if and only if $F \subset \beta Int(A)$ whenever $\subset A$ and $F \in RC(X)$.

3. Some Generalizations of Almost Closed Functions

Definition 3.1. A function $f: X \to Y$ is said to be

- (a). strongly β-closed (respectively M-β-closed, β-gβ-closed [22], β-rgβ-closed) if f(F) is closed (respectively β-closed, gβ-closed, rgβ-closed) in Y for every β-closed set F of X.
- (b). β -closed [1] (briefly $g\beta$ -closed [22], $rg\beta$ -closed) if f(F) is β -closed (respectively $g\beta$ -closed, $rg\beta$ -closed) in Y for every closed set F of X.
- (c). almost closed [21] (briefly almost β -closed [19], almost $g\beta$ -closed, almost $rg\beta$ -closed) if f(F) is closed (respectively β -closed, $g\beta$ -closed) in Y for every $A \in RC(X)$.

From the definitions stated above, we have the following diagram:

strongly β -closed \Rightarrow M- β -closed β -g β -closed β -rg β -closed ∜ ∜ ∜ ∜ closed β -closed $g\beta$ -closed $rg\beta$ -closed ∜ ∜ ∜ ∜ almost closed $\Rightarrow almost \ \beta\text{-}closed \ \Rightarrow \ almost \ g\beta\text{-}closed \ \Rightarrow \ almost \ rg\beta\text{-}closed$

Where none of the implications is reversible as can be seen from the following examples:

Example 3.2. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then the identity function $f: (X, \tau) \to (X, \sigma)$ is closed as well as $rg\beta$ -closed.

Example 3.3. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is almost closed as well as almost $rg\beta$ -closed.

Example 3.4. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, c\}, X\}$. Then the identity function $f : (X, \tau) \rightarrow (X, \sigma)$ is M- β -closed as well as β -closed but not closed.

Example 3.5. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, X\}$. Then the identity function $f : (X, \tau) \rightarrow (X, \sigma)$ is β -closed as well as almost β -closed but not almost closed.

Theorem 3.6. A function $f : Xt \to Y$ is almost β -closed (respectively almost $g\beta$ -closed, almost $rg\beta$ -closed) if and only if for each subset B of Y and each $U \in RO(X)$ containing $f^{-1}(B)$, there exists a β -open (respectively $g\beta$ -open, $rg\beta$ -open) set V of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

Proof. We prove only the first case; the proof of the others being entirely analogous.

Necessity: Suppose that f is almost β -closed. Let B be any subset of Y and $U \in RO(X)$ containing $f^{-1}(B)$. Put V = Y - f(X - U) then V is a β -open set of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

Sufficiency: Let F be any regular closed set of X. Then $f^{-1}(Y - f(F)) \subset X - F$ and $X - F \in RO(X)$. There exists a β -open set V of Y such that $Y - f(F) \subset V$ and $f^{-1}(V) \subset X - F$. Therefore, we have f(F) = Y - V and f(F) is β -closed in Y. This shows that f is almost β -closed.

Theorem 3.7. A function $f: X \to Y$ is β -rg β -closed (respectively rg β -closed) if and only if for each subset B of Y and each β -open (respectively open) set U of X containing $f^{-1}(B)$, there exists an rg β -open set V of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

Proof. The proof is similar to that of Theorem 3.6 and is thus omitted.

4. Almost β -regular Spaces

Definition 4.1. A space X is said to be

- (a). β -regular [7] (respectively p-regular [5]) if for each closed set A and each point $x \in X A$, there exist disjoint β -open (respectively p-open) sets U, V such that $x \in U$, $A \subset V$, and $U \cap V = \phi$.
- (b). almost regular [20] if for each $A \in RC(X)$ and each point $x \in X A$, there exist disjoint open sets U, V such that $x \in U, A \subset V$, and $U \cap V = \phi$.
- (c). almost β -regular (respectively almost p-regular [10]) if for each $A \in RC(X)$ and each point $x \in X A$, there exist disjoint β -open (respectively p-open) sets U, V such that $x \in U$, $A \subset V$, and $U \cap V = \phi$.

By the definitions stated above, we have the following diagram:

 $\begin{array}{ccc} regularity &\Rightarrow& p-regularity \\ & & \downarrow & & \downarrow \\ almost\ regularity \Rightarrow \ almost\ p-regularity \Rightarrow \ almost\ \beta-regularity \\ \end{array}$

Where none of the implications is reversible as can be seen from the following examples:

Example 4.2. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Consider the closed set $\{b, c\}$ and a point 'a' such that $a \notin \{b, c\}$. Then $\{b, c\}$ and $\{a\}$ are open sets such that $\{b, c\} \subset \{b, c\}$, $a \in \{a\}$ and $\{b, c\} \cap \{a\} = \phi$. Similarly for the closed set $\{a\}$ and a point 'c' such that $c \notin \{a\}$. Then there exist open sets $\{a\}$ and $\{b, c\} \cap \{a\} = \phi$. Similarly for the closed $\{a\}$ and a point 'c' such that $c \notin \{a\}$. Then there exist open sets $\{a\}$ and $\{b, c\}$ such that $\{a\} \subset \{a\}$, $c \notin \{b, c\}$ and $\{a\} \cap \{b, c\} = \phi$. It follows that X is regular space.

Example 4.3. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then the space X is β -regular but not p-regular, since for the closed set $\{b, c\}$ and the point $a \notin \{b, c\}$, there do not exist disjoint p-open sets containing them.

Example 4.4. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then the space X is almost β -regular but it is not almost p-regular, since for the regular closed set $\{a, c\}$ and the point $b \notin \{a, c\}$, there do not exist disjoint p-open sets containing them.

Example 4.5. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then the space X is almost regular.

Theorem 4.6. The following properties are equivalent for a space X:

- (a). X is almost β -regular;
- (b). for each $F \in RC(X)$ and each point $x \in X F$, there exists a β -open set U and an $rg\beta$ -open set V such that $x \in U$, $F \subset V$, and $U \cap V = \phi$.
- (c). for each $F \in RC(X)$, $F = \cap \{\beta Cl(V) : F \subset V \text{ and } V \text{ is } rg\beta open \text{ in } X\}$,
- (d). for each $F \in RC(X)$ and each nonempty subset A of X such that $A \cap F = \phi$, there exist $U \in \beta O(X)$ and an $rg\beta$ -open set V such that $A \cap U \neq \phi$, $F \subset V$ and $U \cap V = \phi$.

Proof. $(a) \Rightarrow (b)$ The proof is obvious from the fact that β -openness implies $g\beta$ -openness and $g\beta$ -openness implies $rg\beta$ -openness.

 $(b) \Rightarrow (c)$ For any $F \in RC(X)$, we always have $F \subset \cap \{\beta Cl(V) : F \subset V \text{ and } V \text{ is } rg\beta - open \text{ in } X\}$. Suppose that $x \in X - F$. By assumption, there exist a β -open set U and an $rg\beta$ -open set V such that $x \in U, F \subset V$, and $U \cap V = \phi$. By Lemma 2.9, we have $x \in X - \beta Cl(V)$ and hence $x \in X - \cap \{\beta Cl(V) : F \subset V \text{ and } V \text{ is } rg\beta - open \text{ in } X\}$. Therefore, we obtain $F \supset \cap \{\beta Cl(V) : F \subset V \text{ and } V \text{ is } rg\beta - open \text{ in } X\}$ and hence $F = \cap \{\beta Cl(V) : F \subset V \text{ and } V \text{ is } rg\beta - open \text{ in } X\}$. (c) $\Rightarrow (d)$ Let $F \in RC(X)$ and A be a nonempty subset of X such that $A \cap F = \phi$. Take a point $x \in A$ so that $x \in X - F$. Therefore, there exists an $rg\beta$ -open set V such that $F \subset V$ and $x \in X - \beta Cl(V)$. Now, put $U = X - \beta Cl(V)$, then we have $U \in \beta O(X), A \cap U \neq \phi$, and $U \cap V = \phi$.

 $(d) \Rightarrow (a)$ For each $F \in RC(X)$ and each point $x \in X - F$, there exists a β -open set U and an $rg\beta$ -open set V such that $x \in U, F \subset V$, and $U \cap V = \phi$. Since $F \in RC(X)$, we have $F \subset \beta Int(V), \beta Int(V) \in \beta O(X)$, and $U \cap \beta Int(V) = \phi$. This shows that X is almost β -regular.

Remark 4.7. We can obtain characterizations of almost β -regular spaces by replacing "V is $rg\beta$ -open" in (b), (c), and (d) of Theorem 4.6 with "V is $g\beta$ -open". The proof is quite similar to that of Theorem 4.6.

Theorem 4.8. Almost β -regularity is regular open hereditary.

Lemma 4.9. If Y is an open subspace of a space X and A is a subset of Y, then $\beta Cl_Y(A) = Y \cap \beta Cl(A)$.

Lemma 4.10. If Y is an open subspace of a space X and $A \in \beta O(X)$, then $A \cap Y \in \beta O(Y)$.

Theorem 4.11. If X is an almost β -regular space and Y is an open set of X, then the subspace Y is almost β -regular.

Proof. Let $G \in RO(Y)$ and $x \in G$. There exists $H \in RO(X)$ such that $G = Y \cap H$, since $G = Int_Y(Cl_Y(G)) = Int(Cl(G) \cap Y) = Int(Cl(G)) \cap Y$. Since X is almost β -regular, there exists $U \in \beta O(X)$ such that $x \in U \subset \beta Cl(U) \subset H$. We have $x \in U \cap Y \subset \beta Cl(U) \cap Y \subset H \cap Y$ and $U \cap Y \in \beta O(Y)$ by Lemma 4.10. By Lemma 4.9, we obtain $\beta Cl_Y(U \cap Y) = \beta Cl(U \cap Y) \cap Y \subset \beta Cl(U) \cap Y$ and hence $x \in U \cap Y \subset \beta Cl_Y(U \cap Y) \subset G$. Therefore, Y is almost β -regular.

Corollary 4.12. If X is an almost β -regular space and X_0 is a regular open set of X, then the subspace X_0 is almost β -regular.

5. Preservation Theorems

Definition 5.1. A function $f: X \to Y$ is said to be

- (a). almost continuous [21] if $f^{-1}(V)$ is open in X for every $V \in RO(Y)$,
- (b). R-map [3] if $f^{-1}(V) \in RO(X)$ for every $V \in RO(Y)$,
- (c). almost open [21] if f(U) is open in Y for every $U \in RO(X)$,
- (d). M- β -open if $f(U) \in \beta O(Y)$ for every $U \in \beta O(X)$,
- (e). weakly open [18] if $f(U) \in Int(f(Cl(U)))$ for every open set U of X.

Remark 5.2. A *R*-map is also said to be regular irresolute by Palaniappan and Rao [16]. In [18], it was shown that almost openness implies weak openness but the converse is false.

Theorem 5.3. If $f: X \to Y$ is an almost continuous and almost β -closed surjection with compact point inverses and X is regular, then Y is almost β -regular.

Proof. Let F be a regular closed set of Y and $y \in Y - F$. We have $f^{-1}(Y) \cap f^{-1}(F) = \phi$. Since $f^{-1}(Y)$ is compact and $f^{-1}(F)$ is closed in the regular space X, there exist disjoint open sets U_0 , V_0 of X such that $f^{-1}(Y) \subset U_0$ and $f^{-1}(F) \subset V_0$. Now, put $U = Int(Cl(U_0))$ and $V = Int(Cl(V_0))$, then U and V are disjoint regular open sets such that $f^{-1}(Y) \subset U$ and $f^{-1}(F) \subset V$. Since f is almost β -closed, by Theorem 3.6, there exist β -open sets G, H of Y such that $y \in G$, $F \subset H$, $f^{-1}(G) \subset U$ and $f^{-1}(H) \subset V$. Moreover, G and H are disjoint since U and V are disjoint. This shows that Y is almost β -regular.

Corollary 5.4. If $f : X \to Y$ is an almost continuous and β -closed surjection with compact point inverses and X is regular, then Y is almost β -regular.

Theorem 5.5. If $f : X \to Y$ be an M- β -open β -rg β -closed surjective R-map. If X is almost β -regular, then Y is almost β -regular.

Proof. Let $F \in RC(Y)$ and $y \in Y - F$. Then $f^{-1}(Y)$ and $f^{-1}(F) = \phi$ are disjoint. Since f is an R-map, $f^{-1}(F)$ is regular closed in X. For each $x \in f^{-1}(Y)$, there exist disjoint β -open sets U and V of X such that $x \in U$ and $f^{-1}(F) \subset V$. Since f is M- β -open, we have $y = f(x) \in f(U)$ and $f(U) \in \beta O(Y)$. Since f is β - $rg\beta$ -closed, by Theorem 3.7, there exists an $rg\beta$ -open set W of Y such that $F \subset W$ and $f^{-1}(W) \subset V$. Since f(U) and W are disjoint, by Theorem 4.6, we obtain that Y is almost β -regular.

Corollary 5.6. If $f : X \to Y$ be an almost continuous, almost open, M- β -open, M- β -closed function from an almost β -regular space X on to a space Y, then Y is almost β -regular.

Proof. Every almost continuous almost open function is an R-map. Every M- β -closed function is β - $rg\beta$ -closed and the proof follows immediately from Theorem 5.5.

Theorem 5.7. If $f: X \to Y$ be continuous weakly open β -rg β -closed surjection and X is almost β -regular, then Y is almost β -regular.

Proof. First we show that f is an R-map. Let V be any regular open set of Y. Since f is continuous, $f^{-1}(V)$ is open in X and hence $f^{-1}(V) \subset Int(Cl(f^{-1}(V)))$. Since f is a weakly open continuous surjection, we have $f(Int(Cl(f^{-1}(V)))) \subset Int[f(Cl(Int(Cl(f^{-1}(V))))] \subset Int(Cl(f^{-1}(V)))) \subset Int(Cl(V)) = V$. Therefore, we obtain $Int(Cl(f^{-1}(V))) \subset f^{-1}(V)$ and hence $Int(Cl(f^{-1}(V))) = f^{-1}(V)$. Thus, $f^{-1}(V)$ is regular open in X and f is an R-map. Next, we show that f is M- β -open. Let U be any β -open set in X. Then, we have $f(U) \subset f(Int(Cl(U))) \subset Int[f(Cl(Int(Cl(U)))] \subset Int[f(Cl(U))] \subset Int[f(Cl(U))] \subset Int[f(Cl(Int(Cl(U)))])$. Therefore, f(U) is β -open in Y and f is M- β -open. Theorem 5.5 completes the proof.

6. Conclusion

In this paper, we introduce and study a new class of spaces, namely almost β -regular spaces and to obtain some characterizations of almost β -regular spaces. Further, by using β -closed sets, we define almost β -closed functions and to obtain preservation theorems of almost β -regular spaces. The relationships among p-regular, β -regular, almost regular, almost p-regular, almost β -regular spaces are investigated. The main result of this paper is that almost β -regularity is preserved under M- β -open β -reg β -closed surjective R-maps.

References

- M. E. Abd EI-Monsef, S. N. EI Deeb and R. A. Mohamoud, β-open sets and β-continuous mappings, Bull. Fac. Assiut Univ. Sci., 12(1983), 77-90.
- [2] M. E. Abd EI-Monsef, R. A. Mahmoud, and E. R. Lashin, β-closure and β-interior, J. Fac. Edu. Ain Shams Univ., 10(1986), 235.
- [3] D. Carnahan, Some properties related to compactness in topological spaces, Ph. D. Thesis, Univ. of Arkansas, (1973).
- [4] J. Dontchev, On generalizing semi- preopen sets, Mem. Fac. Sci. Kochi Univ. (Math.), 16(1995), 35.
- [5] S. N. EI-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.), 27(75)(4)(1983), 311-315.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Cityplace Palermo, 19(2)(1970), 89-96.
- [7] R. A. Mahmoud, M. E. Abd EI-Monsef and A. N. Geasia, β-regular spaces, Proc. Math. Phy. Soc. Egypt, 60(1985), 47.
- [8] R. A. Mahmoud and M. E. Abd EI-Monsef, β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci., 27(1990), 285.
- [9] H. Maki, R. Devi and K. Balachandran, Associated Topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 15(1994), 51-63.
- [10] S. R. Malghan and G. B. Navalagi, Almost p-regular, p-completely regular and almost p-completely regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 34(82)(1990), 317-326.
- [11] A. S. Mashhour, M.E. Abd EI-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [12] O. Njastad, On some class of nearly open sets, Pacific. J. Math., 15(1965), 961-970.

- [13] T. Noiri, H. Maki, and J. Umehera, Generalized preclosed functions, Mem. Fac. Sci. Kochi Univ. Ser. A Math. (Math), 19(1998), 13.
- [14] T. Noiri, Almost p-regular spaces and some functions, Acta Math. Hungar., 79(3)(1998), 207-216.
- [15] T. Noiri, Almost αg-closed functions and separation axioms, Acta Math. Hungar., 82(3)(1999), 193-205.
- [16] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(1993), 211-219.
- [17] N. Palaniappan, On regular generalized β-closed sets, International Jour. of Sci. & Engg. Research, 4(4)(2013), 1410-1415.
- [18] D. A. Rose, Weak openness and almost openness, Internat. J. Math. Math. Sci., 7(1984), 35-40.
- [19] M. C. Sharma and Hamant Kumar, Quasi β -normal spaces and $\pi g\beta$ -functions, Acta Ciencia Indica, XXXVIII M(1)(2012), 149-154.
- [20] M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik Math., 4(24)(1969), 89-99.
- [21] M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. J., 16(1968), 63-73.
- [22] S. Tahiliani, Generalized β-closed functions, Bull. StateplaceCal. Math. Soc., 98(4)(2006), 367-376.