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1. Introduction

The famous Banach Contraction Principle which is also referred as the Banach fixed point theorem continues to be a very

popular and powerful tool in solving existence problems in pure and applied sciences which include biology, medicine, physics,

and computer science. It evidently plays a crucial role in nonlinear analysis. This theorem states that if (X, d) is a complete

metric space and T : X → X is contraction mapping, i.e.,

d(Tx, Ty) ≤ kd (x, y)

for all x, y ∈ X, and k is a non-negative real number such that k < 1, then T has a unique fixed point in X. Moreover,

this fixed point can be explicitly obtained as a limit of repeated iteration of the mapping, initiating at any point of the

underlying space. Obviously, every contraction is a continuous function but not conversely. Many mathematicians (e.g.,

[5, 9, 10, 23–25]) proved several fixed point theorems to explore some new contraction-type mappings in order to generalize

the classical Banach Contraction Principle. The concept of weak contraction was introduced by Alber and Guerre-Delabriere

[4] in 1997, wherein the authors introduced the following notion for mappings defined on a Hilbert space X. Consider the

following set of real functions Φ = {φ : [0,+∞)→ [0,+∞) : φ is lower semi-continuous and φ−1 ({0}) = {0}}. A mapping

T : X → X is called a φ-weak contraction if there exists a function φ ∈ Φ such that d(Tx, Ty) ≤ d (x, y) − φ(d(x, y)), for
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all x, y ∈ X. Alber and Guerre-Delabriere [4] also showed that each φ-weak contraction on Hilbert space has a unique fixed

point. Thereafter, Rhoades [30] showed that the results contained in [4] are also valid for any Banach Contraction Principle

which follows in case one chooses φ (t) = (1− k) t. Zhang and Song proved a common fixed point theorem for two mappings

using φ-weak contraction . This result was extended by Doric [11] and Dutta and Choudhury [13] to a pair of (ψ, φ)-weak

contractive mappings. However, the main fixed point theorem for a self-mapping satisfying (ψ, φ)-weak contractive condition

contained in Dutta and Choudhury [13] runs as follows:

Let us consider the following set of real functions:

Ψ =
{
ψ : [0,+∞)→ [0,+∞) : ψ is continuous non-decreasing and ψ−1 ({0}) = {0}

}
.

2. Preliminaries

Theorem 2.1. Let (X, d) be a complete metric space and let T : X → X be a self-mapping satisfying ψ(d (Tx, Ty)) ≤

ψ (d (x, y))− φ(d (x, y)), for some ψ ∈ Ψ and φ ∈ Φ and all x, y ∈ X. Then, T has a unique fixed point in X.

In recent years, many researchers utilized (ψ, φ)-weak contractive conditions to prove a number of metrical fixed point

theorems (e.g., [2, 3, 6–8, 12, 27, 29]). In an important paper, Jachymski [18] showed that some of the results involving

two functions ψ ∈ Ψ and φ ∈ Φ can be reduced to one function φ′ ∈ Φ. Popescu [26] proved a fixed point theorem in

a complete metric space and showed that the conditions on functions ψ and φ can be weakened. His result improved the

corresponding results of Dutta and Choudhury [13] and Doric [11]. A common fixed point result generally involves conditions

on commutativity, continuity, and contraction along with a suitable condition on the containment of range of one mapping

into the range of the other. Hence, one is always required to improve one or more of these conditions in order to prove a

new common fixed point theorem. It can be observed that in the case of two mappings A,S : X → X, one can consider the

following classes of mappings for the existence and uniqueness of common fixed points:

d (Ax,Ay) ≤ F (m (x, y)) , (1)

Where F is some function and m(x, y) is the maximum of one of the sets:

M5
A,S (x, y) = {d (Sx, Sy) , d (Sx,Ax) , d (Sy,Ay) , d (Sx,Ay) , d (Sy,Ax)} ,

M4
A,S (x, y) = {d(Sx, Sy), d(Sx,Ax), d(Sy,Ay),

1

2
(d (Sx,Ay) + d(Sy,Ax))},

M3
A,S (x, y) = {d(Sx, Sy),

1

2
(d (Sx,Ax) + d(Sy,Ay)) ,

1

2
(d (Sx,Ay) + d(Sy,Ax))}

A further possible generalization is to consider four mappings instead of two and ascertain analogous common fixed point

theorems. In the case of four mappings A,B, S, T : X → X, the corresponding sets take the form

M5
A,B,S,T (x, y) = {d (Sx, Ty) , d (Sx,Ax) , d (Ty,By) , d (Sx,By) , d(Ty,Ax)} ,

M4
A,B,S,T (x, y) = {d(Sx, Ty), d(Sx,Ax), d(Ty,By),

1

2
(d (Sx,By) + d(Ty,Ax))},

M3
A,B,S,T (x, y) = {d(Sx, Ty),

1

2
(d (Sx,Ax) + d(Ty,By)) ,

1

2
(d (Sx,By) + d(Ty,Ax))}.

In this case (1) in usually replaced by

d (Ax,By) ≤ F (m (x, y)) , (2)
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Where m(x, y) is the maximum of one of the M sets. Similarly, we can define the M sets for six mappings A,B, P,Q, S, T :

X → X as

M5
A,B,P,Q,S,T (x, y) = {d (SQx, TPy) , d (SQx,Ax) , d (TPy,By) , d (SQx,By) , d(TPy,Ax)} , (3)

M4
A,B,P,Q,S,T (x, y) = {d(SQx, TPy), d(SQx,Ax), d(TPy,By),

1

2
(d (SQx,By) + d(TPy,Ax))},

M3
A,B,P,Q,S,T (x, y) = {d(SQx, TPy),

1

2
(d (SQx,Ax) + d(TPy,By)) ,

1

2
(d (SQx,By) + d(TPy,Ax))}.

and the contractive condition is again in the form (2). Using different arguments of control functions. Radenovic [28]

proved some common fixed point results for two and three mappings using (ψ, φ)-weak contractive conditions and improved

several known metrical fixed point theorems. Motivated by these results, we prove some common fixed point theorems for

two pairs of occasionally weakly compatible mappings with common limit range property satisfying generalized (ψ, φ)-weak

contractive conditions.Many known fixed point results are improved, especially the ones proved in [28] and also contained

in the references cited therein. We also obtain a fixed point theorem for four finite families of self-mappings. Some related

results are also derived besides furnishing illustrative examples.

Definition 2.2. Let A and S be two mappings from a metric space (X, d) into itself. Then, the mappings are said to

(1). be commuting if ASx = SAx for all x ∈ X,

(2). be compatible [19] if lim
n→∞

d (ASxn, SAxn) = 0 for each sequence {xn} in X such that lim
n→∞

Axn = lim
n→∞

Sxn,

(3). be non-compatible [25] if there exists a sequence {xn} in X such that lim
n→∞

Axn = lim
n→∞

Sxn but lim
n→∞

d (ASxn, SAxn) is

either non zero or nonexistent,

(4). be weakly compatible [20] if they commute at their coincidence points, that is, ASx = SAx whenever Ax = Sx, for some

x ∈ X,

(5). be occasionally weakly compatible(owc) [21] if and if there is a point z ∈ X which is a coincidence point of A and S at

which A and S commute. i.e., there exists a point z ∈ X such that Az = Sz and ASz = SAz.

(6). satisfy the property (E.A) [1] if there exists a sequence {xn} in X such that lim
n→∞

Axn = lim
n→∞

Sxn = t, for some t ∈ X.

For further details, comparisons, and illustrations on systematic spaces, we refer to Singh and Tomar [31] and Murthy[23].

Any pair of compatible as well as non-compatible self mappings of a metric space (X, d) satisfies the property (E.A), but a

pair of mappings satisfying the property (E.A) need not be non-compatible (see Example 1 of [14]). In 2005, Liu [22] defined

the notion of common property (E.A) for hybrid pairs of mappings, which contain the property (E.A).

Definition 2.3 ([22]). Two pairs (A,S) and (B, T ) of self-mappings of a metric space (X, d) are said to satisfy the common

property (E.A) if two sequences {xn} and {yn} in X exist such that lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = t, for

some t ∈ X.

In can be observed that the fixed point results usually require closedness of the underlying subspaces for the existence of

common fixed points under the property (E.A) and common property (E.A). In 2011, Sintunavarat and Kumam [32] coined

the idea of common limit range property’ (see also [33]). Most recently, Imdad [17] extended the notion of common limit

range propertyto two pairs of self-mappings which relax the closedness requirements of the underlying subspaces.
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Definition 2.4 ([33]). A pair (A,S) of self-mappings of a metric space (X, d) is said to satisfy the common limit range

property with respect to S, denoted by (CLRS), if the exists a sequence {xn} in X such that lim
n→∞

Axn = lim
n→∞

Sxn = t,

for some t ∈ S(X). Thus, one can infer that a pair (A,S) satisfying the property (E.A) along with the closedness of the

subspaces S(X) always enjoys the (CLRS) property with respect to the mapping S (see Examples 2.16-2.17 of [17]).

Definition 2.5 ([17]). Two pairs (A,S) and (B, T ) of self-mappings of a metric space (X, d) are said to satisfy the common

limit range property with respect to mappings S and T, denoted by (CLRST ) if two sequences {xn} and {yn} in X exist such

that lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = t, for some t ∈ S(X) ∩ T (X).

Definition 2.6 ([15]). Two families of self mappings {Ai}mi=1 and {Sk}nk=1 are said to be pairwise commuting if

(1). AiAj = AjAi for all i, j ∈ {1, 2, . . . ,m},

(2). SkSl = SlSk for all k, l ∈ {1, 2, . . . , n},

(3). AiSk = SkAi for all i ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , n}.

Definition 2.7 ([21]). Let X be a set, S and T be occasionally weakly compatible(owc) self maps on X. If S and T have a

unique point of coincidence w = Sx = Tx for x ∈ X, then w is the unique common fixed point of S and T.

3. Main Results

Now, we state and prove our main results for six mappings employing the common limit range property in metric space.

Firstly, we prove the following lemma.

Lemma 3.1. Let A, B, P, Q, S and T be self-mappings of a metric space (X, d) Suppose that.

(i). The pair (P,AB) satisfies the (CLRAB) property (respectively (Q,ST ) satisfies the (CLRST ) property).

(ii). P (X) ⊂ ST (X) (respectively Q (X) ⊂ AB(X)),

(iii). ST (X) (respectively AB(X)) is a closed subset of X,

(iv). {Qyn} converges for every sequence {yn} in X whenever {STyn} converges (respectively {Pxn} converges for every

sequence {xn} in X whenever {ABxn} converges),

(v). There exist φ ∈ Φ and ψ ∈ Ψ such that.

(vi). ψ(d (Px,Qy)) ≤ ψ (m (x, y))− φ(m (x, y)), for all x, y ∈ X, where m (x, y) = maxM5
P,Q,AB,ST (x, y)

Then, the pairs (P,AB) and (Q,ST ) share the (CLRAB) property.

Proof. Since the pair (P,AB) satisfies the (CLRAB) property, a sequence {xn} in X exists such that lim
n→∞

Pxn =

lim
n→∞

ABxn = t where t ∈ AB(X). By Lemma 3.1 item (ii), P (X) ⊂ ST (X), and for each sequence {xn}, there exist

a sequence {yn} in X such that Pxn = STyn. Therefore, due to the closedness of ST (X), lim
n→∞

STyn = lim
n→∞

Pxn = t, so

that t ∈ ST (X) and in all t ∈ AB(X) ∩ ST (X). Thus, we have Pxn → t, ABxn → t and STyn → t as n→∞. By Lemma

3.1 item (iv), the sequence {Qyn} converges, and in all, we need to show that Qyn → t as n → ∞. Let, on the contrary

that Qyn → z( 6= t) as →∞. On using inequality (vi) with x = xn, y = yn, we have

ψ(d (Pxn, Qyn)) ≤ ψ (m (xn, yn))− φ(m (xn, yn)), (4)
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Where

m (xn, yn) = max {d (ABxn, STyn) , d (ABxn, Pxn) , d (STyn, Qyn) , d (ABxn, Qyn) , d(STyn, Pxn)} .

Taking the limit as n→∞ in (4), we get

lim
n→∞

ψ(d (Pxn, Qyn)) ≤ lim
n→∞

ψ (m (xn, yn))− lim
n→∞

φ(m (xn, yn))

lim
n→∞

ψ(d (t, z)) ≤ ψ( lim
n→∞

(m (xn, yn))− φ( lim
n→∞

m (xn, yn)) (5)

Where.

lim
n→∞

m(xn, yn) = max {d (t, t) , d (t, t) , d (t, z) , d (t, z) , d(t, t)}

= max{0, 0, d(t, z), d(t, z), 0}

= d(t, z)

From (5) we obtain ψ(d (t, z)) ≤ ψ (d (t, z)) − f(d(t, z)), so that f (d (t, z)) = 0, so that d (t, z) = 0 i.e., t = z which is a

contradiction. Hence Qyn → t which shows that the pairs (P,AB) and (Q,ST ) share the
(
CLR(AB)(ST )

)
property. This

concludes the proof.

Theorem 3.2. Let P, Q, A, B ,S and T be self-mappings of a metric space (X, d) satisfying the inequality (vi) of Lemma

3.1. If the pairs (P, AB) and (Q, ST) satisfy the
(
CLR(AB)(ST )

)
property, then (P, AB) and (Q, ST) have a coincidence

point each. Moreover both the pairs (P, AB) and (Q, ST) are occasionally weakly compatible, then P, Q, AB and ST have

a unique common fixed point. Further if (A, B), (S, T), (A, P) and (S, Q) are commuting maps then A, B, S, T, P and Q

have a unique common fixed point.

Proof. If the pair (P,AB) and (Q,ST ) enjoy the
(
CLR(AB)(ST )

)
property, then two sequences {xn} and {yn} in X exist

such that lim
n→∞

Pxn = lim
n→∞

ABxn = lim
n→∞

Qyn = lim
n→∞

STyn = t, where t ∈ AB(X) ∩ ST (X). Since t ∈ AB(X), a point

u ∈ X exists such that ABu = t. We assert that Pu = ABu using Lemma 3.1(vi) with x = u, y = yn we get

ψ(d(Pu,Qyn) ≤ ψ (m (u, yn))− φ(m (u, yn)), (6)

Where

m (u, yn) = max {d (ABu, STyn) , d (ABu,Pu) , d (STyn, Qyn) , d (ABu,Qyn) , d(STyn, Pu)} .

Taking the limit as n→∞ in (6), we get.

lim
n→∞

ψ(d (Pu,Qyn)) ≤ lim
n→∞

ψ (m (u, yn))− lim
n→∞

φ(m (u, yn))

lim
n→∞

ψ(d (Pu, t)) ≤ ψ( lim
n→∞

m (u, yn))− φ( lim
n→∞

m (u, yn))

Where

lim
n→∞

m (u, yn) = max {d (t, t) , d (t, Pu) , d (t, t) , d (t, t) , d(t, Pu)}

= max{0, d(t, Pu), 0, 0, d(t, Pu)}

= d(Pu, t),
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Which in turn yields

ψ(d (Pu, t)) ≤ ψ (d (Pu, t))− φ(d(Pu, t)),

So that φ (d (Pu, t)) = 0 i.e., (Pu, t) = 0. Hence Pu = ABu = t. Therefore, u is a coincidence point of the pair (P,AB).

As t ∈ ST (X), there exists a point v ∈ X such that STv = t. We show that Qv = STv. Using Lemma 3.1(vi) with x = u,

y = v, we get.

ψ(d (t, Qv) = ψ(d (Pu,Qv)) ≤ ψ (m (u, v))− φ(m (u, v)), (7)

Where

m (u, v) = max {d (ABu, STv) , d (ABu,Pu) , d (STv,Qv) , d (ABu,Qv) , d(STv, Pu)} .

= max {d (t, t) , d (t, t) , d (t, Qv) , d (t, Qv) , d(t, t)}

= max {0, 0, d (t, Qv) , d (t, Qv) , 0}

= d (t, Qv) .

Which in turn yields.

ψ(d (t, Qv)) ≤ ψ (d (t, Qv))− φ(d (t, Qv)),

So that φ(d (t, Qv)) = 0 i.e., d (t, Qv) = 0. Hence, Qv = STv = t, which shows that v is a coincidence point of the pair

(Q,ST ). Since the pair (P,AB) are occasionally weakly compatible so by definition there exists a point u ∈ X such that

Pu = ABu and P (AB)u = (AB)Pu. Since the pair (Q,ST ) are occasionally weakly compatible so by definition there exists

a point v ∈ X such that Qv = STv and Q(ST )v = (ST )Qv. Moreover, if there is another point z such that Pz = ABz,

then, using Lemma 3.1(vi) it follows that Pz = ABz = Qv = STv, or Pu = Pz and w = Pu = ABu is unique point of

coincidence of P and AB. By Lemma 2.7, w is the unique common fixed point of P and AB. i.e., w = Pw = ABw. Similarly

there is a unique point z ∈ X such that z = Qz = STz.

Uniqueness: Suppose that w 6= z. Using Lemma 3.1(vi) with x = w, y = z, we get

ψ(d (Pw,Qz)) ≤ ψ (m (w, z))− φ(m (w, z))

Where

m (w, z) = max {d (ABw,STz) , d (ABw,Pw) , d (STz,Qz) , d (ABw,Qz) , d(STz, Pw)}

= max {d (w, z) , d (w,w) , d (z, z) , d (w, z) , d(z, w)} .

= max {d (w, z) , 0, 0, d (w, z) , d (z, w)}

= d (w, z) .

which in turn yields

ψ(d (w, z)) ≤ ψ (d (w, z))− φ(d (w, z))

So that f(d (w, z)) = 0 i.e.,d (w, z) = 0. Hence z = w. Hence, z is a unique common fixed point of the mappings P, Q, AB

and ST. Finally we need to show that z is a common fixed point of A, B, P, Q, S and T. Since (A,B), (A,P ) are commutative

Az = A(ABz) = A(BAz) = (AB)Az; Az = APz = PAz; Bz = B(ABz) = (BA)Bz = (AB)Bz; Bz = BPz = PBz. Which

shows that Az, Bz are common fixed point of (AB,P ) yielding then by Az = z = Bz = Pz = ABz in the view of uniqueness
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of common fixed point of the pairs (P,AB). Similarly using the commutativity of (S, T ) and (S,Q) it can be shown that

Sz = z = Tz = Qz = Az = Bz = Pz. Which shows that z is a common fixed point of A, B, P, Q, S and T. We can easily

prove the uniqueness of z from Lemma 3.1(vi).

Remark 3.3. Theorem 3.2 improves the relevant results of Radenovic [28] as the requirements on the closedness and

containment among the ranges of the involved mappings are not needed.

Now, we furnish an illustrative example which demonstrates the validity of the hypotheses and degree of generality of our

main result over comparable ones from the existing literature.

Example 3.4. Consider X= [3, 14) equipped with the usual metric. Define the self mappings P, Q, A, B, S and T by

Px =

 3, if x ∈ {3} ∪ (8, 14) ,

11, if x ∈ (3, 8] ;
Qx =

 3, if x ∈ {3} ∪ (8, 14) ,

5, if x ∈ (3, 8] ;

Ax =


3, if x = 3,

13, if x ∈ (3, 8] ,

x+1
3
, if x ∈ (8, 14) ;

Sx =


3, if x = 3,

10, if x ∈ (3, 8] ,

x− 5, if x ∈ (8, 14) ;

Bx = x ∀ x ∈ [3, 14) and Tx = x ∀ x ∈ [3, 14). Consider two sequences {xn} =
{

8 + 1
n

}
n∈N, {yn} =

{3}
(
{xn} = {3} , {yn} =

{
8 + 1

n

}
n∈N

)
. The pairs (P,AB) and (Q,ST ) satisfy the

(
CLR(AB)(ST )

)
property:

lim
n→∞

Pxn = lim
n→∞

ABxn = lim
n→∞

Qyn = lim
n→∞

STyn = 3 ∈ AB(X) ∩ ST (X).

Also, P (X) = {3, 11} * [3, 11) = ST (X) and Q(X) = {3, 5} * [3, 5) ∪ {13} = AB(X). Take ψ ∈ Ψ and φ ∈ Φ given by

ψ (t) = 2t, φ (t) = 2
7
t. In order to check the contractive condition Lemma 3.1(vi), consider the following nine Cases: (I).

x = y = 3; (II). x = 3, y ∈ (3, 8]; (III). x = 3, y ∈ (8, 14); (IV). x ∈ (3, 8], y = 3; (V). x, y ∈ (3, 8]; (VI). x ∈ (3, 8],

y ∈ (8, 14); (VII). x ∈ (8, 14), y = 2; (VIII). x ∈ (8, 14), y ∈ (3, 8]; (IX). x, y ∈ (8, 14). In the cases I, III, VII, and IX, we

get that d(Px,Qy) = 0; Lemma 3.1(vi) is trivially satisfied. In the cases II and VIII, it is d(Px,Qy) = 2 and m(x, y) = 7;

so, Lemma 3.1(vi) reduces to

ψ (2) = 4 ≤ 12 = ψ (7)− φ(7).

In the case IV we get that d(Px,Qy) = 8 and m(x, y) = 10, and again we have

ψ (8) = 16 ≤ 120

7
= ψ (10)− φ(10).

In the case VI we get that d(Px,Qy) = 8 and m(x, y) = 15, and again we have

ψ (8) = 16 ≤ 180

7
= ψ (15)− φ(15).

(P,AB) and (Q,ST) are OWC. Hence, all the conditions of Theorem 3.2 are satisfied, and 3 is a unique common fixed point

of the pairs (P, AB) and (Q, ST) which also remains a point of coincidence. Here, one may notice that the involved mappings

P, Q, A, S are discontinuous at their unique common fixed point 3. However, notice that the subspaces AB(X) and ST(X)

are not closed subspaces of X, and required inclusions among the ranges of the involved maps do not hold. Therefore, the

results of Radenovic [28] cannot be used in the context of this example which establishes the genuineness of our extension.
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In view of Theorem 3.2 and Lemma 3.1, the following corollary is immediate.

Corollary 3.5. Let P, Q, A, B, S and T be self-mappings of a metric space (X,d) satisfying all the hypotheses of Lemma

3.1. Then P, Q, AB and ST have a unique common fixed point, provided that both the pairs (P, AB) and (Q, ST) are weakly

compatible.

Proof. Owing to Lemma 3.1, it follows that the pairs (P, AB) and (Q,ST) enjoy the
(
CLR(AB)(ST )

)
property. Hence, all

the conditions of Theorem 3.1 are satisfied; P, Q, AB and ST have a unique common fixed point provided that both the

pairs (P, AB) and (Q,ST) are occasionally weakly compatible. Here, it is worth noting that the conclusions in Example 3.4

cannot be obtained using Corollary 3.5 as conditions (i) and (ii) of Lemma 3.1 are not fulfilled. In what follows, we present

another example which creates a situation wherein a conclusion can be reached using Corollary 3.5.

Example 3.6. In the setting of Example 3.4, replace the self-mappings A and S by the following, retaining the rest:

Ax =


3, if x = 3,

6, if x ∈ (3, 8] ,

x−2
2
, if x ∈ (8, 14) ;

Sx =


3, if x = 3,

11, if x ∈ (3, 8] ,

x− 5, if x ∈ (8, 14) .

Then, as in the earlier example, the pairs (P,AB) and (Q,ST) satisfy the
(
CLR(AB)(ST )

)
property. Moreover, inequality

Lemma 3.1(vi) can be verified as earlier. Also, as earlier define,

ψ (t) = 2t, φ (t) =
2

7
t.

Hence, P (X) = {3, 11} ⊂ [3, 11] = ST (X) and Q(X) ={3, 5} ⊂ [3, 6] = AB(X) holds. Thus, all the conditions of Corollary

3.5 are satisfied and 3 is a unique common fixed point of the involved mappings P, Q, AB and ST.

Remark 3.7. The conclusions of Lemma 3.1, Theorem 3.2 and Corollary 3.5 remain true if we choose m (x, y) =

maxM4
P,Q,AB,ST (x, y) or m (x, y) = maxM3

P,Q,AB,ST (x, y). By setting P, Q, A, B, S and T suitably, we can deduce

corollaries involving two as well as three self-mappings. As a sample, we can deduce the following corollary involving two

self-mappings:

Corollary 3.8. Let P and A be self-mappings of a metric space (X,d). Suppose that

1. The pair (P,A) satisfies the
(
CLR(A)

)
property,

2. There exist φ ∈ Φ and ψ ∈ Ψ such that

ψ(d (Px, Py)) ≤ ψ (m (x, y))− φ (m (x, y)) ,

for all x, y ∈ X, where m (x, y) = maxMk
P,A (x, y) and k ∈ {3, 4, 5}. Then, (P,A) has a coincidence point. Moreover, if the

pair (P,A) is occasionally weakly compatible, then the pair has a unique common fixed point in X.

As an application of Theorem 3.2, we have the following result involving four finite families of self-mappings.

Theorem 3.9. Let {Ai}mi=1, {Bj}nj=1, {Sk}pk=1, and {Tl}ql=1 be four finite families of self-mappings of a metric space (X, d)

with A = A1, A2, . . . , Am , B = B1, B2, . . . , Bn, S = S1, S2, . . . , Sp, and T = T1, T2, . . . , Tq satisfying the condition (2).

Suppose that the pairs (A,S) and (B, T ) satisfy the (CLRST ) property, then (A,S) and (B, T ) have a point of coincidence

each.

Moreover {Ai}mi=1, {Bj}nj=1, {Sk}pk=1, and {Tl}ql=1 have a unique common fixed point if the families ({Ai} , {Sk}) and

({Bj} , {Tl}) pairwise OWC where i ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , n} and l ∈ {1, 2, . . . , q}.
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Proof. The proof of this theorem can be completed on the lines of Theorem 3.2 of Imdad [16].

Remark 3.10. A result similar to Theorem 3.8 can be outlined using Corollary 3.5 .

Remark 3.11. Theorem 3.8 extends the results of Radenovic [28] and Abbas and Doric [2].

Now, we indicate that Theorem 3.8 can be utilized to derive common fixed point theorems for any finite number of mappings.

As a sample, we can derive a common fixed point theorem for six mappings by setting two families of two members, while

the rest by two of single members.

Corollary 3.12. Let A, B, H, R, S, and T be self-mappings of a metric space (X,d). Suppose that

1. The pairs (A, SR) and (B, TH) share the
(
CLR(SR)(TH)

)
property,

2. There exist φ ∈ Φ and ψ ∈ Ψ such that ψ(d (Ax,By)) ≤ ψ (m (x, y))− φ (m (x, y)), for all x, y ∈ X, where m (x, y) =

maxMk
A,B,H,R,S,T (x, y), and k ∈ {3, 4, 5}.

(A, SR) and (B, TH) are OWC. Then (A,SR) and (B,TH) have a coincidence point each. Moreover, A, B, H, R, S, and T

have a unique common fixed point provided AS = SA, SR = RS, BT = TB, and TH = HT .

By choosing A1 = A2 = · · · = Am = A, B1 = B2 = · · · = Bn = B, S1 = S2 = · · · = Sp = S, and T1 = T2 = · · · = Tq = T in

Theorem 3.8, we get the following corollary:

Corollary 3.13. Let A, B, S and T be self-mappings of a metric space (X,d). Suppose that

1. the pairs (Am, Sp) and (Bn, T q) share the (CLRSpTq ) property, where m, n, p, and q are fixed positive integers;

2. there exist φ ∈ Φ and ψ ∈ Ψ such that ψ(d (Amx,Bny) ≤ ψ (m (x, y))−φ (m (x, y)), for all x, y ∈ X, where m (x, y) =

maxMk
Am,Bn,Sp,Tq (x, y), and k ∈ {3, 4, 5}.

Then A, B, S and T have a unique common fixed point provided that (A,S) and (T,B) are OWC.

Remark 3.14. Notice that Corollary 3.12 is a slight but partial generalization of Theorem 3.2.

Remark 3.15. Results similar to Corollary 3.12 can be derived form Corollary 3.5.

Remark 3.16. It may be pointed out that the earlier proved results, namely Theorems 3.2 and 3.8 (also Corollaries 3.5,

3.7, 3.11, 3.12) remain valid in symmetric space (X,d) whenever d is continuous.
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