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Abstract: In this paper, we have obtained the Ostrowski’s method in a different way and proposed two new methods of order seven

and thirteen. The efficiency index of Ostrowsky’s method is 1.587 and that of the seventh order method and thirteenth
order method are respectively 1.626 and 1.670, which are better than Newton’s method (1.414) and Ostrowsky’s method.

Also it is observed from the numerical illustrations, the proposed methods take less number of iterations than Newton’s

method. Few other methods are compared with the proposed two methods, where the number of iterations for those
methods are either same or more than the presented methods. Some examples are given to illustrate the performance of

the new methods.
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1. Introduction

One of the most important root-finding methods for solving nonlinear scalar equation f(x) = 0 is Newton’s method. In

general, to compute a root in a finite number of arithmetic operations is a difficult task by direct methods, hence this

requires an iterative method. There are many iterative methods available in the literature and among them some are higher

order iterative methods. They are specifically developed and analyzed for solving nonlinear equations that improve classical

methods, such as Newton’s method (NM) and Halley’s iteration method, which are respectively given below:

xn+1 = xn −
f(xn)

f ′(xn)
, (1)

xn+1 = xn −
2f(xn)f ′(xn)

2f ′(xn)2 − f(xn)f ′′(xn)
. (2)

Newton’s method has second order convergence and it is optimal with two function evaluations. Halley’s iteration method

has third order convergence with three function evaluations. Obviously, f ′′ is difficult to calculate and computationally

more costly. Therefore, f ′′ in Equation (2) is approximated using the finite difference; still, the convergence order and total

number of function evaluation are maintained. Such a third order method similar to Equation (2) after approximating f ′′

in Halley’s iteration method is given below [5]:

yn = xn − β
f(xn)

f ′(xn)
, xn+1 = xn −

2βf(xn)

(2β − 1)f ′(xn) + f ′(yn)
, β 6= 0. (3)
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In the past decade, some authors have proposed third order methods with three function evaluations free from f ′′; for

example, [1, 3] and the references therein. The efficiency index (EI) of an iterative method is measured using the formula

p
1
d , where p is the local order of convergence and d is the number of function evaluations per full iteration cycle. Kung-Traub

[9] conjectured that the order of convergence of any multi-point without memory method with d function evaluations cannot

exceed the bound 2d−1, the “optimal order”. Thus, the optimal order for three evaluations per iteration would be four.

Jarratt’s method [8] is an example of an optimal fourth order method. Recently, some optimal and non-optimal multi-point

iterative methods have been developed in [2, 3, 10–12, 16] and the references therein.

In this paper, we have obtained the Ostrowski’s method [14] by using a different approach and our aim is to improve the

order of this method to seven and thirteen by using divided difference approximation. Section 2 gives the preliminaries and

Section 3 presents the development of the new methods. Section 4 discusses the convergence analysis and Section 5 carries

out the test on the numerical examples and compare the present methods with few other methods. Finally, Section 6 gives

conclusion on our work.

2. Preliminaries

Definition 2.1 ([17]). If the sequence {xn} tends to a limit x∗ in such a way that

lim
n→∞

xn+1 − x∗

(xn − x∗)p
= C

for p ≥ 1, then the order of convergence of the sequence is said to be p, and C is known as the asymptotic error constant.

If p = 1, p = 2 or p = 3, the convergence is said to be linear, quadratic or cubic, respectively. Let en = xn − x∗, then the

relation

en+1 = C epn +O
(
ep+1
n

)
= O

(
epn

)
. (4)

is called the error equation. The value of p is called the order of convergence of the method.

Definition 2.2 ([14]). The Efficiency Index (EI) is given by

EI = p
1
d , (5)

where d is the total number of new function evaluations (the values of f and its derivatives) per iteration.

Definition 2.3 (Kung-Traub Conjecture [9]). Let ψ be an iterative function without memory with d function evaluations.

Then

p(ψ) ≤ popt = 2d−1, (6)

where popt is the maximum order.

3. Development of the methods

Let us consider the following third order method, taking β = 1 in Equation (3):

yn = xn −
f(xn)

f ′(xn)
, xn+1 = xn −

2f(xn)

f ′(xn) + f ′(yn)
. (7)
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This is known as Arithmetic mean Newton’s method(AM) with cubic convergence (see [18]). This method (7) is of order

three with three function evaluation per full iteration having EI = 1.442. The following method is known as Harmonic mean

Newton’s method(HM) with cubic convergence [6]:

xn+1 = xn −
f(xn)

2

(
1

f ′(xn)
+

1

f ′(yn)

)
. (8)

The Newton-Steffensen method(SM) with cubic convergence [15] is given by

xn+1 = xn −
f(xn)2

f ′(xn)[f(xn)− f(yn)]
. (9)

From the literature survey, we observe that the methods (7), (8) and (9) are approximately equal [4] with respect to the

convergence order.

By equating (7) and (8), we have

f ′(yn) ≈ f ′(xn)2

2f ′(xn)− f ′(yn)
. (10)

Also, equating (8) and (9), we have

f ′(yn) ≈ f ′(xn)[f(xn)− f(yn)]

f(xn) + f(yn)
(11)

Again, equating (10) and (11), we have

f ′(yn) ≈ f ′(xn)[f(xn)− 3f(yn)]

f(xn)− f(yn)
(12)

Reconstructed fourth order method(M1): Equation (12) is substituted in (7) to obtain the well known Ostrowski’s

method [14]:

zn = xn −
f(xn)

f ′(xn)

[ f(xn)− f(yn)

f(xn)− 2f(yn)

]
(13)

The efficiency of the this two-step method (13) is found to be EI = 1.587.

Seventh order method(M2): We extend this method (13) to seventh order with one more function evaluation as follows:

First we introduce one more Newton’s step in the method (13), then we get

xn+1 = zn −
f(zn)

f ′(zn)
. (14)

Thus, we obtain a new three-step iterative method (14) with convergence order eight which has five function evaluations.

The efficiency of the method (14) EI = 1.516 shows that it is higher than Newton’s method but lower than Ostrowski’s

method (13). In order to improve the efficiency index, we modify the method (14) by approximating f ′(zn) with already

computed function values using the divided difference,

f ′(zn) ≈ f(zn)− f(yn)

zn − yn
= p′(zn),

and obtain the following three-step method whose convergence order is six with four function evaluations:

xn+1 = zn −
f(zn)

p′(zn)
. (15)

However, the method (15) has efficiency index is EI = 1.565, but still this method has less efficiency than Ostrowski’s

method (13). Now, let us consider the modified version of (15) as follows:

wn = zn −
f(zn)

p′(zn)

[
1−

( f(yn)

f(xn)

)2]
, (16)
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where
[
1−
(

f(yn)
f(xn)

)2]
is a weight function included to improve the order and hence efficiency. Thus, we have obtained a new

three-step iterative method (16) denoted by M2 which has convergence order seven with four function evaluations whose

efficiency index is EI = 1.626.

Thirteenth order method(M3): Babajee et al. [2] improved a sixth order Jarratt method to a twelfth order method.

Using their technique, we improve (16) by another Newton’s step and obtain

xn+1 = wn −
f(wn)

f ′(wn)
, (17)

The above method has fourteenth order convergence with six function evaluations. To reduce the number of function

evaluation from six to five, we approximate f ′(wn) as follows [2]:

f ′(wn) ≈ 1

zn − wn

(
f ′(xn)(zn − wn) + 2f [wn, xn, xn](zn − xn)(wn − xn) + (f [zn, xn, xn]− 3f [wn, xn, xn])(wn − xn)2

)

= q′(wn),

f [zn, xn, xn] =
f [zn, xn]− f ′(xn)

zn − xn
, f [zn, xn] =

f(zn)− f(xn)

zn − xn
,

f [wn, xn, xn] =
f [wn, xn]− f ′(xn)

wn − xn
, f [wn, xn] =

f(wn)− f(xn)

wn − xn
.

Thus, we have obtained a new four-step iterative method

xn+1 = wn −
f(wn)

q′(wn)
, (18)

denoted by M3 which has convergence order thirteen with five function evaluations whose efficiency index is EI = 1.670.

This method has the highest efficiency among all the three methods.

4. Convergence Analysis

Theorem 4.1. Let a sufficiently smooth function f : D ⊂ R → R has a simple root x∗ in the open interval D. If x0 is

chosen in a sufficiently small neighborhood of x∗, then the method (16) is of local seventh order convergence.

Proof. Let en = xn − α. Using the Taylor series, we have

f(xn) = f ′(α)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + . . .] (19)

and f ′(xn) = f ′(α)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n + 7c7e

6
n + . . .], (20)

where ck = f(k)(x∗)
k!f ′(x∗) , k ≥ 2. Now substituting (19) and (20) in (7), we get

yn = α+ c2e
2
n − 2(c22 − c3)e3n + (4c32 − 7c2c3 + 3c4)e4n + (−8c42 + 20c22c3 − 6c23 − 10c2c4 + 4c5)e5n + (16c52 − 52c32c3 + 33c2c

2
3

+ 28c22c4 − 17c3c4 − 13c2c5 + 5c6)e6n − 2(16c62 − 64c42c3 − 9c33 + 36c32c4 + 6c24 + 9c22(7c23 − 2c5)

+ 11c3c5 + c2(−46c3c4 + 8c6)− 3c7)e7n + . . .

(21)

Expanding f(yn) about α and taking into account (21), we have

f(yn) = f ′(α)[c2e
2
n − 2(c22 − c3)e3n + (5c32 − 7c2c3 + 3c4)e4n − 2(6c42 − 12c22c3 + 3c23 + 5c2c4 − 2c5)e5n

+ (28c52 − 73c32c3 + 34c22c4 − 17c3c4 + c2(37c23 − 13c5) + 5c6)e6n − 2(32c62 − 103c42c3 − 9c33 + 52c32c4

+ 6c24 + c22(80c23 − 22c5) + 11c3c5 + c2(−52c3c4 + 8c6)− 3c7)e7n + . . .].

(22)
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Now, using (19),(20) and (22) in (13) then we have

zn = α+ (c32 − c2c3)e4n − 2(2c42 − 4c22c3 + c23 + c2c4)e5n + (10c52 − 30c32c3 + 12c22c4 − 7c3c4 + 3c2(6c23 − c5))e6n

− 2(10c62 − 40c42c3 − 6c33 + 20c32c4 + 3c24 + 8c22(5c23 − c5) + 5c3c5 + c2(−26c3c4 + 2c6))e7n + . . .

(23)

Expanding f(zn) about α and taking into account (23), we have

f(zn) = f ′(α)
[
(c32 − c2c3)e4n − 2(2c42 − 4c22c3 + c23 + c2c4)e5n + (10c52 − 30c32c3 + 18c2c

2
3 + 12c22c4 − 7c3c4 − 3c2c5)e6n

− 2(10c62 − 40c42c3 − 6c33 + 20c32c4 + 3c24 + 8c22(5c23 − c5) + 5c3c5 + c2(−26c3c4 + 2c6))e7n + . . .
]
.

(24)

Using equations (19) and (22), we have

f(yn)

f(xn)
= c2e+ (−3c22 + 2c3)e2n + (8c32 − 10c2c3 + 3c4)e3n + (−20c42 + 37c22c3 − 8c23 − 14c2c4 + 4c5)e4n

+ (48c52 − 118c32c3 + 55c2c
2
3 + 51c22c4 − 22c3c4 − 18c2c5 + 5c6)e5n + (−112c62 + 344c42c3 − 252c22c

2
3

+ 26c33 − 163c32c4 + 150c2c3c4 − 15c24 + 65c22c5 − 28c3c5 − 22c2c6 + 6c7)e6n + ...

(25)

Using equations (21), (22), (23) and (24), we have

p′(zn) = f ′(α)
[
1 + c22e

2
n + (−2c32 + 2c2c3)e3n + c2(5c32 − 7c2c3 + 3c4)e4n − 4(c2(3c42 − 6c22c3 + c23 + 3c2c4 − c5))e5n + ...

]
. (26)

Finally, using (23), (24), (26) and (25) in (16), we get

en+1 =
(

4c62 − 6c42c3 + 2c22c
2
3

)
e7n +O(e8n), (27)

which shows seventh order convergence.

The following theorem is given without proof, which can be worked out with the help of Mathematica.

Theorem 4.2. Let a sufficiently smooth function f : D ⊂ R → R has a simple root x∗ in the open interval D. If x0 is

chosen in a sufficiently small neighborhood of x∗, then the method (18) is of local thirteenth order convergence.

en+1 = 2c32
(
c22 − c3

) (
2c42 − 3c22c3 + c23

)
c4e

13
n +O(e14n ).

5. Numerical examples

In this section, we denote the different methods as follows: Newton iterative method (NM), Arithmetic mean Newton

iterative method (AM), Harmonic mean Newton iterative method (HM), Newton-Steffensen iterative method (SM),

method proposed by Hu et al. (HF) [7] , method proposed by Noor et al. (NKNA) [13] . The methods presented

in this paper are denoted as M1, M2 and M3. Numerical results on some test functions are given for the proposed

methods with some existing methods. Numerical computations have been carried out in the Matlab software with 500

significant digits. Depending on the precision of the computer, we have used the stopping criteria for the iterative process as

error = |xN − xN−1| < ε, where ε = 10−50 and N is the number of iterations required for convergence. The computational

order of convergence is given by

ρ =
ln |(xN − xN−1)/(xN−1 − xN−2)|

ln |(xN−1 − xN−2)/(xN−2 − xN−3)| .

Table 1 shows the efficiency indices of the new methods with some known methods.
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Methods p d EI Optimal/Non-optimal

NM 2 2 1.414 Optimal

AM 3 3 1.442 Non-optimal

HM 3 3 1.442 Non-optimal

SM 3 3 1.442 Non-optimal

HF 7 5 1.475 Non-optimal

NKNA 7 5 1.475 Non-optimal

M1 4 3 1.587 Optimal

M2 7 4 1.626 Non-optimal

M3 13 5 1.670 Non-optimal

Table 1. Comparison of Efficiency Indices (EI) and Optimality

The following test functions and their simple zeros for our study are given below:

f1(x) = sin(2 cosx)− 1− x2 + esin(x
3), x∗ = −0.7848959876612125352...

f2(x) = xex
2

− sin2x+ 3 cosx+ 5, x∗ = −1.2076478271309189270...

f3(x) = sin(x) + cos(x) + x, x∗ = −0.4566247045676308244...

f4(x) = (x+ 2)ex − 1, x∗ = −0.4428544010023885831...

f5(x) = x2 + sin (
x

5
)− 1

4
, x∗ = 0.4099920179891371316...

From Table 1, it is observed that the present methods M1, M2 and M3 have better efficiency when compared with other

methods. Table 2 shows the results for f1(x) to f5(x). We observe that if the initial points are close to the root, then

all the methods take less number of iterations and produce least error. For the test function f2(x), HF method diverges,

whereas it converges for the proposed new methods. We also note from the numerical results for the test function f5(x), the

computational order of convergence is found to be higher than the theoretical order.

f(x) Methods x0 N ρ error cpu(s) x0 N ρ error cpu(s)

f1(x) NM −1.2 7 1.99 1.5646e-060 0.6532 −0.5 8 1.99 6.4194e-071 0.5181

AM 5 3.00 6.5582e-052 0.6806 6 2.99 5.5304e-147 0.7804

HM 5 2.99 1.0380e-051 0.6470 5 3.00 4.4040e-057 0.7997

SM 5 2.99 3.1215e-072 0.5858 6 3.00 7.2647e-130 0.7091

HF 4 6.99 1.0930e-270 0.6908 4 7.00 8.9500e-064 0.7922

NKNA 4 7.00 2.2508e-297 0.7258 4 7.00 8.3597e-201 0.7320

M1 5 3.99 2.1844e-171 0.5631 5 3.99 5.1071e-124 0.6430

M2 4 6.99 1.1126e-221 0.5776 4 7.00 1.2796e-115 0.5169

M3 3 12.61 8.9515e-108 0.6438 3 13.60 3.5614e-063 0.6158

f2(x) NM −1.7 9 2.00 4.3765e-054 0.5677 −0.8 9 2.00 2.1249e-055 0.5854

AM 7 3.00 4.3181e-124 0.7034 7 3.00 1.0285e-086 0.6239

HM 6 3.00 1.2897e-072 0.5774 6 3.00 9.8953e-140 0.5470

SM 6 2.99 2.7850e-051 0.5842 7 3.00 3.5528e-149 0.6173

HF 4 7.05 1.5088e-062 0.5193 Div - - -

NKNA 4 6.99 1.6192e-101 0.5843 4 7.00 2.2669e-074 0.5494

M1 5 4.00 4.4698e-093 0.4831 5 4.00 5.0201e-150 0.5219

M2 4 7.00 2.1198e-086 0.5063 4 6.99 3.8806e-096 0.5137

M3 4 13.14 0.0000e-000 0.5037 3 13.19 6.9382e-052 0.5737
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f(x) Methods x0 N ρ error cpu(s) x0 N ρ error cpu(s)

f3(x) NM 0.5 7 1.99 1.0799e-055 0.4327 −1.5 7 1.99 1.1601e-058 0.4051

AM 5 2.99 2.7460e-066 0.4944 6 2.99 9.2298e-149 0.5173

HM 6 2.99 1.6162e-137 0.5121 6 2.99 5.0536e-143 0.5313

SM 5 3.00 1.2953e-059 0.5586 5 2.99 1.3916e-107 0.4584

HF 4 7.00 3.0611e-114 0.5875 4 7.00 1.9419e-253 0.4898

NKNA 4 7.00 1.5307e-208 0.6733 4 6.99 9.4246e-287 0.5575

M1 5 3.99 2.0535e-128 0.6138 5 3.99 2.5068e-161 0.4504

M2 4 7.00 1.0154e-128 0.5417 4 6.99 1.6262e-195 0.4808

M3 3 13.67 1.6309e-070 0.5009 3 12.88 1.2146e-118 0.4986

f4(x) NM −0.2 7 1.99 7.2347e-052 0.7061 −0.9 8 1.99 3.1021e-058 0.4480

AM 5 2.99 2.6714e-061 0.6253 6 2.99 1.4745e-093 0.4895

HM 5 3.00 2.3754e-082 0.7212 5 2.99 1.8265e-076 0.4350

SM 5 2.99 1.7485e-065 0.6500 6 2.99 1.8007e-109 0.4834

HF 4 6.99 1.8551e-274 0.6048 5 7.00 4.0979e-275 0.5416

NKNA 4 6.99 3.9568e-305 0.7280 4 7.00 3.8579e-171 0.5040

M1 4 3.99 7.5199e-060 0.5937 5 4.00 1.6339e-154 0.4383

M2 4 6.99 2.5159e-276 0.5042 4 7.00 7.2869e-142 0.4398

M3 3 13.00 3.9609e-144 0.4926 3 13.29 2.6606e-077 0.4481

f5(x) NM 0.8 8 1.99 3.2094e-072 0.4551 0.2 8 1.99 8.2490e-076 0.3976

AM 6 3.00 1.6989e-136 0.5046 6 2.99 2.5980e-143 0.5031

HM 5 2.99 2.3450e-094 0.4639 5 2.99 1.8391e-098 0.4406

SM 5 3.00 1.8442e-136 0.5015 6 3.00 2.8208e-143 0.5197

HF 4 6.99 3.5540e-159 0.4762 4 7.00 2.6957e-099 0.4654

NKNA 4 6.99 2.5015e-209 0.5584 4 7.00 1.2607e-209 0.5111

M1 5 3.99 1.1319e-143 0.4608 5 3.99 7.4805e-151 0.4351

M2 4 6.99 2.9356e-169 0.4266 4 7.00 2.0343e-152 0.4289

M3 3 13.44 2.5412e-097 0.4389 3 14.24 2.6427e-088 0.4359

Table 2. Numerical results for test functions

6. Conclusions

In this work, we have developed a different procedure to obtain Ostrowski’s fourth order method which is found to be

optimal as per the Kung-Traub conjuncture. This method requires only three function evaluations. Also, we have extended

the fourth order method to seventh order along with weight function and extended seventh order method to thirteenth

order. It is clear that our extended methods require only four function evaluations per iterative step to obtain seventh

order convergence and five function evaluations per iterative step to get thirteenth order convergence. Table 1 compares the

efficiency of different methods where we find that the proposed new methods have better efficiency. Moreover, unlike all

other methods, the proposed new methods require less cpu time for convergence and hence considered as a competitor to

Newton’s method and few other higher order methods.

References

[1] D.K.R. Babajee and M.Z. Dauhoo, An analysis of the properties of the variants of Newton’s method with third order

convergence, Appl. Math. Comp., 183(1)(2006), 659-684.

[2] D.K.R. Babajee, Kalyanasundaram Madhu and Jayakumar Jayaraman, A family of higher order multi-point iterative

methods based on power mean for solving nonlinear equations, Afr. Mat., 27(5)(2016), 865-876.

[3] C. Chun and K. Yong-Il, Several new third-order iterative methods for solving nonlinear equations, Acta Appl. Math.,

109(2010), 1053-1063.

269



Revisit of Ostrowski’s Method and Two New Higher Order Methods for Solving Nonlinear Equation

[4] Changbum Chun, A simply constructed third-order modifications of newton’s method, Journal of Computational and

Applied Mathematics, 219(2008), 81-89.

[5] J.A. Ezquerro and M.A. Hernandez, A uniparametric halley-type iteration with free second derivativ, Int. J. Pure Appl.

Math., 6(2003), 99-110.

[6] H.H.H. Homeier, On Newton-type methods with cubic convergence, J. Comp. Appl. Math., 176(2005), 425-432.

[7] Y. Hu and L. Fang, A seventh-order convergent newton-type method for solving nonlinear equations, Second International

Conference on Computational Intelligence and Natural Computing, (2010), 13-15.

[8] P. Jarratt, Some efficient fourth order multipoint methods for solving equations, BIT, 9(1969), 119-124.

[9] H.T. Kung and J.F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Mach., 21(4)(1974),

643-651.

[10] Kalyanasundaram Madhu and Jayakumar Jayaraman, Two new families of iterative methods for solving nonlinear

equations, Tamsui Oxford Journal of Information and Mathematical Sciences, 30(1)(2016), 25-38.

[11] Kalyanasundaram Madhu, Some new higher order multi-point iterative methods and their applications to differential

and integral equation and global positioning system, PhD thesis, Pndicherry University, (2016).

[12] Kalyanasundaram Madhu and Jayakumar Jayaraman, Higher order methods for nonlinear equations and their basins

of attraction, Mathematics, 4(22)(2016).

[13] M.A. Noor, W.A. Khan, K.I. Noor and E. Al-said, Higher-order iterative methods free from second derivative for solving

nonlinear equations, International Journal of the Physical Sciences, 6(8)(2011), 1887-1893.

[14] A.M. Ostrowski, Solutions of Equations and System of equations, Academic Press, New York, (1960).

[15] J.R. Sharma, A composite third order newton-steffensen method for solving nonlinear equations, Appl. Math. Comput.,

169(2005), 242-246.

[16] F. Soleymani, S.K. Khratti and S. Karimi Vanani, Two new classes of optimal Jarratt-type fourth-order methods, Appl.

Math. Lett., 25(5)(2011), 847-853.

[17] R. Wait, The Numerical Solution of Algebraic Equations, John Wiley and Sons, (1979).

[18] S. Weerakoon and T.G.I. Fernando, A variant of Newton’s method with accelerated third order convergence, Appl. Math.

Lett., 13(2000), 87-93.

270


	Introduction
	Preliminaries
	Development of the methods
	Convergence Analysis
	Numerical examples
	Conclusions
	References

