

International Journal of Mathematics And its Applications

Fixed Point Theorem for Mappings Satisfying Certain Rational Inequality

Rafia $\mathbf{Aziz}^{1,*}$ and Rinku \mathbf{Verma}^1

1 Department of Mathematics, Medi-Caps University, A.B. Road, Pigdamber, Indore, Madhya Pradesh, India.

Abstract: The authors of [1, 2] and [3] proved some fixed point theorems in complete metric space. In this paper we prove some fixed point theorems in complete metric space for mappings satisfying certain rational inequality.
MSC: 47H10, 54H25, 46J10, 46J15.

 Keywords: Fixed point, common fixed point, self mapping and complete metric spaces.
 C
 JS Publication.
 Accepted on: 21.03.2018

1. Introduction

The well known Banach contraction principle states that "If X is a complete metric space and T is a contraction mapping on X into itself then T has unique fixed point in X". Many researchers worked on this principle. This paper is another attempt in this direction

Definition 1.1. A sequence $\{x_n\}$ in metric space (X, d) is called Cauchy sequence if for each $\varepsilon > 0$ there exist a positive integer n_0 such that $m, n \ge n_0 \Rightarrow d(x_m, x_n) < \varepsilon$.

Definition 1.2. A complete metric space is a metric space in which every Cauchy sequence is convergent.

Definition 1.3. A sequence $\{x_n\}$ converges to z if $\lim_{n \to \infty} d(x_n, z) = 0$. In this case z is called the limit of $\{x_n\}$ and we write $x_n \to z$.

2. Main Results

Theorem 2.1. Let S and T be self mappings defined on a complete metric space (X, d) satisfying

$$d(Sx, Ty) \le \alpha \frac{[1 + d(x, Sx)] \, d(y, Ty)}{[1 + d(x, y)]} + \beta \frac{[1 + d(x, Ty)] \, d(x, Sx)}{[1 + d(x, Sx) + d(y, Ty)]} + \gamma d(x, y) \tag{1}$$

for all x, y in X, where $\alpha + \beta + \gamma < 1$, $\alpha > 0$, $\beta > 0$, $\gamma > 0$. Then S and T have a unique common fixed point.

^{*} E-mail: rafiaaziz27@gmail.com

Proof. Let x_0 be any arbitrary point in X. We define a sequence $\{x_n\}$ in X such that $x_n = Sx_{n-1}$ and $x_{n+1} = Tx_n$ for $n = 1, 2, 3, \ldots$ Then

$$\begin{aligned} d(x_n, x_{n+1}) &= d(Sx_{n-1}, Tx_n) \\ &\leq \alpha \frac{[1 + d(x_{n-1}, Sx_{n-1})] d(x_n, Tx_n)}{[1 + d(x_{n-1}, x_n)]} + \beta \frac{[1 + d(x_{n-1}, Tx_n)] d(x_{n-1}, Sx_{n-1})}{[1 + d(x_{n-1}, x_n)]} + \gamma d(x_{n-1}, x_n) \quad \text{[by (1)]} \\ &\leq \alpha \frac{[1 + d(x_{n-1}, x_n)] d(x_n, x_{n+1})}{[1 + d(x_{n-1}, x_n)]} + \beta \frac{[1 + d(x_{n-1}, x_{n+1})] d(x_{n-1}, x_n)}{[1 + d(x_{n-1}, x_n) + d(x_{n-1}, x_n)]} + \gamma d(x_{n-1}, x_n) \\ &\leq \alpha d(x_n, x_{n+1}) + \beta \frac{[1 + d(x_{n-1}, x_{n+1})] d(x_{n-1}, x_n)}{[1 + d(x_{n-1}, x_{n+1})]} + \gamma d(x_{n-1}, x_n) \\ &\leq \alpha d(x_n, x_{n+1}) + \beta d(x_{n-1}, x_n) + \gamma d(x_{n-1}, x_n) \\ &\leq \alpha d(x_n, x_{n+1}) + \beta d(x_{n-1}, x_n) + \gamma d(x_{n-1}, x_n) \\ &\leq \alpha d(x_n, x_{n+1}) + \beta d(x_{n-1}, x_n) + \gamma d(x_{n-1}, x_n) \end{aligned}$$

Where $\lambda = \left(\frac{\beta+\gamma}{1-\alpha}\right)$ and $0 < \lambda < 1$ in view of $\alpha + \beta + \gamma < 1$, $\alpha > 0$, $\beta > 0$, $\gamma > 0$. Similarly $d(x_{n-1}, x_n) \leq \lambda d(x_{n-2}, x_{n-1})$ and so on. Hence $d(x_n, x_{n+1}) \leq \lambda^n d(x_0, x_1) \to 0$ as $n \to \infty$ since $0 < \lambda < 1$. This proves that $\{x_n\}$ is a Cauchy's sequence in X which is Complete, so it converges to a point say z in X. Now,

$$\begin{aligned} d(z,Tz) &\leq d(z,x_n) + d(x_n,Tz) \\ &\leq d(z,x_n) + d(Sx_{n-1},Tz) \\ &\leq d(z,x_n) + \alpha \frac{[1+d(x_{n-1},Sx_{n-1})] d(z,Tz)}{[1+d(x_{n-1},z)]} + \beta \frac{[1+d(x_{n-1},Tz)] d(x_{n-1},Sx_{n-1})}{[1+d(x_{n-1},z)]} + \gamma d(x_{n-1},z) \\ &\leq d(z,x_n) + \alpha \frac{[1+d(x_{n-1},x_n)] d(z,Tz)}{[1+d(x_{n-1},z)]} + \beta \frac{[1+d(x_{n-1},Tz)] d(x_{n-1},x_n)}{[1+d(x_{n-1},x_n) + d(z,Tz)]} + \gamma d(x_{n-1},z) \\ &\Rightarrow (1-\alpha)d(z,Tz) \leq 0 \ as \ n \to \infty \end{aligned}$$

Hence Tz = z since $0 < \alpha < 1$. Similarly we can show Sz = z. Thus z is the common fixed point of S and T. Suppose y is another fixed point of S and T. Then we have

$$\begin{aligned} d(z,y) &\leq d(Sz,Ty) \\ &\leq \alpha \frac{[1+d(z,Sz)] \, d(y,Ty)}{[1+d(z,y)]} + \beta \frac{[1+d(z,Ty)] \, d(z,Sz)}{[1+d(z,Sz)+d(y,Ty)]} + \gamma d(z,y) \\ &\leq \alpha \frac{[1+d(z,z)] \, d(y,y)}{[1+d(z,y)]} + \beta \frac{[1+d(z,y)] \, d(z,z)}{[1+d(z,z)+d(y,y)]} + \gamma d(z,y) \\ &\leq \gamma d(z,y) \end{aligned}$$

 $\Rightarrow d(z,y) \leq \gamma d(z,y)$ or $(1-\gamma)d(z,y) \leq 0 \Rightarrow z = y$ since $0 < \gamma < 1$. This completes the proof.

Theorem 2.2. Let $\{T_k\}$ be a sequence of self mappings defined on a complete metric space (X, d) satisfying

$$d(T_i x, T_j y) \le \alpha \frac{[1 + d(x, T_i x)] \, d(y, T_j y)}{[1 + d(x, y)]} + \beta \frac{[1 + d(x, T_j y)] \, d(x, T_i x)}{[1 + d(x, T_i x) + d(y, T_j y)]} + \gamma d(x, y)$$
(2)

for all x, y in X, where $\alpha + \beta + \gamma < 1$, $\alpha > 0$, $\beta > 0$, $\gamma > 0$. Then $\{T_k\}$ have a unique common fixed point.

Proof. Let x_0 be any arbitrary point in X. We define a sequence $\{x_n\}$ in X such that $x_n = T_i x_{n-1}$ and $x_{n+1} = T_j x_n$ for $n = 1, 2, 3, 4, \ldots$ Then

$$d(x_n, x_{n+1}) = d(T_i x_{n-1}, T_j x_n)$$

=

$$\leq \alpha \frac{\left[1 + d(x_{n-1}, T_i x_{n-1})\right] d(x_n, T_j x_n)}{\left[1 + d(x_{n-1}, x_n)\right]} + \beta \frac{\left[1 + d(x_{n-1}, T_j x_n)\right] d(x_{n-1}, T_i x_{n-1})}{\left[1 + d(x_{n-1}, x_{n-1}) + d(x_n, T_j x_n)\right]} + \gamma d(x_{n-1}, x_n) \quad \text{[by (2)]}$$

$$\leq \alpha \frac{\left[1 + d(x_{n-1}, x_n)\right] d(x_n, x_{n+1})}{\left[1 + d(x_{n-1}, x_n)\right]} + \beta \frac{\left[1 + d(x_{n-1}, x_{n+1})\right] d(x_{n-1}, x_n)}{\left[1 + d(x_{n-1}, x_n) + d(x_n, x_{n+1})\right]} + \gamma d(x_{n-1}, x_n)$$

$$\leq \alpha d(x_n, x_{n+1}) + \beta \frac{\left[1 + d(x_{n-1}, x_{n+1})\right] d(x_{n-1}, x_n)}{\left[1 + d(x_{n-1}, x_{n+1})\right]} + \gamma d(x_{n-1}, x_n)$$

$$\leq \alpha d(x_n, x_{n+1}) + \beta d(x_{n-1}, x_n) + \gamma d(x_{n-1}, x_n)$$

$$\Rightarrow d(x_n, x_{n+1}) \leq \left(\frac{\beta + \gamma}{1 - \alpha}\right) d(x_{n-1}, x_n) \quad \text{or } d(x_n, x_{n+1}) \leq \lambda d(x_{n-1}, x_n)$$

Where $0 < \lambda < 1$. Similarly $d(x_{n-1}, x_n) \le \lambda d(x_{n-2}, x_{n-1})$ and so on. Hence $d(x_n, x_{n+1}) \le \lambda^n d(x_0, x_1) \to 0$ as $n \to \infty$ since $0 < \lambda < 1$. This proves that $\{x_n\}$ is a Cauchy's sequence in X which is Complete, so it converges to a point say z in X. Now,

$$\begin{aligned} d(z,T_{j}z) &\leq d(z,x_{n}) + d(x_{n},T_{j}z) \\ &\leq d(z,x_{n}) + \alpha \frac{\left[1 + d(x_{n-1},T_{i}x_{n-1})\right]d(z,T_{j}z)}{\left[1 + d(x_{n-1},z)\right]} + \beta \frac{\left[1 + d(x_{n-1},T_{j}z)\right]d(x_{n-1},T_{i}x_{n-1})}{\left[1 + d(x_{n-1},z)\right]} + \gamma d(x_{n-1},z) \\ &\leq d(z,x_{n}) + \alpha \frac{\left[1 + d(x_{n-1},x_{n})\right]d(z,T_{j}z)}{\left[1 + d(x_{n-1},z)\right]} + \beta \frac{\left[1 + d(x_{n-1},T_{j}z)\right]d(x_{n-1},x_{n})}{\left[1 + d(x_{n-1},z)\right]} + \gamma d(x_{n-1},z) \end{aligned}$$

 $\Rightarrow (1 - \alpha)d(z, T_j z) \leq 0$ as $n \to \infty$. Hence $T_j z = z$ since $0 < \alpha < 1$. Similarly we can show $T_i z = z$. Thus z is the common fixed point of T_i and T_j . Consequently z is the common fixed point of $\{T_k\}$. Suppose y is another fixed point of T_i and T_j . Then we have

$$\begin{split} d(z,y) &\leq d(T_i z, T_j y) \\ &\leq \alpha \frac{[1+d(z,T_i z)] \, d(y,T_j y)}{[1+d(z,y)]} + \beta \frac{[1+d(z,T_j y)] \, d(z,T_i z)}{[1+d(z,T_i z)+d(y,T_j y)]} + \gamma d(z,y) \\ &\leq \alpha \frac{[1+d(z,z)] \, d(y,y)}{[1+d(z,y)]} + \beta \frac{[1+d(z,y)] \, d(z,z)}{[1+d(z,z)+d(y,y)]} + \gamma d(z,y) \\ &\leq \gamma d(z,y) \end{split}$$

 $\Rightarrow d(z,y) \leq \gamma d(z,y)$ or $(1-\gamma)d(z,y) \leq 0 \Rightarrow z = y$ since $0 < \gamma < 1$. This completes the proof.

References

- [1] B.Fisher, Common Fixed point and constant mappings satisfying a rational inequality, Math. Sem., 6(1978), 29-35.
- [2] P.L. Sharma and N. Bajaj, Fixed point theorem for mappings satisfying a rational inequalities, Jnanabha, 13(1983), 107-112.
- [3] B. Singh and R.K.Sharma, Common fixed point theorems, Jnanabha, 29(1999), 25-30.