

International Journal of Mathematics And its Applications

Some Properties of Tri-b Open Sets in Tri Topological Space

Ranu Sharma^{1,*}, Bhagyashri A. Deole¹ and Smita Verma¹

1 Department of Applied Mathematics and Computational Science, SGSITS, Indore, Madhya Pradesh, India.

Abstract:	The main aim of this paper is to study tri b-open sets in tri topological spaces along with their several properties and characterization. We study tri b-continuous, tri-b separation and obtain some of their basic properties.	
MSC:	54A40.	
Keywords:	Tri topology, tri b-open sets,tri b-continuous function, tri-gb-closed ,tri-b separation. © JS Publication.	Accepted on: 26.03.2018

1. Introduction

The idea of b-open sets in a topological space was given by Andrijvic [1] in 1996. In 1961 Kelly [4] introduced the concept of bitopological space. Al-Hawary [3] defined the notion of b-open set and b-continuity in bitopological space and established several fundamental properties. Abo Khadra and Nasef [2] discussed b-open set in bitopological spaces. Tri topological space is a generalization of bitopological space. The study of tri-topological space was first initiated by Martin Kovar [6]. Palaniammal [7] and Hameed [5] studied separation axioms in tri-topological spaces and gives the definition of 123 open set in tri topological spaces. Tapi [9] introduced semi open and pre open set in tri topological space. Priyadharsini [8] introduced tri-b open sets in tri topological spaces. The purpose of the present paper is to study b-open sets in tri topological space and their fundamental properties in tri topological space. In this paper, we are using the name tri-open set in place of 123 open sets.

2. Preliminaries

Definition 2.1 ([7]). Let X be a nonempty set and T_1, T_2 and T_3 are three topologies on X. The set X together with three topologies is called a tri topological space and is denoted by (X, T_1, T_2, T_3) .

Definition 2.2 ([5]). A subset A of a topological space X is called 123 open set if $A \in T_1 \cup T_2 \cup T_3$ and complement of 123 open set is 123 closed set.

Definition 2.3 ([8]). Let (X, T_1, T_2, T_3) be a tri topological space, a subset A of a space X is said to be tri-b open set if $S \subset tri - cl(tri - intS) \cup tri - int(tri - clS)$.

 $^{^{*}}$ E-mail: ranusamarth@gmail.com

Definition 2.4 ([8]). Let (X, T_1, T_2, T_3) be a tri topological space and let $A \subset X$. The intersection of all tri-b closed sets containing A is called the tri-b closure of A and denoted by tri - b - clA. Tri-b-intA is the union of all tri-b open sets contained in A, and tri - b - clA is the intersection of all tri-b closed sets containing A.

Definition 2.5 ([8]). Let X and Y be two tri topological spaces. A function $f : (X, T_1, T_2, T_3) \rightarrow (Y, \sigma_1, \sigma_2, \sigma_3)$ is said to be tri-b continuous at a point $b \in X$ if for every tri-b open set V containing gf(b), \exists a tri-b open set F containing b, such that $f(F) \subset V$.

Definition 2.6 ([9]). Let (X, P_1, P_2, P_3) be a tri topological space then a subset A of X is said to be tri semi-open set if $A \subseteq tri - cl (tri - int (A)).$

Definition 2.7 ([9]). Let (X, P_1, P_2, P_3) be a tri topological space then a subset A of X is said to be tri pre open set if $A \subseteq tri - int (tri - cl(A)).$

3. Tri-b Open Sets in Tri Topological Space

Theorem 3.1. Let (X, T_1, T_2, T_3) be tri topological space, and $F \subseteq X$. Then

(a). $(tri - bcl(F))^c = (tri - bcl(F^c)).$

(b). $(tri - bint(F))^{c} = (tri - bcl(F^{c})).$

Proof. Let $F \subseteq X$ where, (X, T_1, T_2, T_3) is a tri topological space.

(a). Now,

 $(tri - bcl(F)) = \cap \{A : F \subset A \text{ and } A \text{ is tri-b closed set} \}$ $(tri - bcl(F))^{c} = [\cap \{A : F \subset A \text{ and } A \text{ is tri-b closed set} \}]^{c}$ $= \cup \{A^{c} : A^{c} \subset F^{c} \text{ and } A^{c} \text{ is tri-b open set} \}$ $= tri - bint(F^{c})$

(b). Similarly, $(tri - bint(F))^c = (tri - bcl(F^c))$.

Proposition 3.2. Let G be a subset of a tri topological space X. Then

- (1). $pscl(F) = F \cup tri cl(tri int(tri cl(F)))$ $psint(F) = F \cap tri - int(tri - cl(tri - int(F)))$ pscl(psint(F)) = tri - cl(tri - int(F))psint(pscl(F)) = tri - int(tri - cl(F)).
- (2). $scl(F) = F \cup tri int(tri cl(F))$ $sint(F) = F \cap tri - cl(tri - int(F))).$
- (3). $pcl(F) = F \cup tri cl(tri int(F))$ $pint(F) = F \cap (tri - int(tri - cl(F))).$

(4). $spcl(F) = F \cup tri - int(tri - cl(tri - int(F)))$

$$spint(F) = F \cap tri - cl(tri - int(tri - cl(F))).$$

Theorem 3.3. In a tri topological space (X, T_1, T_2, T_3) , for a subset F of X, the following are equivalent:

- (1). F is tri-b open.
- (2). $F = pintF \cup \sin tF$
- (3). $F \subseteq pcl(pintF)$.

Proof. Let $F \subseteq X$, where (X, T_1, T_2, T_3) is a tri topological space.

 $(1) \Rightarrow (2)$ Suppose that F is a tri-b open set. So, $F \subset (tri - cl(tri - intF)) \cup (tri - int(tri - clF))$. Now,

$$pintF \cup \sin tF = \{F \cap tri - int(tri - clF)\} \cup \{F \cap tri - cl(tri - intF)\}, \text{ (By Proposition 3.2 (2) \& (3))}$$
$$= F \cap \{tri - int(tri - clF)\} \cup \{tri - cl(tri - intF)\}$$
$$= F$$

Therefore $F = pintF \cup \sin tF$.

 $(2) \Rightarrow (3)$ Let $F = pintF \cup sintF$ (by Proposition 3.2 (2) & (3)), we have

$$\begin{split} F &= pintF \cup (F \cap tri - cl(tri - intF)) \\ &\subseteq pintF \cup (F \cap tri - cl(tri - intF)) \\ &= pcl(pintF) \,, \end{split}$$
 i.e., $F \subseteq pcl(pintF) \,. \end{split}$

 $(3) \Rightarrow (1)$ Let $F \subseteq pcl(pintF)$. Then

$$F \subseteq pintS \cup tri - cl(tri - intF)$$
 (by Proposition 3.2 (2))
i.e., $F \subseteq F \cap tri - int(tri - clF)) \cup (F \cap tri - cl(tri - intF))$ (by Proposition 3.2 (3))

$$= \{F \cup tri - cl(tri - intF)\} \cap \{tri - int(tri - clF) \cup tri - cl(tri - intF)\}$$

i.e., F is a tri-b open set.

Note 3.4.

- (a). Every tri-b open set can be represented as a union of tri pre-open set and a tri semi open set (by Theorem 3.3(b)).
- (b). If F be a tri-b open set such that $tri intF = \phi$ then $sintF = F \cap cl(intS)$ provides that $tri intF = \phi$. Consequently, we have $F = pintF \cup sintS = pintS$ i.e. S is a tri pre open set.

Theorem 3.5. If (X, T_1, T_2, T_3) be a tri topological space, then

- (a). The intersection of a tri- α open set and a tri-b open set is a tri-b open set.
- (b). tri- α and tri topological spaces have the same class of tri-b open set.
- *Proof.* Let (X, T_1, T_2, T_3) be a tri topological space.

(a). Let F be a tri- α open set and G be a tri-b open set. Now,

$$S = F \cap G$$

= $tri - \alpha F \cap tri - bintG$
 $\subseteq tri - bF \cap tri - bintG$
= $tri - bint(F \cap G)$
= $tri - bint(S)$
i.e., $S \subseteq tri - bint(S)$

But $tri - bint(S) \subseteq S$. Hence S = tri - bint(S) i.e., $S = F \cap G$ is a tri-b open set.

Theorem 3.6. Let (X, T_1, T_2, T_3) be a tri topological space and S be a subset of X, then

- (a). $tri bclS = sclS \cap pclS$.
- (b). $tri bintS = \sin tS \cup pintS$.
- *Proof.* Let (X, T_1, T_2, T_3) be a tri topological space and $S \subseteq X$.
- (a). Since tri bclS is a tri-b closed set. Hence, $tri int(tri cl(tri bclS)) \cap tri cl(tri int(tri bclS)) \subseteq tri bclS$. Again,

$$tri - int(tri - clS)) \cap tri - cl(tri - intS) \subseteq tri - int(tri - cl(tri - bclS)) \cap tri - cl(tri - int(tri - bclS))$$
$$tri - int(tri - clS) \cap tri - cl(tri - intS) \subseteq tri - bclS$$
$$S \cup tri - int(tri - clS) \cap tri - cl(tri - intS) \subseteq S \cup tri - bclS$$
$$sclS \cap pclS \subseteq tri - bclS$$
(i)

Next,

$$tri - bclS \subseteq sclS \& tri - bclS \subseteq pclS$$
$$tri - bclS \subset sclS \cap pclS$$
(ii)

From (i) and (ii), it follows that $tri - bclS = sclS \cap pclS$.

(b). Since tri - bintS is a tri - b open set, we have

$$tri - cl(tri - int(tri - bintS)) \cup tri - int(tri - cl(tri - bintS)) \supseteq tri - bintS$$

 ${\rm Again},$

$$tri - cl(tri - int(tri - bintS)) \cup tri - int(tri - cl(tri - bintS)) \subseteq tri - cl(tri - intS)$$
$$tri - bintS \subseteq (tri - cl(tri - intS)) \cup tri - int(tri - clS)$$
$$S \cap tri - bintS \subseteq (S \cap tri - cl(tri - intS)) \cup \{S \cap tri - int(tri - clS)\}$$
$$tri - bintS \subseteq sintS \cup pintS$$
(i)

Next,

$$sintS \subseteq tri - bintS \quad \& \quad pintS \subseteq tri - bintS$$
$$sintS \cup pintS \subseteq tri - bintS \quad (ii)$$

From (i) and (ii), it follows that $tri - bintS = sintS \cup pintS$.

Theorem 3.7. If F be a subset of a tri topological space (X, T_1, T_2, T_3) , then tri - bint(tri - bcl F) = tri - bcl(tri - bintF).

Proof. Let (X, T_1, T_2, T_3) be a tri topological space. Now,

$$tri - bint (tri - bcl F) = sint(tri - bclF) \cup pint (tri - bclF)$$

$$= tri - bcl (sint F) \cup pint (tri - bclS)$$
(i)
$$tri - bcl (tri - bint F) = tri - bcl(sin tS \cup pintS)$$

$$= tri - bcl(sin tS) \cup tri - bcl(pintS)$$

$$= scl(sin tS) \cup pint(pclS)$$
(ii)

Hence from (i) and (ii), tri - bint(tri - bcl F) = tri - bcl(tri - bintF).

Theorem 3.8. A subset B of a tri topological space (X, T_1, T_2, T_3) is tri-b open if and only if every closed set F containing B, there exists the union of maximal tri open set M contained in tri - cl(B) and the minimal tri closed set N containing tri int (B) such that $B \subseteq M \cup N \subseteq F$.

Proof. Let A be a tri-b open set in a tri topological space (X, T_1, T_2, T_3) . Then

$$B \subseteq tri - cl(tri - int(B)) \cup tri - int(tri - cl(B))$$

$$\tag{1}$$

Let $B \subseteq F$ and F is tri-closed so that $tri - cl(B) \subseteq F$. Let M = tri - int(tri - cl(B)), then M is the maximal open set contained in tri - cl(B). Let N = tri - cl(tri - int(B)), then N is the minimal closed set containing tri - int(B). Again, $B \subseteq tri - cl(B) \subseteq F$ and $tri - int(tri - cl(B)) \subseteq tri - cl(B)$.

$$\Rightarrow tri - int (tri - cl (B)) \subseteq F \tag{2}$$

Next $tri - int(B) \subseteq B \Rightarrow tri - cl(tri - int(B)) \subseteq tri - cl(B)$ and $tri - cl(B) \subseteq F$.

$$\Rightarrow tri - cl \left(tri - intB \right) \subseteq F \tag{3}$$

From (2) and (3), we have

$$tri - int \left(tri - cl \left(B \right) \right) \cup tri - cl \left(tri - int \left(B \right) \right) \subseteq F$$

$$\tag{4}$$

Combining (1) and (4), we have $B \subseteq tri - cl(tri - int(B)) \cup tri - int(tri - cl(B)) \subseteq F$ or $B \subseteq M \cup N \subseteq F$.

Conversely, assume that the condition holds good i.e., $B \subseteq M \cup N \subset F$, where B is a subset in a tri topological space, F is closed and M is the maximal tri open set contained in a tri - cl(B), N is the minimal closed set containing tri - int(B). Therefore, M = tri - int(tri - cl(B)) and N = tri - cl(tri - int(B)). Thus, the above condition reduces to $B \subseteq tri - cl(tri - int(B)) \cup tri - int(tri - cl(B)) \subseteq F$. This means that B is a tri-b open set.

28

Theorem 3.9. A subset B in a tri topological space (X, T_1, T_2, T_3) is tri-b open if and only if there exists a tri pre-open set U in (X, T_1, T_2, T_3) such that $U \subseteq B \subseteq pcl(U)$.

Proof. Let $B \subset X$. Then by Theorem 3.8,

$$B \subseteq pcl (pint B) \tag{5}$$

Now, as usual $pintB \subseteq B$ and U = pint(B) = a tri pre-open set. Hence, from (5) it follows that $U \subseteq B \subseteq pcl(U)$. Conversely, for a set B there exists tri pre-open set U such that

$$U \subseteq B \subseteq pcl\left(U\right) \tag{6}$$

Since, pint(B) is the maximal tri pre-open set contained in B. Hence

$$U \subseteq pint\left(B\right) \subseteq B \tag{7}$$

Now,

$$pcl(U) \subseteq pcl(pintB)$$
 [from (7)] (8)

Combining (6) and (7) we get, $B \subseteq pcl$ (pint B), which means that B is a tri-b open set.

Corollary 3.10. A subset B in a topological space (X, T_1, T_2, T_3) is tri-b open if and only if it contains tri pre-open set but not its tri pre-closure.

Theorem 3.11. If H is a tri- b open set in a space (X, T_1, T_2, T_3) then $H \subseteq tri - cl(tri - intH) \cup tri - int(tri - clH)$ is a tri pre-open set.

Proof. Let H be a tri b-open set in a space (X, T_1, T_2, T_3) , then $H \subseteq tri - cl (tri - intH) \cup tri - int (tri - cl H)$. Since, $tri - int B \subseteq B$ for all B = X, hence substituting tri - cl (tri - int H) for B, we have,

$$tri - int (tri - cl (tri - intH)) \subseteq tri - cl (tri - intH).$$

This means that tri - int (tri - cl (tri - int H)) is a tri semi-closed set. And in term it is tri b-closed. Now, S = H - tri - int(tri - cl (tri - int H)) is tri- b open. Also, $tri - int S = \varphi$. Using Note 3,.4 (b), the above two facts provide that S is a tri pre-open set.

4. Tri-b Continuous Function in Tri Topological Space

Definition 4.1. A function $f: (X, T_1, T_2, T_3) \rightarrow (Y, \sigma_1, \sigma_2, \sigma_3)$ is said to be tri b-closed (respectively tri-b open) if for every tri-b closed (respectively tri-b open) subset B of X, f (B) is tri b-closed (respectively tri b-open) in Y.

Definition 4.2. Let (X, T_1, T_2, T_3) and $(Y, \sigma_1, \sigma_2, \sigma_3)$ be two tri-topological spaces. A function $f : X \to Y$ is called tri-b open map if f(G) tri-b open in Y for every tri-b open set G in X.

Definition 4.3. Let (X, T_1, T_2, T_3) and $(Y, \sigma_1, \sigma_2, \sigma_3)$ be two tri topological spaces. Let $f : X \to Y$ be a mapping. f is called tri- b closed map if f(F) is tri-b closed in Y for every tri-b closed set F in X.

5. Tri-gb Open Sets in Tri Topological Space

Definition 5.1. A subset F of a tri topological space (X, T_1, T_2, T_3) is said to be tri-gb-closed if $tri - bcl(F) \subset V$ whenever $F \subset V$ and V is tri open set.

Remark 5.2.

- (a). The complement of tri-gb closed is tri-gb open.
- (b). The intersection of all tri closed sets of V containing a subset B of V is called tri-gb-closure of B and is denoted by tri gb cl(B) and the union of all tri-gb open sets contained in B denoted by tri gbint(B) is called tri-gb-interior of B.

Theorem 5.3. Every tri closed subset of a tri topological space V is tri-b closed.

Proof. Let $B \subset V$ is a tri closed set, since $B^0 \subset tricl B^0$, hence $triint B^0 \subset triint(tricl B^0)$, hence $triint B \subset B$ for any subset B, hence $B^0 \subset triint(tricl B^0)$ and $B^0 \subset triint(tricl B^0) \cup tricl(triint B^0)$ hence B^0 is tri-b open set, hence B is tri-b open set.

Theorem 5.4. Every tri-b closed subset of a tri topological space V is tri-gb closed.

Proof. Let $B \subset V$ is a tri-b closed set, and let $B \subset F$, where F is tri-b open, since B is tri-b closed set, hence $tri - int(tri - clB) \cap tri - cl(tri - intB) \subset B$, $tri - int(tri - clB) \cap tri - cl(tri - intB) \subset B$, $tri - int(tri - clB) \cap tri - cl(tri - intB) \subset F$ because tri - cl - bB is the smallest tri - b - cl set containing B,

$$tricl(B) = B \cup triint(tricl(B)) \cap tricl(triint(B)) \subset B \subset B \cup V \subset V,$$

i.e., B is tri b-closed.

6. Tri-b Separation Axioms in Tri Topological Space

Definition 6.1. A tri topological space X is said to be $tri - b - T_0$ space if and only if to given any pair of distinct points x_1, y_1 in V, there exists a tri-b open set containing one of the points but not the other

Example 6.2. Let $X = \{a, b, c\}$, $T_1 = \{X, \phi\}$, $T_2 = \{X, \phi, \{a\}\}$, $T_3 = \{X, \phi, \{b, c\}\}$ Tri open sets in tri topological spaces are union of all tri topologies. Then tri open sets of $X = \{X, \phi, \{a\}, \{b, c\}\}$ Tri-b open set of X is denoted by $tri - BO(X) = \{X, \phi, \{a, b\}, \{c\}, \{a, c\}, \{b, c\}\}$. So (X, T_1, T_2, T_3) is $tri - b - T_0$ space.

Theorem 6.3. If $\{x_1\}$ is tri-b-open for some $x_1 \in V$ then $x_1 \in tri - b - cl\{y_1\}$, for all $y_1 \neq x_1$.

Proof. Let $\{x_1\}$ be a tri-b-open for some $x_1 \in V$, then $V - \{x_1\}$ is tri-b closed. If $x_1 \in tri - b(\{y_1\})$, for some $y_1 \neq x_1$, then y_1, x_1 both are in all the tri-gb-closed sets containing y_1 , so $x_1 \in V - \{x_1\}$ which is contradiction, hence $x_1 \in tri - cl - b(\{y_1\})$.

Theorem 6.4. In any tri topological space (X, T_1, T_2, T_3) , any distinct points have distinct tri-b-closure.

Proof. Let $x_1, y_1 \in X$ with $x_1 \neq y_1$, and let $B = \{x_1\}^c$ hence tri - b - cl(B) = B or U. Now if then tri - b - cl(B) = B, then B is tri-b-closed so $X - A = \{x_1\}$ is tri-b open and not containing y_1 . So by Theorem 6.3 $x_1 \notin tri - b - cl(y_1)$ and $y_1 \in tri - b - cl(y_1)$ which implies that $tri - b - cl(y_1)$ and $tri - b - cl(x_1)$ are distinct. If tri - b - cl(B) = X then A is tri-b open, hence $\{x_1\}$ is tri-b closed, which mean that $tri - b - cl(\{x_1\}) = \{x_1\}$ which is not equal to $tri - b - cl(\{y_1\})$. \Box

Theorem 6.5. In any tri topological space X, if distinct points have distinct tri-b closure then U is $tri - b - T_0$ space.

Proof. Let $x_1, y_1 \in V$ with $x_1 = y_1$, with $tri-cl-b(\{y_1\})$ is not equal to $tri-b-cl(\{x_1\})$, hence there exists $z \in V$ such that $z \in tri-b-cl\{x_1\}$ but $z \notin tri-b-cl\{y_1\}$ or $z \in tri-b-cl\{x_1\}$ but now without loss of generality, let $z \in tri-b-cl(\{x_1\})$. But $z \notin tri-b-cl(\{x_1\})$, if $x \in tri-b-cl(\{y_1\})$, then $tri-b-cl(\{x_1\})$ is contained in $tri-b-cl(\{y_1\})$, hence $z \in tri-cl(\{y_1\})$, which is a contradiction, this mean that $x \notin tri-b-cl(\{y_1\})$ hence $z \notin tri-b-cl(\{y_1\})$ hence X is tri-b- tl_0 space.

Definition 6.6. A tri topological space X is said to be tri-b- T_1 space if and only if to given any pair of distinct point x_1 and y_1 of X there exist two tri-b-open sets U, V such that $x_1 \in U_1$, $y_1 \notin U_1$ and $y_1 \in V_1$, $x_1 \notin V_1$.

Theorem 6.7. Every tri- T_1 space is a tri-b- T_0 space.

Definition 6.8. A tri topological space X is said to be tri-b-T₂ space if and only if for $x_1, y_1 \in X$, $x_1 \neq y_1$ there exist two disjoint tri-b open sets U_1, V_1 in X such that $x_1 \in U_1, y_1 \in V_1$.

Theorem 6.9. Every $tri-b-T_2$ space is $tri-b-T_1$ space.

Proof. Let X is tri-b T_2 space and let x_1, y_1 in X with $x_1 \neq y_1$, so by hypothesis there exist two disjoint tri-b open, say U_1, V_1 such that $x_1 \in U_1$ and $y_1 \in V_1$ but $U_1 \cap V_1 = \phi$ hence $x_1 \notin V_1$ and $y_1 \notin U_1$ i.e., X is tri-b- T_1 space.

Definition 6.10. A tri topological space X is said to be tri-regular space if and only if for each tri-b closed set G and each point $x_1 \notin G$, there exist disjoint tri-b open sets U_1 and V_1 such that $x \in U_1$ and $G \in V_1$.

Theorem 6.11. Every $tri-b-T_3$ space is a $tri-b-T_2$ space.

Proof. Let (X, T_1, T_2, T_3) be a tri-b T_3 space and let x_1, y_1 be two distinct points of X. Now by definition, X is also a tri-b T_1 space and so $\{x_1\}$ is a tri- closed set. Also $y_1 \notin \{x_1\}$. Since (X, T_1, T_2, T_3) is a tri-b regular space, there exist tri-b open sets G_1 and H_1 such that $\{x_1\} \subset G_1, \{y_1\} \subset H_1$ and $G_1 \cap H_1 = \phi$. Also $\{x_1\} \subset G_1 \Rightarrow x_1 \in G_1$. Thus x_1, y_1 belong respectively to disjoint tri-b open sets G_1 and H_1 . According (X, T_1, T_2, T_3) is a tri-b-T₂ space.

Since $B \subset tri - b - clB$, hence $tri - bintB \subset tri - bint(tri - bclB)$, since $tri - bintB \subset B$ for any subset B, hence $B \subset tri - b - int(tri - b - clB)$ and $B \subset tri - bint(tri - bclB) \cup tri - bcl(tri - bintB)$, hence B is tri b open set.

7. Conclusion

In this paper the idea of tri-b separation and tri-gb open set in tri topological spaces were introduced and tri-b continuity were studied, Also properties of tri-b open set and tri-b closed sets were studied.

References

- [1] D. Andrijevic, b-open sets, Matematicki Vesnik, 48(1996), 59-64.
- [2] A. Abo khadra and A.A. Nasef, On extension of certain concepts from a topological space to a bitopological space, Proc. Math. Phys. Soc. Egypt., 79(2003), 91-102.
- [3] T. Al-Hawary and A. Al-omari, b-open set & b-continuity in bitological spaces, Al-Manarah, 13(3)(2007), 89-101.
- [4] J.C. Kelly, Bitopological spaces, Proc. London Math. Soc., 3(1963), 17-89.
- [5] N.F. Hameed and Mohammed Yahya Abid, Certain types of separation axioms in tri topological spaces, Iraqi Journal of Science, 52(2)(2011), 212-217.

- [6] M. Kovar, On 3-Topological version of Thet- Reularity, Internat. J. Math. Sci., 23(6)(2000), 393-398.
- [7] S. Palaniammal, Study of tri topological spaces, Ph.D. Thesis, (2011).
- [8] P. Priyadharsini and A. Parvathi, Tri-b-continuous function in tri topological spaces, International Journal of Mathematics And its Applications, 5(4-F), 959-962.
- U.D. Tapi, R. Sharma and B.A. Deole, Semi-open sets and Pre open sets in Tri Topological Space, i-manager's Journal on Mathematics, 5(3)(2016), 41-47.