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Abstract: In this paper, first we introduce the notion of compatible mappings of type (K) in digital metric spaces analogue to the
notion of compatible mappings of type (K) in metric spaces and then we prove a common fixed point theorem for pairs

of compatible mappings of type (K) in digital metric spaces.
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1. Introduction

An image or region may be defined as a two dimensional function f (x, y), where x and y are spatial co-ordinates and f

denotes the amplitude function (brightness). The value of f at (x, y) is called intensity or gray level of the image at that

point. If the intensity values of f are all finite, discrete quantities, then we call it as a digital image. Digital image is

composed of a finite number of elements, each of which has a particular location and value. These elements are called pixels.

Pixel is the term used to denote the elements of digital image. The first applications of digital images appeared in the

newspaper industry. To create a digital image we need to convert the continuous reused data into digital form. This can be

done through sampling and quantization. The elements of 2D image are called pixels. A pixel p at a point (x, y) has four

horizontal and vertical neighbours whose coordinates are given by (x+ 1, y), (x− 1, y), (x, y+ 1), (x, y− 1). The set of pixels

is called 4 neighbours of p, is denoted by N4(p) and each pixel is at unit distance from the point (x, y). The four diagonal

neighbours of p have coordinates (x+ 1, y + 1), (x− 1, y − 1), (x− 1, y + 1), (x+ 1, y − 1), denoted by ND(p). These points

together with the four neighbours are called 8-neighbor of p and denoted by N8(p). Let Zn, n ∈ N, be the set of points in

the Euclidean n dimensional space with integer coordinates.

Definition 1.1 ([2]). Let l, n be positive integers with 1 ≤ l ≤ n. Consider two distinct points p = (p1, p2, . . . , pn),

q = (q1, q2, . . . , qn) ∈ Zn. The points p and q are kl-adjacent if there are at most l indices i such that |pi − qi| = 1 and for

all other indices j, |pj − qj | 6= 1, pj = qj.

(1). Two points p and q in Z are 2-adjacent if |p− q| = 1 (see Figure 1). FIGURE 1. 2-adjacency

(2). Two points p and q in Z2 are
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(a). 8-adjacent if the points are distinct and differ by at most 1 in each coordinate i.e., the 4-neighbours of (x, y) are

its four horizontal and vertical neighbours (x± 1, y) and (x, y ± 1).

(b). 4-adjacent if the points are 8-adjacent and differ in exactly one coordinate i.e., the 8-neighbours of (x, y) consist of

its 4-neighbours together with its four diagonal neighbours (x+ 1, y ± 1) and(x− 1, y ± 1).

(3). Two points p and q in Z3 are 26-adjacent if the points are distinct and differ by at most 1 in each coordinate. i.e.,

(a). Six faces neighbours (x± 1, y, z), (x, y ± 1, z) and (x, y, z ± 1).

(b). Twelve edges neighbours (x± 1, y ± 1, z) , (x, y ± 1, z ± 1).

(c). Eight corners neighbours (x± 1, y ± 1, z ± 1).

(4). Two points p and q in Z3 are 18-adjacent if the points are 26-adjacent and differ by at most 2 coordinate. i.e.,

(a). Twelve edges neighbours (x± 1, y ± 1, z) , (x, y ± 1, z ± 1).

(b). Eight corners neighbours (x± 1, y ± 1, z ± 1).

(5). Two points p and q in Z3 are 6-adjacent if the points are 18-adjacent and differ in exactly one coordinate. i.e.,

(a). Six faces neighbours (x± 1, y, z) , (x, y ± 1, z) and (x, y, z ± 1)

For more details one can refer to [9]. Now we start with digital metric space (X, d, k) where d is usual Euclidean metric on

Zn and k denote the adjacency relation among the points in Zn. We notice that the digital plane Z2 is the set of all points

in the plane R2 having integer coordinates.

Definition 1.2. Let (X, k) be a digital images set. Let d be a function from (X, k)× (X, k)→ Zn satisfying the following:

(1). d(p, q) ≥ 0,

(2). d (p, q) = 0 if and only if p = q,

(3). d (p, q) = d(q, p),

(4). d (p, z) = d (p, q) + d (q, z), where p, q, z ∈ (X, k).

A point p of digital image is called pixel and this point has co-ordinates of type (x, y).

The various Euclidean distances between pixels p and q are defined as

(a). d2 (p, q) = 2

√
[(x− s)2 + (y − t)2].

(b). d4 (p, q) = |x− s|+ |y − t| (City block distance).

(c). d8 (p, q) = max(|x− s| , |y − t|) (Chessboard distance).

2. Topology of Digital Metric Spaces

In 1999 Boxer [2] defined a k-neighbour of a point p ∈ Zn and gave the digital version of topologies. A k-neighbour of

a point p ∈ Zn is a point of Zn that is k-adjacent to p, where k ∈ {2, 4, 68, 18, 26} and n ∈ {1, 2, 3}. The set Nk(p) =

{q|q is k-adjacent to p} is called the k-neighbourhood of p. In 1994 Boxer [1] defined a digital interval as [a, b]Z = {z ∈

Z| a ≤ z ≤ b}, where a, b ∈ Z and a < b. A digital image X ⊂ Zn is k-connected if and only if for every pair of distinct

points x, y ∈ X, there is a set {x0, x1, x2, . . . , xr} of points of a digital image X such that x = x0, y = xr where xi and
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xi+1 are k-neighbours and i = 0, 1, . . . , r − 1, see [5]. The notion of digital continuity in digital topology was developed by

Rosenfeld [11] to study 2D and 3D digital images. Further, Ege and Karaca [3] described the digital continuous functions.

Definition 2.1 ([1]). Let (X, k0) ⊂ Zn0 , (Y, k1) ⊂ Zn1 be digital images and f : X → Y be a function.

(1). If for every k0-connected subset U of X, f(U) is a k1-connected subset of Y , then f is said to be (k0, k1)-continuous.

(2). f is (k0, k1)-continuous for every k0-adjacent points {x0, x1} of X, either f(x0) = f(x1) or f(x0) and f(x1) are

k1-adjacent in Y .

(3). If f is (k0, k1)-continuous, bijective and f−1 is (k0, k1)-continuous, then f is called (k0, k1)-isomorphism and denoted

by ∼=(k0,k1) Y .

Proposition 2.2 ([4]). Let (X, d, k) be a digital metric space. A sequence {xn} of points of a digital metric space (X, d, k)

is

(1). a Cauchy sequence if and only if there is α ∈ N such that for all, n,m 	 α, then d(xn, xm) � 1 i.e., xn = xm.

(2). convergent to a point l ∈ X if for all ε 	 0, there is α ∈ N such that for all n 	 α then d (xn, l) � ε, i.e., xn = l.

Proposition 2.3 ([4]). A sequence {xn} of points of a digital metric space (X, d, k) converges to a limit l ∈ X if there is

α ∈ N such that for all n 	 α, then xn = l.

Theorem 2.4 ([4]). A digital metric space (X, d, k) is always complete.

Definition 2.5 ([3]). Let (X, d, k) be any digital metric space. A self map f on a digital metric space is said to be digital

contraction, if there exists a λ ∈ [0, 1) such that for all x, y ∈ X, d(f(x), f(y)) ≤ λd(x, y).

Proposition 2.6 ([3]). Every digital contraction map f : (X, d, k)→ (X, d, k) is digitally continuous.

Proposition 2.7 ([4]). Let (X, d, k) be a digital metric space. Consider a sequence {xn} ⊂ X such that the points in {xn}

are k adjacent. The usual distance d(xi, xj) which is greater than or equal to 1 and at most
√
t depending on the position of

the two points where t ∈ Z+.

3. Preliminaries

It was the turning point in the fixed point theory literature when the notion of commutativity mappings was used by Jungck

[8] to obtain a generalization of Banach’s fixed point theorem for a pair of mappings. This result was further generalized,

extended and unified using various types of contractions and minimal commutative mappings. In 2014, Jha [4] introduced

the concept of compatible mappings of type (K). In 1998, Pant [10] de?ned the concept of continuity by defining the concept

of reciprocally continuous mappings. Now, we introduced the concept of compatible mappings of type (K) in a digital metric

space analogue to the notion in metric spaces.

Definition 3.1. Let ∅ 6= X ⊂ Zn, n ∈ N and (X, k) be a digital image and k is an adjacency relation in X. Two self

mappings f and g of a digital metric space (X, d, k) are called digitally compatible of type (K) if lim
n
d(ffxn, gt) = 0 and

lim
n
d(ggxn, ft) = 0, whenever {xn} is a sequence in X such that lim

n
fxn = lim

n
gxn = t for some t in X.

Definition 3.2. Two self mappings f and g on a digital metric space (X, d, k) are called reciprocally continuous if lim
n
fgxn =

ft and lim
n
gfxn = gt, whenever {xn} is a sequence in X such that lim

n
fxn = lim

n
gxn = t for some t in X. If f and g are

both (k, k) continuous, then they are obviously reciprocally continuous but the converse is not true.
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4. Main Results

Now we prove a common fixed point theorem for pairs of compatible mappings of type (K) in digital metric spaces as follows:

Theorem 4.1. Let ∅ 6= X ⊂ Zn, n ∈ N and (X, k) be a digital image and k is an adjacency relation in X. Let A,B, S and

T be mappings of a digital metric space (X, d, k) into itself satisfying the following conditions:

(C1) S (X) ⊂ B (X) , T (X) ⊂ A (X),

(C2) d(Sx, Ty) = αmax{d(Ax,By), d(Ax, Sx), d(By, Ty), d(Sx,By), d(Ax, Ty)} for all x, y ∈ X, where α ∈ (0, 1),

(C3) pairs (A, S) and (B, T) are reciprocally continuous.

Assume that the pairs (A,S) and (B, T ) are compatible of type K. Then A,B, S and T have a unique common fixed point in

X.

Proof. Let x0 ∈ X be any arbitrary point. From (C1) we can find x1 such that S (x0) = B (x1) = y0 for this x1 one

can find x2 ∈ X such that T (x1) = A (x2) = y1. Continuing in this way, one can construct a sequence {yn} such that

y2n = S (x2n) = B (x2n+1), y2n+1 = T (x2n+1) = A (x2n+2) for each n = 0. From the proof of [6] {yn} is a digitally

Cauchy sequence in digital metric space (X, d, k). Therefore, {yn} converges to a point z as n → ∞. Consequently the

subsequence’s {Sx2n} , {Ax2n} , {Tx2n+1} and {Bx2n+1} also converges to the same point z. Since the pairs (A,S) and

(B, T ) are compatible of type (K) on X. Then we have AAx2n+2 → Sz, SSx2n → Az and BBx2n+1 → Tz, TTx2n+1 → Bz

as n→∞. We claim that Bz = Az. Putting = Sx2n, y = Tx2n+1 in (C2) we have

d(SSx2n, TTx2n+1) ≤ max{d (ASx2n, BTx2n+1) , d (ASx2n, SSx2n) , d (ASx2n, TTx2n+1) ,

d (BTx2n+1, TTx2n+1) , d (SSx2n, BTx2n+1)}.

Letting n→∞ and using reciprocal continuity of the pairs (A,S) and (B, T ), we have

d(Az,Bz) ≤ alphamax{d(Az,Bz), d(Az,Az), d(Bz,Bz), d(Az,Bz), d(Az,Bz)} ≤ ad (Az,Bz) ,

implies that d(Az,Bz) = 0 implies Az = Bz. Next we claim that Sz = Bz. On putting x = z, y = Tx2n+1 in (C2), we have

d(Sz, TTx2n+1) ≤ αmax{d(Az,BTx2n+1), d(Az, Sz), d(BTx2n+1, TTx2n+1), d(Sz,BTx2n+1), d(Az, TTx2n+1)}.

Letting n→∞, and using reciprocal continuity of the pairs (A, S) and (B, T ), we have

d(Sz, Bz) ≤ αmax{d(Bz,Bz), d(Bz, Sz), d(Bz,Bz), d(Sz,Bz), d(Sz,Bz)} ≤ αd (Sz,Bz) .

This implies that Sz = Bz. We claim that Sz = Tz. On putting x = z, y = z in inequality (C2), we have

d(Sz, Tz) ≤ αmax{d(Az,Bz), d(Az, Sz), d(Bz, Tz), d(Sz,Bz), d(Az, Tz)}

≤ αmax {0, 0, d (Sz, Tz) , 0, d (Sz, Tz)}

This implies that Sz = Tz. Therefore, we have Az = Bz = Sz = Tz.

We claim that z = Tz. On putting = x2n, y = z in inequality (C2), we have

d(Sx2n, T z) ≤ αmax{d(Ax2n, Bz), d(Ax2n, Sx2n), d(Bz, Tz), d(Sx2n, Bz), d(Ax2n, T z)}

≤ αmax{d(z, Tz), 0, 0, d(z, Tz), d(z, Tz)}.

Letting n → ∞ we have z = Tz. Hence, z = Az = Bz = Sz = Tz. Therefore, z is common fixed point of A, B, S and T.

Uniqueness follows easily.
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